author  wenzelm 
Thu, 08 Aug 2002 23:46:09 +0200  
changeset 13480  bb72bd43c6c3 
parent 13462  56610e2ba220 
child 13508  890d736b93a5 
permissions  rwrr 
13462  1 
(* Title: HOL/List.thy 
2 
ID: $Id$ 

3 
Author: Tobias Nipkow 

4 
License: GPL (GNU GENERAL PUBLIC LICENSE) 

923  5 
*) 
6 

13114  7 
header {* The datatype of finite lists *} 
13122  8 

9 
theory List = PreList: 

923  10 

13142  11 
datatype 'a list = 
13366  12 
Nil ("[]") 
13 
 Cons 'a "'a list" (infixr "#" 65) 

923  14 

15 
consts 

13366  16 
"@" :: "'a list => 'a list => 'a list" (infixr 65) 
17 
filter:: "('a => bool) => 'a list => 'a list" 

18 
concat:: "'a list list => 'a list" 

19 
foldl :: "('b => 'a => 'b) => 'b => 'a list => 'b" 

20 
foldr :: "('a => 'b => 'b) => 'a list => 'b => 'b" 

21 
hd:: "'a list => 'a" 

22 
tl:: "'a list => 'a list" 

23 
last:: "'a list => 'a" 

24 
butlast :: "'a list => 'a list" 

25 
set :: "'a list => 'a set" 

26 
list_all:: "('a => bool) => ('a list => bool)" 

27 
list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool" 

28 
map :: "('a=>'b) => ('a list => 'b list)" 

29 
mem :: "'a => 'a list => bool" (infixl 55) 

30 
nth :: "'a list => nat => 'a" (infixl "!" 100) 

31 
list_update :: "'a list => nat => 'a => 'a list" 

32 
take:: "nat => 'a list => 'a list" 

33 
drop:: "nat => 'a list => 'a list" 

34 
takeWhile :: "('a => bool) => 'a list => 'a list" 

35 
dropWhile :: "('a => bool) => 'a list => 'a list" 

36 
rev :: "'a list => 'a list" 

37 
zip :: "'a list => 'b list => ('a * 'b) list" 

38 
upt :: "nat => nat => nat list" ("(1[_../_'(])") 

39 
remdups :: "'a list => 'a list" 

40 
null:: "'a list => bool" 

41 
"distinct":: "'a list => bool" 

42 
replicate :: "nat => 'a => 'a list" 

923  43 

13146  44 
nonterminals lupdbinds lupdbind 
5077
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the ith
nipkow
parents:
4643
diff
changeset

45 

923  46 
syntax 
13366  47 
 {* list Enumeration *} 
48 
"@list" :: "args => 'a list" ("[(_)]") 

923  49 

13366  50 
 {* Special syntax for filter *} 
51 
"@filter" :: "[pttrn, 'a list, bool] => 'a list" ("(1[_:_./ _])") 

923  52 

13366  53 
 {* list update *} 
54 
"_lupdbind":: "['a, 'a] => lupdbind" ("(2_ :=/ _)") 

55 
"" :: "lupdbind => lupdbinds" ("_") 

56 
"_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds" ("_,/ _") 

57 
"_LUpdate" :: "['a, lupdbinds] => 'a" ("_/[(_)]" [900,0] 900) 

5077
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the ith
nipkow
parents:
4643
diff
changeset

58 

13366  59 
upto:: "nat => nat => nat list" ("(1[_../_])") 
5427  60 

923  61 
translations 
13366  62 
"[x, xs]" == "x#[xs]" 
63 
"[x]" == "x#[]" 

64 
"[x:xs . P]"== "filter (%x. P) xs" 

923  65 

13366  66 
"_LUpdate xs (_lupdbinds b bs)"== "_LUpdate (_LUpdate xs b) bs" 
67 
"xs[i:=x]" == "list_update xs i x" 

5077
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the ith
nipkow
parents:
4643
diff
changeset

68 

13366  69 
"[i..j]" == "[i..(Suc j)(]" 
5427  70 

71 

12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
10832
diff
changeset

72 
syntax (xsymbols) 
13366  73 
"@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])") 
3342
ec3b55fcb165
New operator "lists" for formalizing sets of lists
paulson
parents:
3320
diff
changeset

74 

ec3b55fcb165
New operator "lists" for formalizing sets of lists
paulson
parents:
3320
diff
changeset

75 

13142  76 
text {* 
13366  77 
Function @{text size} is overloaded for all datatypes.Users may 
78 
refer to the list version as @{text length}. *} 

13142  79 

80 
syntax length :: "'a list => nat" 

81 
translations "length" => "size :: _ list => nat" 

13114  82 

13142  83 
typed_print_translation {* 
13366  84 
let 
85 
fun size_tr' _ (Type ("fun", (Type ("list", _) :: _))) [t] = 

86 
Syntax.const "length" $ t 

87 
 size_tr' _ _ _ = raise Match; 

88 
in [("size", size_tr')] end 

13114  89 
*} 
3437
bea2faf1641d
Replacing the primrec definition of "length" by a translation to the builtin
paulson
parents:
3401
diff
changeset

90 

5183  91 
primrec 
13145  92 
"hd(x#xs) = x" 
5183  93 
primrec 
13145  94 
"tl([]) = []" 
95 
"tl(x#xs) = xs" 

5183  96 
primrec 
13145  97 
"null([]) = True" 
98 
"null(x#xs) = False" 

8972  99 
primrec 
13145  100 
"last(x#xs) = (if xs=[] then x else last xs)" 
5183  101 
primrec 
13145  102 
"butlast []= []" 
103 
"butlast(x#xs) = (if xs=[] then [] else x#butlast xs)" 

5183  104 
primrec 
13145  105 
"x mem [] = False" 
106 
"x mem (y#ys) = (if y=x then True else x mem ys)" 

5518  107 
primrec 
13145  108 
"set [] = {}" 
109 
"set (x#xs) = insert x (set xs)" 

5183  110 
primrec 
13145  111 
list_all_Nil:"list_all P [] = True" 
112 
list_all_Cons: "list_all P (x#xs) = (P(x) \<and> list_all P xs)" 

5518  113 
primrec 
13145  114 
"map f [] = []" 
115 
"map f (x#xs) = f(x)#map f xs" 

5183  116 
primrec 
13145  117 
append_Nil:"[]@ys = ys" 
118 
append_Cons: "(x#xs)@ys = x#(xs@ys)" 

5183  119 
primrec 
13145  120 
"rev([]) = []" 
121 
"rev(x#xs) = rev(xs) @ [x]" 

5183  122 
primrec 
13145  123 
"filter P [] = []" 
124 
"filter P (x#xs) = (if P x then x#filter P xs else filter P xs)" 

5183  125 
primrec 
13145  126 
foldl_Nil:"foldl f a [] = a" 
127 
foldl_Cons: "foldl f a (x#xs) = foldl f (f a x) xs" 

5183  128 
primrec 
13145  129 
"foldr f [] a = a" 
130 
"foldr f (x#xs) a = f x (foldr f xs a)" 

8000  131 
primrec 
13145  132 
"concat([]) = []" 
133 
"concat(x#xs) = x @ concat(xs)" 

5183  134 
primrec 
13145  135 
drop_Nil:"drop n [] = []" 
136 
drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs  Suc(m) => drop m xs)" 

137 
 {* Warning: simpset does not contain this definition *} 

138 
 {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *} 

5183  139 
primrec 
13145  140 
take_Nil:"take n [] = []" 
141 
take_Cons: "take n (x#xs) = (case n of 0 => []  Suc(m) => x # take m xs)" 

142 
 {* Warning: simpset does not contain this definition *} 

143 
 {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *} 

5183  144 
primrec 
13145  145 
nth_Cons:"(x#xs)!n = (case n of 0 => x  (Suc k) => xs!k)" 
146 
 {* Warning: simpset does not contain this definition *} 

147 
 {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *} 

13142  148 
primrec 
13145  149 
"[][i:=v] = []" 
150 
"(x#xs)[i:=v] = 

151 
(case i of 0 => v # xs 

152 
 Suc j => x # xs[j:=v])" 

5183  153 
primrec 
13145  154 
"takeWhile P [] = []" 
155 
"takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])" 

5183  156 
primrec 
13145  157 
"dropWhile P [] = []" 
158 
"dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)" 

5183  159 
primrec 
13145  160 
"zip xs [] = []" 
161 
zip_Cons: "zip xs (y#ys) = (case xs of [] => []  z#zs => (z,y)#zip zs ys)" 

162 
 {* Warning: simpset does not contain this definition *} 

163 
 {* but separate theorems for @{text "xs = []"} and @{text "xs = z # zs"} *} 

5427  164 
primrec 
13145  165 
upt_0: "[i..0(] = []" 
166 
upt_Suc: "[i..(Suc j)(] = (if i <= j then [i..j(] @ [j] else [])" 

5183  167 
primrec 
13145  168 
"distinct [] = True" 
169 
"distinct (x#xs) = (x ~: set xs \<and> distinct xs)" 

5183  170 
primrec 
13145  171 
"remdups [] = []" 
172 
"remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)" 

5183  173 
primrec 
13147  174 
replicate_0: "replicate 0 x = []" 
13145  175 
replicate_Suc: "replicate (Suc n) x = x # replicate n x" 
8115  176 
defs 
13114  177 
list_all2_def: 
13142  178 
"list_all2 P xs ys == length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y)" 
8115  179 

3196  180 

13142  181 
subsection {* Lexicographic orderings on lists *} 
5281  182 

183 
consts 

13145  184 
lexn :: "('a * 'a)set => nat => ('a list * 'a list)set" 
5281  185 
primrec 
13145  186 
"lexn r 0 = {}" 
187 
"lexn r (Suc n) = 

188 
(prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int 

189 
{(xs,ys). length xs = Suc n \<and> length ys = Suc n}" 

5281  190 

191 
constdefs 

13145  192 
lex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set" 
193 
"lex r == \<Union>n. lexn r n" 

5281  194 

13145  195 
lexico :: "('a \<times> 'a) set => ('a list \<times> 'a list) set" 
196 
"lexico r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))" 

9336  197 

13145  198 
sublist :: "'a list => nat set => 'a list" 
199 
"sublist xs A == map fst (filter (%p. snd p : A) (zip xs [0..size xs(]))" 

5281  200 

13114  201 

13142  202 
lemma not_Cons_self [simp]: "xs \<noteq> x # xs" 
13145  203 
by (induct xs) auto 
13114  204 

13142  205 
lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric] 
13114  206 

13142  207 
lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)" 
13145  208 
by (induct xs) auto 
13114  209 

13142  210 
lemma length_induct: 
13145  211 
"(!!xs. \<forall>ys. length ys < length xs > P ys ==> P xs) ==> P xs" 
212 
by (rule measure_induct [of length]) rules 

13114  213 

214 

13142  215 
subsection {* @{text lists}: the listforming operator over sets *} 
13114  216 

13142  217 
consts lists :: "'a set => 'a list set" 
218 
inductive "lists A" 

13145  219 
intros 
220 
Nil [intro!]: "[]: lists A" 

221 
Cons [intro!]: "[ a: A;l: lists A] ==> a#l : lists A" 

13114  222 

13142  223 
inductive_cases listsE [elim!]: "x#l : lists A" 
13114  224 

13366  225 
lemma lists_mono [mono]: "A \<subseteq> B ==> lists A \<subseteq> lists B" 
13145  226 
by (unfold lists.defs) (blast intro!: lfp_mono) 
13114  227 

13142  228 
lemma lists_IntI [rule_format]: 
13145  229 
"l: lists A ==> l: lists B > l: lists (A Int B)" 
230 
apply (erule lists.induct) 

231 
apply blast+ 

232 
done 

13142  233 

234 
lemma lists_Int_eq [simp]: "lists (A \<inter> B) = lists A \<inter> lists B" 

13145  235 
apply (rule mono_Int [THEN equalityI]) 
236 
apply (simp add: mono_def lists_mono) 

237 
apply (blast intro!: lists_IntI) 

238 
done 

13114  239 

13142  240 
lemma append_in_lists_conv [iff]: 
13145  241 
"(xs @ ys : lists A) = (xs : lists A \<and> ys : lists A)" 
242 
by (induct xs) auto 

13142  243 

244 

245 
subsection {* @{text length} *} 

13114  246 

13142  247 
text {* 
13145  248 
Needs to come before @{text "@"} because of theorem @{text 
249 
append_eq_append_conv}. 

13142  250 
*} 
13114  251 

13142  252 
lemma length_append [simp]: "length (xs @ ys) = length xs + length ys" 
13145  253 
by (induct xs) auto 
13114  254 

13142  255 
lemma length_map [simp]: "length (map f xs) = length xs" 
13145  256 
by (induct xs) auto 
13114  257 

13142  258 
lemma length_rev [simp]: "length (rev xs) = length xs" 
13145  259 
by (induct xs) auto 
13114  260 

13142  261 
lemma length_tl [simp]: "length (tl xs) = length xs  1" 
13145  262 
by (cases xs) auto 
13114  263 

13142  264 
lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])" 
13145  265 
by (induct xs) auto 
13114  266 

13142  267 
lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])" 
13145  268 
by (induct xs) auto 
13114  269 

270 
lemma length_Suc_conv: 

13145  271 
"(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)" 
272 
by (induct xs) auto 

13142  273 

13114  274 

13142  275 
subsection {* @{text "@"}  append *} 
13114  276 

13142  277 
lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)" 
13145  278 
by (induct xs) auto 
13114  279 

13142  280 
lemma append_Nil2 [simp]: "xs @ [] = xs" 
13145  281 
by (induct xs) auto 
3507  282 

13142  283 
lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])" 
13145  284 
by (induct xs) auto 
13114  285 

13142  286 
lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])" 
13145  287 
by (induct xs) auto 
13114  288 

13142  289 
lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])" 
13145  290 
by (induct xs) auto 
13114  291 

13142  292 
lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])" 
13145  293 
by (induct xs) auto 
13114  294 

13142  295 
lemma append_eq_append_conv [rule_format, simp]: 
296 
"\<forall>ys. length xs = length ys \<or> length us = length vs 

13145  297 
> (xs@us = ys@vs) = (xs=ys \<and> us=vs)" 
298 
apply (induct_tac xs) 

299 
apply(rule allI) 

300 
apply (case_tac ys) 

301 
apply simp 

302 
apply force 

303 
apply (rule allI) 

304 
apply (case_tac ys) 

305 
apply force 

306 
apply simp 

307 
done 

13142  308 

309 
lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)" 

13145  310 
by simp 
13142  311 

312 
lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)" 

13145  313 
by simp 
13114  314 

13142  315 
lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)" 
13145  316 
by simp 
13114  317 

13142  318 
lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])" 
13145  319 
using append_same_eq [of _ _ "[]"] by auto 
3507  320 

13142  321 
lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])" 
13145  322 
using append_same_eq [of "[]"] by auto 
13114  323 

13142  324 
lemma hd_Cons_tl [simp]: "xs \<noteq> [] ==> hd xs # tl xs = xs" 
13145  325 
by (induct xs) auto 
13114  326 

13142  327 
lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)" 
13145  328 
by (induct xs) auto 
13114  329 

13142  330 
lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs" 
13145  331 
by (simp add: hd_append split: list.split) 
13114  332 

13142  333 
lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys  z#zs => zs @ ys)" 
13145  334 
by (simp split: list.split) 
13114  335 

13142  336 
lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys" 
13145  337 
by (simp add: tl_append split: list.split) 
13114  338 

339 

13142  340 
text {* Trivial rules for solving @{text "@"}equations automatically. *} 
13114  341 

342 
lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys" 

13145  343 
by simp 
13114  344 

13142  345 
lemma Cons_eq_appendI: 
13145  346 
"[ x # xs1 = ys; xs = xs1 @ zs ] ==> x # xs = ys @ zs" 
347 
by (drule sym) simp 

13114  348 

13142  349 
lemma append_eq_appendI: 
13145  350 
"[ xs @ xs1 = zs; ys = xs1 @ us ] ==> xs @ ys = zs @ us" 
351 
by (drule sym) simp 

13114  352 

353 

13142  354 
text {* 
13145  355 
Simplification procedure for all list equalities. 
356 
Currently only tries to rearrange @{text "@"} to see if 

357 
 both lists end in a singleton list, 

358 
 or both lists end in the same list. 

13142  359 
*} 
360 

361 
ML_setup {* 

3507  362 
local 
363 

13122  364 
val append_assoc = thm "append_assoc"; 
365 
val append_Nil = thm "append_Nil"; 

366 
val append_Cons = thm "append_Cons"; 

367 
val append1_eq_conv = thm "append1_eq_conv"; 

368 
val append_same_eq = thm "append_same_eq"; 

369 

13114  370 
fun last (cons as Const("List.list.Cons",_) $ _ $ xs) = 
13462  371 
(case xs of Const("List.list.Nil",_) => cons  _ => last xs) 
372 
 last (Const("List.op @",_) $ _ $ ys) = last ys 

373 
 last t = t; 

13114  374 

375 
fun list1 (Const("List.list.Cons",_) $ _ $ Const("List.list.Nil",_)) = true 

13462  376 
 list1 _ = false; 
13114  377 

378 
fun butlast ((cons as Const("List.list.Cons",_) $ x) $ xs) = 

13462  379 
(case xs of Const("List.list.Nil",_) => xs  _ => cons $ butlast xs) 
380 
 butlast ((app as Const("List.op @",_) $ xs) $ ys) = app $ butlast ys 

381 
 butlast xs = Const("List.list.Nil",fastype_of xs); 

13114  382 

383 
val rearr_tac = 

13462  384 
simp_tac (HOL_basic_ss addsimps [append_assoc, append_Nil, append_Cons]); 
13114  385 

386 
fun list_eq sg _ (F as (eq as Const(_,eqT)) $ lhs $ rhs) = 

13462  387 
let 
388 
val lastl = last lhs and lastr = last rhs; 

389 
fun rearr conv = 

390 
let 

391 
val lhs1 = butlast lhs and rhs1 = butlast rhs; 

392 
val Type(_,listT::_) = eqT 

393 
val appT = [listT,listT] > listT 

394 
val app = Const("List.op @",appT) 

395 
val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr) 

13480
bb72bd43c6c3
use Tactic.prove instead of prove_goalw_cterm in internal proofs!
wenzelm
parents:
13462
diff
changeset

396 
val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2)); 
bb72bd43c6c3
use Tactic.prove instead of prove_goalw_cterm in internal proofs!
wenzelm
parents:
13462
diff
changeset

397 
val thm = Tactic.prove sg [] [] eq (K (rearr_tac 1)); 
13462  398 
in Some ((conv RS (thm RS trans)) RS eq_reflection) end; 
13114  399 

13462  400 
in 
401 
if list1 lastl andalso list1 lastr then rearr append1_eq_conv 

402 
else if lastl aconv lastr then rearr append_same_eq 

403 
else None 

404 
end; 

405 

13114  406 
in 
13462  407 

408 
val list_eq_simproc = 

409 
Simplifier.simproc (Theory.sign_of (the_context ())) "list_eq" ["(xs::'a list) = ys"] list_eq; 

410 

13114  411 
end; 
412 

413 
Addsimprocs [list_eq_simproc]; 

414 
*} 

415 

416 

13142  417 
subsection {* @{text map} *} 
13114  418 

13142  419 
lemma map_ext: "(!!x. x : set xs > f x = g x) ==> map f xs = map g xs" 
13145  420 
by (induct xs) simp_all 
13114  421 

13142  422 
lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)" 
13145  423 
by (rule ext, induct_tac xs) auto 
13114  424 

13142  425 
lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys" 
13145  426 
by (induct xs) auto 
13114  427 

13142  428 
lemma map_compose: "map (f o g) xs = map f (map g xs)" 
13145  429 
by (induct xs) (auto simp add: o_def) 
13114  430 

13142  431 
lemma rev_map: "rev (map f xs) = map f (rev xs)" 
13145  432 
by (induct xs) auto 
13114  433 

13366  434 
lemma map_cong [recdef_cong]: 
13145  435 
"xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys" 
436 
 {* a congruence rule for @{text map} *} 

437 
by (clarify, induct ys) auto 

13114  438 

13142  439 
lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])" 
13145  440 
by (cases xs) auto 
13114  441 

13142  442 
lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])" 
13145  443 
by (cases xs) auto 
13114  444 

445 
lemma map_eq_Cons: 

13145  446 
"(map f xs = y # ys) = (\<exists>x xs'. xs = x # xs' \<and> f x = y \<and> map f xs' = ys)" 
447 
by (cases xs) auto 

13114  448 

449 
lemma map_injective: 

13145  450 
"!!xs. map f xs = map f ys ==> (\<forall>x y. f x = f y > x = y) ==> xs = ys" 
451 
by (induct ys) (auto simp add: map_eq_Cons) 

13114  452 

453 
lemma inj_mapI: "inj f ==> inj (map f)" 

13145  454 
by (rules dest: map_injective injD intro: injI) 
13114  455 

456 
lemma inj_mapD: "inj (map f) ==> inj f" 

13145  457 
apply (unfold inj_on_def) 
458 
apply clarify 

459 
apply (erule_tac x = "[x]" in ballE) 

460 
apply (erule_tac x = "[y]" in ballE) 

461 
apply simp 

462 
apply blast 

463 
apply blast 

464 
done 

13114  465 

466 
lemma inj_map: "inj (map f) = inj f" 

13145  467 
by (blast dest: inj_mapD intro: inj_mapI) 
13114  468 

469 

13142  470 
subsection {* @{text rev} *} 
13114  471 

13142  472 
lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs" 
13145  473 
by (induct xs) auto 
13114  474 

13142  475 
lemma rev_rev_ident [simp]: "rev (rev xs) = xs" 
13145  476 
by (induct xs) auto 
13114  477 

13142  478 
lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])" 
13145  479 
by (induct xs) auto 
13114  480 

13142  481 
lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])" 
13145  482 
by (induct xs) auto 
13114  483 

13142  484 
lemma rev_is_rev_conv [iff]: "!!ys. (rev xs = rev ys) = (xs = ys)" 
13145  485 
apply (induct xs) 
486 
apply force 

487 
apply (case_tac ys) 

488 
apply simp 

489 
apply force 

490 
done 

13114  491 

13366  492 
lemma rev_induct [case_names Nil snoc]: 
493 
"[ P []; !!x xs. P xs ==> P (xs @ [x]) ] ==> P xs" 

13145  494 
apply(subst rev_rev_ident[symmetric]) 
495 
apply(rule_tac list = "rev xs" in list.induct, simp_all) 

496 
done 

13114  497 

13145  498 
ML {* val rev_induct_tac = induct_thm_tac (thm "rev_induct") *} "compatibility" 
13114  499 

13366  500 
lemma rev_exhaust [case_names Nil snoc]: 
501 
"(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P" 

13145  502 
by (induct xs rule: rev_induct) auto 
13114  503 

13366  504 
lemmas rev_cases = rev_exhaust 
505 

13114  506 

13142  507 
subsection {* @{text set} *} 
13114  508 

13142  509 
lemma finite_set [iff]: "finite (set xs)" 
13145  510 
by (induct xs) auto 
13114  511 

13142  512 
lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)" 
13145  513 
by (induct xs) auto 
13114  514 

13142  515 
lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)" 
13145  516 
by auto 
13114  517 

13142  518 
lemma set_empty [iff]: "(set xs = {}) = (xs = [])" 
13145  519 
by (induct xs) auto 
13114  520 

13142  521 
lemma set_rev [simp]: "set (rev xs) = set xs" 
13145  522 
by (induct xs) auto 
13114  523 

13142  524 
lemma set_map [simp]: "set (map f xs) = f`(set xs)" 
13145  525 
by (induct xs) auto 
13114  526 

13142  527 
lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}" 
13145  528 
by (induct xs) auto 
13114  529 

13142  530 
lemma set_upt [simp]: "set[i..j(] = {k. i \<le> k \<and> k < j}" 
13145  531 
apply (induct j) 
532 
apply simp_all 

533 
apply(erule ssubst) 

534 
apply auto 

535 
done 

13114  536 

13142  537 
lemma in_set_conv_decomp: "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs)" 
13145  538 
apply (induct xs) 
539 
apply simp 

540 
apply simp 

541 
apply (rule iffI) 

542 
apply (blast intro: eq_Nil_appendI Cons_eq_appendI) 

543 
apply (erule exE)+ 

544 
apply (case_tac ys) 

545 
apply auto 

546 
done 

13142  547 

548 
lemma in_lists_conv_set: "(xs : lists A) = (\<forall>x \<in> set xs. x : A)" 

13145  549 
 {* eliminate @{text lists} in favour of @{text set} *} 
550 
by (induct xs) auto 

13142  551 

552 
lemma in_listsD [dest!]: "xs \<in> lists A ==> \<forall>x\<in>set xs. x \<in> A" 

13145  553 
by (rule in_lists_conv_set [THEN iffD1]) 
13142  554 

555 
lemma in_listsI [intro!]: "\<forall>x\<in>set xs. x \<in> A ==> xs \<in> lists A" 

13145  556 
by (rule in_lists_conv_set [THEN iffD2]) 
13114  557 

558 

13142  559 
subsection {* @{text mem} *} 
13114  560 

561 
lemma set_mem_eq: "(x mem xs) = (x : set xs)" 

13145  562 
by (induct xs) auto 
13114  563 

564 

13142  565 
subsection {* @{text list_all} *} 
13114  566 

13142  567 
lemma list_all_conv: "list_all P xs = (\<forall>x \<in> set xs. P x)" 
13145  568 
by (induct xs) auto 
13114  569 

13142  570 
lemma list_all_append [simp]: 
13145  571 
"list_all P (xs @ ys) = (list_all P xs \<and> list_all P ys)" 
572 
by (induct xs) auto 

13114  573 

574 

13142  575 
subsection {* @{text filter} *} 
13114  576 

13142  577 
lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys" 
13145  578 
by (induct xs) auto 
13114  579 

13142  580 
lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs" 
13145  581 
by (induct xs) auto 
13114  582 

13142  583 
lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs" 
13145  584 
by (induct xs) auto 
13114  585 

13142  586 
lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []" 
13145  587 
by (induct xs) auto 
13114  588 

13142  589 
lemma length_filter [simp]: "length (filter P xs) \<le> length xs" 
13145  590 
by (induct xs) (auto simp add: le_SucI) 
13114  591 

13142  592 
lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs" 
13145  593 
by auto 
13114  594 

595 

13142  596 
subsection {* @{text concat} *} 
13114  597 

13142  598 
lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys" 
13145  599 
by (induct xs) auto 
13114  600 

13142  601 
lemma concat_eq_Nil_conv [iff]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])" 
13145  602 
by (induct xss) auto 
13114  603 

13142  604 
lemma Nil_eq_concat_conv [iff]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])" 
13145  605 
by (induct xss) auto 
13114  606 

13142  607 
lemma set_concat [simp]: "set (concat xs) = \<Union>(set ` set xs)" 
13145  608 
by (induct xs) auto 
13114  609 

13142  610 
lemma map_concat: "map f (concat xs) = concat (map (map f) xs)" 
13145  611 
by (induct xs) auto 
13114  612 

13142  613 
lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)" 
13145  614 
by (induct xs) auto 
13114  615 

13142  616 
lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))" 
13145  617 
by (induct xs) auto 
13114  618 

619 

13142  620 
subsection {* @{text nth} *} 
13114  621 

13142  622 
lemma nth_Cons_0 [simp]: "(x # xs)!0 = x" 
13145  623 
by auto 
13114  624 

13142  625 
lemma nth_Cons_Suc [simp]: "(x # xs)!(Suc n) = xs!n" 
13145  626 
by auto 
13114  627 

13142  628 
declare nth.simps [simp del] 
13114  629 

630 
lemma nth_append: 

13145  631 
"!!n. (xs @ ys)!n = (if n < length xs then xs!n else ys!(n  length xs))" 
632 
apply(induct "xs") 

633 
apply simp 

634 
apply (case_tac n) 

635 
apply auto 

636 
done 

13114  637 

13142  638 
lemma nth_map [simp]: "!!n. n < length xs ==> (map f xs)!n = f(xs!n)" 
13145  639 
apply(induct xs) 
640 
apply simp 

641 
apply (case_tac n) 

642 
apply auto 

643 
done 

13114  644 

13142  645 
lemma set_conv_nth: "set xs = {xs!i  i. i < length xs}" 
13145  646 
apply (induct_tac xs) 
647 
apply simp 

648 
apply simp 

649 
apply safe 

650 
apply (rule_tac x = 0 in exI) 

651 
apply simp 

652 
apply (rule_tac x = "Suc i" in exI) 

653 
apply simp 

654 
apply (case_tac i) 

655 
apply simp 

656 
apply (rename_tac j) 

657 
apply (rule_tac x = j in exI) 

658 
apply simp 

659 
done 

13114  660 

13145  661 
lemma list_ball_nth: "[ n < length xs; !x : set xs. P x] ==> P(xs!n)" 
662 
by (auto simp add: set_conv_nth) 

13114  663 

13142  664 
lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs" 
13145  665 
by (auto simp add: set_conv_nth) 
13114  666 

667 
lemma all_nth_imp_all_set: 

13145  668 
"[ !i < length xs. P(xs!i); x : set xs] ==> P x" 
669 
by (auto simp add: set_conv_nth) 

13114  670 

671 
lemma all_set_conv_all_nth: 

13145  672 
"(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs > P (xs ! i))" 
673 
by (auto simp add: set_conv_nth) 

13114  674 

675 

13142  676 
subsection {* @{text list_update} *} 
13114  677 

13142  678 
lemma length_list_update [simp]: "!!i. length(xs[i:=x]) = length xs" 
13145  679 
by (induct xs) (auto split: nat.split) 
13114  680 

681 
lemma nth_list_update: 

13145  682 
"!!i j. i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)" 
683 
by (induct xs) (auto simp add: nth_Cons split: nat.split) 

13114  684 

13142  685 
lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x" 
13145  686 
by (simp add: nth_list_update) 
13114  687 

13142  688 
lemma nth_list_update_neq [simp]: "!!i j. i \<noteq> j ==> xs[i:=x]!j = xs!j" 
13145  689 
by (induct xs) (auto simp add: nth_Cons split: nat.split) 
13114  690 

13142  691 
lemma list_update_overwrite [simp]: 
13145  692 
"!!i. i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]" 
693 
by (induct xs) (auto split: nat.split) 

13114  694 

695 
lemma list_update_same_conv: 

13145  696 
"!!i. i < length xs ==> (xs[i := x] = xs) = (xs!i = x)" 
697 
by (induct xs) (auto split: nat.split) 

13114  698 

699 
lemma update_zip: 

13145  700 
"!!i xy xs. length xs = length ys ==> 
701 
(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])" 

702 
by (induct ys) (auto, case_tac xs, auto split: nat.split) 

13114  703 

704 
lemma set_update_subset_insert: "!!i. set(xs[i:=x]) <= insert x (set xs)" 

13145  705 
by (induct xs) (auto split: nat.split) 
13114  706 

707 
lemma set_update_subsetI: "[ set xs <= A; x:A ] ==> set(xs[i := x]) <= A" 

13145  708 
by (blast dest!: set_update_subset_insert [THEN subsetD]) 
13114  709 

710 

13142  711 
subsection {* @{text last} and @{text butlast} *} 
13114  712 

13142  713 
lemma last_snoc [simp]: "last (xs @ [x]) = x" 
13145  714 
by (induct xs) auto 
13114  715 

13142  716 
lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs" 
13145  717 
by (induct xs) auto 
13114  718 

13142  719 
lemma length_butlast [simp]: "length (butlast xs) = length xs  1" 
13145  720 
by (induct xs rule: rev_induct) auto 
13114  721 

722 
lemma butlast_append: 

13145  723 
"!!ys. butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)" 
724 
by (induct xs) auto 

13114  725 

13142  726 
lemma append_butlast_last_id [simp]: 
13145  727 
"xs \<noteq> [] ==> butlast xs @ [last xs] = xs" 
728 
by (induct xs) auto 

13114  729 

13142  730 
lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs" 
13145  731 
by (induct xs) (auto split: split_if_asm) 
13114  732 

733 
lemma in_set_butlast_appendI: 

13145  734 
"x : set (butlast xs)  x : set (butlast ys) ==> x : set (butlast (xs @ ys))" 
735 
by (auto dest: in_set_butlastD simp add: butlast_append) 

13114  736 

13142  737 

738 
subsection {* @{text take} and @{text drop} *} 

13114  739 

13142  740 
lemma take_0 [simp]: "take 0 xs = []" 
13145  741 
by (induct xs) auto 
13114  742 

13142  743 
lemma drop_0 [simp]: "drop 0 xs = xs" 
13145  744 
by (induct xs) auto 
13114  745 

13142  746 
lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs" 
13145  747 
by simp 
13114  748 

13142  749 
lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs" 
13145  750 
by simp 
13114  751 

13142  752 
declare take_Cons [simp del] and drop_Cons [simp del] 
13114  753 

13142  754 
lemma length_take [simp]: "!!xs. length (take n xs) = min (length xs) n" 
13145  755 
by (induct n) (auto, case_tac xs, auto) 
13114  756 

13142  757 
lemma length_drop [simp]: "!!xs. length (drop n xs) = (length xs  n)" 
13145  758 
by (induct n) (auto, case_tac xs, auto) 
13114  759 

13142  760 
lemma take_all [simp]: "!!xs. length xs <= n ==> take n xs = xs" 
13145  761 
by (induct n) (auto, case_tac xs, auto) 
13114  762 

13142  763 
lemma drop_all [simp]: "!!xs. length xs <= n ==> drop n xs = []" 
13145  764 
by (induct n) (auto, case_tac xs, auto) 
13114  765 

13142  766 
lemma take_append [simp]: 
13145  767 
"!!xs. take n (xs @ ys) = (take n xs @ take (n  length xs) ys)" 
768 
by (induct n) (auto, case_tac xs, auto) 

13114  769 

13142  770 
lemma drop_append [simp]: 
13145  771 
"!!xs. drop n (xs @ ys) = drop n xs @ drop (n  length xs) ys" 
772 
by (induct n) (auto, case_tac xs, auto) 

13114  773 

13142  774 
lemma take_take [simp]: "!!xs n. take n (take m xs) = take (min n m) xs" 
13145  775 
apply (induct m) 
776 
apply auto 

777 
apply (case_tac xs) 

778 
apply auto 

779 
apply (case_tac na) 

780 
apply auto 

781 
done 

13114  782 

13142  783 
lemma drop_drop [simp]: "!!xs. drop n (drop m xs) = drop (n + m) xs" 
13145  784 
apply (induct m) 
785 
apply auto 

786 
apply (case_tac xs) 

787 
apply auto 

788 
done 

13114  789 

790 
lemma take_drop: "!!xs n. take n (drop m xs) = drop m (take (n + m) xs)" 

13145  791 
apply (induct m) 
792 
apply auto 

793 
apply (case_tac xs) 

794 
apply auto 

795 
done 

13114  796 

13142  797 
lemma append_take_drop_id [simp]: "!!xs. take n xs @ drop n xs = xs" 
13145  798 
apply (induct n) 
799 
apply auto 

800 
apply (case_tac xs) 

801 
apply auto 

802 
done 

13114  803 

804 
lemma take_map: "!!xs. take n (map f xs) = map f (take n xs)" 

13145  805 
apply (induct n) 
806 
apply auto 

807 
apply (case_tac xs) 

808 
apply auto 

809 
done 

13114  810 

13142  811 
lemma drop_map: "!!xs. drop n (map f xs) = map f (drop n xs)" 
13145  812 
apply (induct n) 
813 
apply auto 

814 
apply (case_tac xs) 

815 
apply auto 

816 
done 

13114  817 

818 
lemma rev_take: "!!i. rev (take i xs) = drop (length xs  i) (rev xs)" 

13145  819 
apply (induct xs) 
820 
apply auto 

821 
apply (case_tac i) 

822 
apply auto 

823 
done 

13114  824 

825 
lemma rev_drop: "!!i. rev (drop i xs) = take (length xs  i) (rev xs)" 

13145  826 
apply (induct xs) 
827 
apply auto 

828 
apply (case_tac i) 

829 
apply auto 

830 
done 

13114  831 

13142  832 
lemma nth_take [simp]: "!!n i. i < n ==> (take n xs)!i = xs!i" 
13145  833 
apply (induct xs) 
834 
apply auto 

835 
apply (case_tac n) 

836 
apply(blast ) 

837 
apply (case_tac i) 

838 
apply auto 

839 
done 

13114  840 

13142  841 
lemma nth_drop [simp]: 
13145  842 
"!!xs i. n + i <= length xs ==> (drop n xs)!i = xs!(n + i)" 
843 
apply (induct n) 

844 
apply auto 

845 
apply (case_tac xs) 

846 
apply auto 

847 
done 

3507  848 

13114  849 
lemma append_eq_conv_conj: 
13145  850 
"!!zs. (xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)" 
851 
apply(induct xs) 

852 
apply simp 

853 
apply clarsimp 

854 
apply (case_tac zs) 

855 
apply auto 

856 
done 

13142  857 

13114  858 

13142  859 
subsection {* @{text takeWhile} and @{text dropWhile} *} 
13114  860 

13142  861 
lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs" 
13145  862 
by (induct xs) auto 
13114  863 

13142  864 
lemma takeWhile_append1 [simp]: 
13145  865 
"[ x:set xs; ~P(x)] ==> takeWhile P (xs @ ys) = takeWhile P xs" 
866 
by (induct xs) auto 

13114  867 

13142  868 
lemma takeWhile_append2 [simp]: 
13145  869 
"(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys" 
870 
by (induct xs) auto 

13114  871 

13142  872 
lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs" 
13145  873 
by (induct xs) auto 
13114  874 

13142  875 
lemma dropWhile_append1 [simp]: 
13145  876 
"[ x : set xs; ~P(x)] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys" 
877 
by (induct xs) auto 

13114  878 

13142  879 
lemma dropWhile_append2 [simp]: 
13145  880 
"(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys" 
881 
by (induct xs) auto 

13114  882 

13142  883 
lemma set_take_whileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x" 
13145  884 
by (induct xs) (auto split: split_if_asm) 
13114  885 

886 

13142  887 
subsection {* @{text zip} *} 
13114  888 

13142  889 
lemma zip_Nil [simp]: "zip [] ys = []" 
13145  890 
by (induct ys) auto 
13114  891 

13142  892 
lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys" 
13145  893 
by simp 
13114  894 

13142  895 
declare zip_Cons [simp del] 
13114  896 

13142  897 
lemma length_zip [simp]: 
13145  898 
"!!xs. length (zip xs ys) = min (length xs) (length ys)" 
899 
apply(induct ys) 

900 
apply simp 

901 
apply (case_tac xs) 

902 
apply auto 

903 
done 

13114  904 

905 
lemma zip_append1: 

13145  906 
"!!xs. zip (xs @ ys) zs = 
907 
zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)" 

908 
apply (induct zs) 

909 
apply simp 

910 
apply (case_tac xs) 

911 
apply simp_all 

912 
done 

13114  913 

914 
lemma zip_append2: 

13145  915 
"!!ys. zip xs (ys @ zs) = 
916 
zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs" 

917 
apply (induct xs) 

918 
apply simp 

919 
apply (case_tac ys) 

920 
apply simp_all 

921 
done 

13114  922 

13142  923 
lemma zip_append [simp]: 
924 
"[ length xs = length us; length ys = length vs ] ==> 

13145  925 
zip (xs@ys) (us@vs) = zip xs us @ zip ys vs" 
926 
by (simp add: zip_append1) 

13114  927 

928 
lemma zip_rev: 

13145  929 
"!!xs. length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)" 
930 
apply(induct ys) 

931 
apply simp 

932 
apply (case_tac xs) 

933 
apply simp_all 

934 
done 

13114  935 

13142  936 
lemma nth_zip [simp]: 
13145  937 
"!!i xs. [ i < length xs; i < length ys] ==> (zip xs ys)!i = (xs!i, ys!i)" 
938 
apply (induct ys) 

939 
apply simp 

940 
apply (case_tac xs) 

941 
apply (simp_all add: nth.simps split: nat.split) 

942 
done 

13114  943 

944 
lemma set_zip: 

13145  945 
"set (zip xs ys) = {(xs!i, ys!i)  i. i < min (length xs) (length ys)}" 
946 
by (simp add: set_conv_nth cong: rev_conj_cong) 

13114  947 

948 
lemma zip_update: 

13145  949 
"length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]" 
950 
by (rule sym, simp add: update_zip) 

13114  951 

13142  952 
lemma zip_replicate [simp]: 
13145  953 
"!!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)" 
954 
apply (induct i) 

955 
apply auto 

956 
apply (case_tac j) 

957 
apply auto 

958 
done 

13114  959 

13142  960 

961 
subsection {* @{text list_all2} *} 

13114  962 

963 
lemma list_all2_lengthD: "list_all2 P xs ys ==> length xs = length ys" 

13145  964 
by (simp add: list_all2_def) 
13114  965 

13142  966 
lemma list_all2_Nil [iff]: "list_all2 P [] ys = (ys = [])" 
13145  967 
by (simp add: list_all2_def) 
13114  968 

13142  969 
lemma list_all2_Nil2[iff]: "list_all2 P xs [] = (xs = [])" 
13145  970 
by (simp add: list_all2_def) 
13114  971 

13142  972 
lemma list_all2_Cons [iff]: 
13145  973 
"list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)" 
974 
by (auto simp add: list_all2_def) 

13114  975 

976 
lemma list_all2_Cons1: 

13145  977 
"list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)" 
978 
by (cases ys) auto 

13114  979 

980 
lemma list_all2_Cons2: 

13145  981 
"list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)" 
982 
by (cases xs) auto 

13114  983 

13142  984 
lemma list_all2_rev [iff]: 
13145  985 
"list_all2 P (rev xs) (rev ys) = list_all2 P xs ys" 
986 
by (simp add: list_all2_def zip_rev cong: conj_cong) 

13114  987 

988 
lemma list_all2_append1: 

13145  989 
"list_all2 P (xs @ ys) zs = 
990 
(EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and> 

991 
list_all2 P xs us \<and> list_all2 P ys vs)" 

992 
apply (simp add: list_all2_def zip_append1) 

993 
apply (rule iffI) 

994 
apply (rule_tac x = "take (length xs) zs" in exI) 

995 
apply (rule_tac x = "drop (length xs) zs" in exI) 

996 
apply (force split: nat_diff_split simp add: min_def) 

997 
apply clarify 

998 
apply (simp add: ball_Un) 

999 
done 

13114  1000 

1001 
lemma list_all2_append2: 

13145  1002 
"list_all2 P xs (ys @ zs) = 
1003 
(EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and> 

1004 
list_all2 P us ys \<and> list_all2 P vs zs)" 

1005 
apply (simp add: list_all2_def zip_append2) 

1006 
apply (rule iffI) 

1007 
apply (rule_tac x = "take (length ys) xs" in exI) 

1008 
apply (rule_tac x = "drop (length ys) xs" in exI) 

1009 
apply (force split: nat_diff_split simp add: min_def) 

1010 
apply clarify 

1011 
apply (simp add: ball_Un) 

1012 
done 

13114  1013 

1014 
lemma list_all2_conv_all_nth: 

13145  1015 
"list_all2 P xs ys = 
1016 
(length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))" 

1017 
by (force simp add: list_all2_def set_zip) 

13114  1018 

1019 
lemma list_all2_trans[rule_format]: 

13145  1020 
"\<forall>a b c. P1 a b > P2 b c > P3 a c ==> 
1021 
\<forall>bs cs. list_all2 P1 as bs > list_all2 P2 bs cs > list_all2 P3 as cs" 

1022 
apply(induct_tac as) 

1023 
apply simp 

1024 
apply(rule allI) 

1025 
apply(induct_tac bs) 

1026 
apply simp 

1027 
apply(rule allI) 

1028 
apply(induct_tac cs) 

1029 
apply auto 

1030 
done 

13142  1031 

1032 

1033 
subsection {* @{text foldl} *} 

1034 

1035 
lemma foldl_append [simp]: 

13145  1036 
"!!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys" 
1037 
by (induct xs) auto 

13142  1038 

1039 
text {* 

13145  1040 
Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more 
1041 
difficult to use because it requires an additional transitivity step. 

13142  1042 
*} 
1043 

1044 
lemma start_le_sum: "!!n::nat. m <= n ==> m <= foldl (op +) n ns" 

13145  1045 
by (induct ns) auto 
13142  1046 

1047 
lemma elem_le_sum: "!!n::nat. n : set ns ==> n <= foldl (op +) 0 ns" 

13145  1048 
by (force intro: start_le_sum simp add: in_set_conv_decomp) 
13142  1049 

1050 
lemma sum_eq_0_conv [iff]: 

13145  1051 
"!!m::nat. (foldl (op +) m ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))" 
1052 
by (induct ns) auto 

13114  1053 

1054 

13142  1055 
subsection {* @{text upto} *} 
13114  1056 

13142  1057 
lemma upt_rec: "[i..j(] = (if i<j then i#[Suc i..j(] else [])" 
13145  1058 
 {* Does not terminate! *} 
1059 
by (induct j) auto 

13142  1060 

1061 
lemma upt_conv_Nil [simp]: "j <= i ==> [i..j(] = []" 

13145  1062 
by (subst upt_rec) simp 
13114  1063 

13142  1064 
lemma upt_Suc_append: "i <= j ==> [i..(Suc j)(] = [i..j(]@[j]" 
13145  1065 
 {* Only needed if @{text upt_Suc} is deleted from the simpset. *} 
1066 
by simp 

13114  1067 

13142  1068 
lemma upt_conv_Cons: "i < j ==> [i..j(] = i # [Suc i..j(]" 
13145  1069 
apply(rule trans) 
1070 
apply(subst upt_rec) 

1071 
prefer 2 apply(rule refl) 

1072 
apply simp 

1073 
done 

13114  1074 

13142  1075 
lemma upt_add_eq_append: "i<=j ==> [i..j+k(] = [i..j(]@[j..j+k(]" 
13145  1076 
 {* LOOPS as a simprule, since @{text "j <= j"}. *} 
1077 
by (induct k) auto 

13114  1078 

13142  1079 
lemma length_upt [simp]: "length [i..j(] = j  i" 
13145  1080 
by (induct j) (auto simp add: Suc_diff_le) 
13114  1081 

13142  1082 
lemma nth_upt [simp]: "i + k < j ==> [i..j(] ! k = i + k" 
13145  1083 
apply (induct j) 
1084 
apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split) 

1085 
done 

13114  1086 

13142  1087 
lemma take_upt [simp]: "!!i. i+m <= n ==> take m [i..n(] = [i..i+m(]" 
13145  1088 
apply (induct m) 
1089 
apply simp 

1090 
apply (subst upt_rec) 

1091 
apply (rule sym) 

1092 
apply (subst upt_rec) 

1093 
apply (simp del: upt.simps) 

1094 
done 

3507  1095 

13114  1096 
lemma map_Suc_upt: "map Suc [m..n(] = [Suc m..n]" 
13145  1097 
by (induct n) auto 
13114  1098 

1099 
lemma nth_map_upt: "!!i. i < nm ==> (map f [m..n(]) ! i = f(m+i)" 

13145  1100 
apply (induct n m rule: diff_induct) 
1101 
prefer 3 apply (subst map_Suc_upt[symmetric]) 

1102 
apply (auto simp add: less_diff_conv nth_upt) 

1103 
done 

13114  1104 

13142  1105 
lemma nth_take_lemma [rule_format]: 
13145  1106 
"ALL xs ys. k <= length xs > k <= length ys 
1107 
> (ALL i. i < k > xs!i = ys!i) 

1108 
> take k xs = take k ys" 

1109 
apply (induct k) 

1110 
apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib) 

1111 
apply clarify 

1112 
txt {* Both lists must be nonempty *} 

1113 
apply (case_tac xs) 

1114 
apply simp 

1115 
apply (case_tac ys) 

1116 
apply clarify 

1117 
apply (simp (no_asm_use)) 

1118 
apply clarify 

1119 
txt {* prenexing's needed, not miniscoping *} 

1120 
apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps) 

1121 
apply blast 

1122 
done 

13114  1123 

1124 
lemma nth_equalityI: 

1125 
"[ length xs = length ys; ALL i < length xs. xs!i = ys!i ] ==> xs = ys" 

13145  1126 
apply (frule nth_take_lemma [OF le_refl eq_imp_le]) 
1127 
apply (simp_all add: take_all) 

1128 
done 

13142  1129 

1130 
lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys" 

13145  1131 
 {* The famous takelemma. *} 
1132 
apply (drule_tac x = "max (length xs) (length ys)" in spec) 

1133 
apply (simp add: le_max_iff_disj take_all) 

1134 
done 

13142  1135 

1136 

1137 
subsection {* @{text "distinct"} and @{text remdups} *} 

1138 

1139 
lemma distinct_append [simp]: 

13145  1140 
"distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})" 
1141 
by (induct xs) auto 

13142  1142 

1143 
lemma set_remdups [simp]: "set (remdups xs) = set xs" 

13145  1144 
by (induct xs) (auto simp add: insert_absorb) 
13142  1145 

1146 
lemma distinct_remdups [iff]: "distinct (remdups xs)" 

13145  1147 
by (induct xs) auto 
13142  1148 

1149 
lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)" 

13145  1150 
by (induct xs) auto 
13114  1151 

13142  1152 
text {* 
13145  1153 
It is best to avoid this indexed version of distinct, but sometimes 
1154 
it is useful. *} 

13142  1155 
lemma distinct_conv_nth: 
13145  1156 
"distinct xs = (\<forall>i j. i < size xs \<and> j < size xs \<and> i \<noteq> j > xs!i \<noteq> xs!j)" 
1157 
apply (induct_tac xs) 

1158 
apply simp 

1159 
apply simp 

1160 
apply (rule iffI) 

1161 
apply clarsimp 

1162 
apply (case_tac i) 

1163 
apply (case_tac j) 

1164 
apply simp 

1165 
apply (simp add: set_conv_nth) 

1166 
apply (case_tac j) 

1167 
apply (clarsimp simp add: set_conv_nth) 

1168 
apply simp 

1169 
apply (rule conjI) 

1170 
apply (clarsimp simp add: set_conv_nth) 

1171 
apply (erule_tac x = 0 in allE) 

1172 
apply (erule_tac x = "Suc i" in allE) 

1173 
apply simp 

1174 
apply clarsimp 

1175 
apply (erule_tac x = "Suc i" in allE) 

1176 
apply (erule_tac x = "Suc j" in allE) 

1177 
apply simp 

1178 
done 

13114  1179 

1180 

13142  1181 
subsection {* @{text replicate} *} 
13114  1182 

13142  1183 
lemma length_replicate [simp]: "length (replicate n x) = n" 
13145  1184 
by (induct n) auto 
13124  1185 

13142  1186 
lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)" 
13145  1187 
by (induct n) auto 
13114  1188 

1189 
lemma replicate_app_Cons_same: 

13145  1190 
"(replicate n x) @ (x # xs) = x # replicate n x @ xs" 
1191 
by (induct n) auto 

13114  1192 

13142  1193 
lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x" 
13145  1194 
apply(induct n) 
1195 
apply simp 

1196 
apply (simp add: replicate_app_Cons_same) 

1197 
done 

13114  1198 

13142  1199 
lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x" 
13145  1200 
by (induct n) auto 
13114  1201 

13142  1202 
lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x" 
13145  1203 
by (induct n) auto 
13114  1204 

13142  1205 
lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n  1) x" 
13145  1206 
by (induct n) auto 
13114  1207 

13142  1208 
lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x" 
13145  1209 
by (atomize (full), induct n) auto 
13114  1210 

13142  1211 
lemma nth_replicate[simp]: "!!i. i < n ==> (replicate n x)!i = x" 
13145  1212 
apply(induct n) 
1213 
apply simp 

1214 
apply (simp add: nth_Cons split: nat.split) 

1215 
done 

13114  1216 

13142  1217 
lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}" 
13145  1218 
by (induct n) auto 
13114  1219 

13142  1220 
lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}" 
13145  1221 
by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc) 
13114  1222 

13142  1223 
lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})" 
13145  1224 
by auto 
13114  1225 

13142  1226 
lemma in_set_replicateD: "x : set (replicate n y) ==> x = y" 
13145  1227 
by (simp add: set_replicate_conv_if split: split_if_asm) 
13114  1228 

1229 

13142  1230 
subsection {* Lexcicographic orderings on lists *} 
3507  1231 

13142  1232 
lemma wf_lexn: "wf r ==> wf (lexn r n)" 
13145  1233 
apply (induct_tac n) 
1234 
apply simp 

1235 
apply simp 

1236 
apply(rule wf_subset) 

1237 
prefer 2 apply (rule Int_lower1) 

1238 
apply(rule wf_prod_fun_image) 

1239 
prefer 2 apply (rule injI) 

1240 
apply auto 

1241 
done 

13114  1242 

1243 
lemma lexn_length: 

13145  1244 
"!!xs ys. (xs, ys) : lexn r n ==> length xs = n \<and> length ys = n" 
1245 
by (induct n) auto 

13114  1246 

13142  1247 
lemma wf_lex [intro!]: "wf r ==> wf (lex r)" 
13145  1248 
apply (unfold lex_def) 
1249 
apply (rule wf_UN) 

1250 
apply (blast intro: wf_lexn) 

1251 
apply clarify 

1252 
apply (rename_tac m n) 

1253 
apply (subgoal_tac "m \<noteq> n") 

1254 
prefer 2 apply blast 

1255 
apply (blast dest: lexn_length not_sym) 

1256 
done 

13114  1257 

1258 
lemma lexn_conv: 

13145  1259 
"lexn r n = 
1260 
{(xs,ys). length xs = n \<and> length ys = n \<and> 

1261 
(\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}" 

1262 
apply (induct_tac n) 

1263 
apply simp 

1264 
apply blast 

1265 
apply (simp add: image_Collect lex_prod_def) 

1266 
apply auto 

1267 
apply blast 

1268 
apply (rename_tac a xys x xs' y ys') 

1269 
apply (rule_tac x = "a # xys" in exI) 

1270 
apply simp 

1271 
apply (case_tac xys) 

1272 
apply simp_all 

1273 
apply blast 

1274 
done 

13114  1275 

1276 
lemma lex_conv: 

13145  1277 
"lex r = 
1278 
{(xs,ys). length xs = length ys \<and> 

1279 
(\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}" 

1280 
by (force simp add: lex_def lexn_conv) 

13114  1281 

13142  1282 
lemma wf_lexico [intro!]: "wf r ==> wf (lexico r)" 
13145  1283 
by (unfold lexico_def) blast 
13114  1284 

1285 
lemma lexico_conv: 

13145  1286 
"lexico r = {(xs,ys). length xs < length ys  
1287 
length xs = length ys \<and> (xs, ys) : lex r}" 

1288 
by (simp add: lexico_def diag_def lex_prod_def measure_def inv_image_def) 

13114  1289 

13142  1290 
lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r" 
13145  1291 
by (simp add: lex_conv) 
13114  1292 

13142  1293 
lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r" 
13145  1294 
by (simp add:lex_conv) 
13114  1295 

13142  1296 
lemma Cons_in_lex [iff]: 
13145  1297 
"((x # xs, y # ys) : lex r) = 
1298 
((x, y) : r \<and> length xs = length ys  x = y \<and> (xs, ys) : lex r)" 

1299 
apply (simp add: lex_conv) 

1300 
apply (rule iffI) 

1301 
prefer 2 apply (blast intro: Cons_eq_appendI) 

1302 
apply clarify 

1303 
apply (case_tac xys) 

1304 
apply simp 

1305 
apply simp 

1306 
apply blast 

1307 
done 

13114  1308 

1309 

13142  1310 
subsection {* @{text sublist}  a generalization of @{text nth} to sets *} 
13114  1311 

13142  1312 
lemma sublist_empty [simp]: "sublist xs {} = []" 
13145  1313 
by (auto simp add: sublist_def) 
13114  1314 

13142  1315 
lemma sublist_nil [simp]: "sublist [] A = []" 
13145  1316 
by (auto simp add: sublist_def) 
13114  1317 

1318 
lemma sublist_shift_lemma: 

13145  1319 
"map fst [p:zip xs [i..i + length xs(] . snd p : A] = 
1320 
map fst [p:zip xs [0..length xs(] . snd p + i : A]" 

1321 
by (induct xs rule: rev_induct) (simp_all add: add_commute) 

13114  1322 

1323 
lemma sublist_append: 

13145  1324 
"sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}" 
1325 
apply (unfold sublist_def) 

1326 
apply (induct l' rule: rev_induct) 

1327 
apply simp 

1328 
apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma) 

1329 
apply (simp add: add_commute) 

1330 
done 

13114  1331 

1332 
lemma sublist_Cons: 

13145  1333 
"sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}" 
1334 
apply (induct l rule: rev_induct) 

1335 
apply (simp add: sublist_def) 

1336 
apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append) 

1337 
done 

13114  1338 

13142  1339 
lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])" 
13145  1340 
by (simp add: sublist_Cons) 
13114  1341 

13142  1342 
lemma sublist_upt_eq_take [simp]: "sublist l {..n(} = take n l" 
13145  1343 
apply (induct l rule: rev_induct) 
1344 
apply simp 

1345 
apply (simp split: nat_diff_split add: sublist_append) 

1346 
done 

13114  1347 

1348 

13142  1349 
lemma take_Cons': 
13145  1350 
"take n (x # xs) = (if n = 0 then [] else x # take (n  1) xs)" 
1351 
by (cases n) simp_all 

13114  1352 

13142  1353 
lemma drop_Cons': 
13145  1354 
"drop n (x # xs) = (if n = 0 then x # xs else drop (n  1) xs)" 
1355 
by (cases n) simp_all 

13114  1356 
< 