src/Pure/term.ML
author wenzelm
Fri Jun 13 21:04:42 2008 +0200 (2008-06-13)
changeset 27195 bbf4cbc69243
parent 25050 0dc445970b4b
child 27335 e8eef124d0fd
permissions -rw-r--r--
map_const: soft version, no failure here;
wenzelm@9536
     1
(*  Title:      Pure/term.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@9536
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   Cambridge University 1992
clasohm@1364
     5
wenzelm@4444
     6
Simply typed lambda-calculus: types, terms, and basic operations.
clasohm@0
     7
*)
clasohm@0
     8
clasohm@1364
     9
infix 9  $;
clasohm@1364
    10
infixr 5 -->;
wenzelm@4444
    11
infixr --->;
wenzelm@4444
    12
infix aconv;
clasohm@1364
    13
wenzelm@4444
    14
signature BASIC_TERM =
wenzelm@4444
    15
sig
wenzelm@22572
    16
  eqtype indexname
wenzelm@22572
    17
  eqtype class
wenzelm@22572
    18
  eqtype sort
wenzelm@22572
    19
  eqtype arity
wenzelm@4444
    20
  datatype typ =
wenzelm@4444
    21
    Type  of string * typ list |
wenzelm@4444
    22
    TFree of string * sort |
wenzelm@4444
    23
    TVar  of indexname * sort
wenzelm@16537
    24
  datatype term =
wenzelm@16537
    25
    Const of string * typ |
wenzelm@16537
    26
    Free of string * typ |
wenzelm@16537
    27
    Var of indexname * typ |
wenzelm@16537
    28
    Bound of int |
wenzelm@16537
    29
    Abs of string * typ * term |
wenzelm@17756
    30
    $ of term * term
wenzelm@16537
    31
  exception TYPE of string * typ list * term list
wenzelm@16537
    32
  exception TERM of string * term list
wenzelm@21353
    33
  val dummyS: sort
wenzelm@16710
    34
  val dummyT: typ
wenzelm@16710
    35
  val no_dummyT: typ -> typ
wenzelm@4444
    36
  val --> : typ * typ -> typ
wenzelm@4444
    37
  val ---> : typ list * typ -> typ
wenzelm@16710
    38
  val dest_Type: typ -> string * typ list
wenzelm@16710
    39
  val dest_TVar: typ -> indexname * sort
wenzelm@16710
    40
  val dest_TFree: typ -> string * sort
wenzelm@16710
    41
  val is_Bound: term -> bool
wenzelm@16710
    42
  val is_Const: term -> bool
wenzelm@16710
    43
  val is_Free: term -> bool
wenzelm@16710
    44
  val is_Var: term -> bool
wenzelm@4444
    45
  val is_TVar: typ -> bool
wenzelm@16710
    46
  val dest_Const: term -> string * typ
wenzelm@16710
    47
  val dest_Free: term -> string * typ
wenzelm@16710
    48
  val dest_Var: term -> indexname * typ
wenzelm@4444
    49
  val domain_type: typ -> typ
wenzelm@4480
    50
  val range_type: typ -> typ
wenzelm@4444
    51
  val binder_types: typ -> typ list
wenzelm@4444
    52
  val body_type: typ -> typ
wenzelm@4444
    53
  val strip_type: typ -> typ list * typ
wenzelm@16710
    54
  val type_of1: typ list * term -> typ
wenzelm@4444
    55
  val type_of: term -> typ
wenzelm@16710
    56
  val fastype_of1: typ list * term -> typ
wenzelm@4444
    57
  val fastype_of: term -> typ
wenzelm@10806
    58
  val list_abs: (string * typ) list * term -> term
haftmann@18927
    59
  val strip_abs: term -> (string * typ) list * term
wenzelm@4444
    60
  val strip_abs_body: term -> term
wenzelm@4444
    61
  val strip_abs_vars: term -> (string * typ) list
wenzelm@4444
    62
  val strip_qnt_body: string -> term -> term
wenzelm@4444
    63
  val strip_qnt_vars: string -> term -> (string * typ) list
wenzelm@4444
    64
  val list_comb: term * term list -> term
wenzelm@4444
    65
  val strip_comb: term -> term * term list
wenzelm@4444
    66
  val head_of: term -> term
wenzelm@4444
    67
  val size_of_term: term -> int
haftmann@18847
    68
  val map_atyps: (typ -> typ) -> typ -> typ
haftmann@18847
    69
  val map_aterms: (term -> term) -> term -> term
wenzelm@4444
    70
  val map_type_tvar: (indexname * sort -> typ) -> typ -> typ
wenzelm@4444
    71
  val map_type_tfree: (string * sort -> typ) -> typ -> typ
wenzelm@20548
    72
  val map_types: (typ -> typ) -> term -> term
wenzelm@16943
    73
  val fold_atyps: (typ -> 'a -> 'a) -> typ -> 'a -> 'a
wenzelm@16943
    74
  val fold_aterms: (term -> 'a -> 'a) -> term -> 'a -> 'a
wenzelm@16943
    75
  val fold_term_types: (term -> typ -> 'a -> 'a) -> term -> 'a -> 'a
wenzelm@16943
    76
  val fold_types: (typ -> 'a -> 'a) -> term -> 'a -> 'a
wenzelm@24483
    77
  val burrow_types: (typ list -> typ list) -> term list -> term list
haftmann@18927
    78
  val it_term_types: (typ * 'a -> 'a) -> term * 'a -> 'a
wenzelm@16943
    79
  val add_term_names: term * string list -> string list
wenzelm@16710
    80
  val aconv: term * term -> bool
wenzelm@16537
    81
  structure Vartab: TABLE
wenzelm@16537
    82
  structure Typtab: TABLE
wenzelm@16537
    83
  structure Termtab: TABLE
wenzelm@4444
    84
  val propT: typ
wenzelm@4444
    85
  val implies: term
wenzelm@4444
    86
  val all: typ -> term
wenzelm@4444
    87
  val equals: typ -> term
wenzelm@4444
    88
  val strip_all_body: term -> term
wenzelm@4444
    89
  val strip_all_vars: term -> (string * typ) list
wenzelm@4444
    90
  val incr_bv: int * int * term -> term
wenzelm@4444
    91
  val incr_boundvars: int -> term -> term
wenzelm@4444
    92
  val add_loose_bnos: term * int * int list -> int list
wenzelm@4444
    93
  val loose_bnos: term -> int list
wenzelm@4444
    94
  val loose_bvar: term * int -> bool
wenzelm@4444
    95
  val loose_bvar1: term * int -> bool
wenzelm@4444
    96
  val subst_bounds: term list * term -> term
wenzelm@4444
    97
  val subst_bound: term * term -> term
wenzelm@4444
    98
  val betapply: term * term -> term
wenzelm@18183
    99
  val betapplys: term * term list -> term
wenzelm@4444
   100
  val eq_ix: indexname * indexname -> bool
wenzelm@4444
   101
  val could_unify: term * term -> bool
wenzelm@4444
   102
  val subst_free: (term * term) list -> term -> term
wenzelm@4444
   103
  val abstract_over: term * term -> term
wenzelm@11922
   104
  val lambda: term -> term -> term
wenzelm@4444
   105
  val absfree: string * typ * term -> term
wenzelm@17786
   106
  val absdummy: typ * term -> term
wenzelm@4444
   107
  val list_abs_free: (string * typ) list * term -> term
wenzelm@4444
   108
  val list_all_free: (string * typ) list * term -> term
wenzelm@4444
   109
  val list_all: (string * typ) list * term -> term
wenzelm@16710
   110
  val subst_atomic: (term * term) list -> term -> term
wenzelm@16710
   111
  val typ_subst_atomic: (typ * typ) list -> typ -> typ
wenzelm@16710
   112
  val subst_atomic_types: (typ * typ) list -> term -> term
wenzelm@16710
   113
  val typ_subst_TVars: (indexname * typ) list -> typ -> typ
wenzelm@16710
   114
  val subst_TVars: (indexname * typ) list -> term -> term
wenzelm@16710
   115
  val subst_Vars: (indexname * term) list -> term -> term
wenzelm@16710
   116
  val subst_vars: (indexname * typ) list * (indexname * term) list -> term -> term
wenzelm@16710
   117
  val is_first_order: string list -> term -> bool
wenzelm@4444
   118
  val maxidx_of_typ: typ -> int
wenzelm@4444
   119
  val maxidx_of_typs: typ list -> int
wenzelm@4444
   120
  val maxidx_of_term: term -> int
wenzelm@4444
   121
  val add_term_consts: term * string list -> string list
nipkow@13646
   122
  val term_consts: term -> string list
wenzelm@19909
   123
  val exists_subtype: (typ -> bool) -> typ -> bool
wenzelm@20531
   124
  val exists_type: (typ -> bool) -> term -> bool
wenzelm@16943
   125
  val exists_subterm: (term -> bool) -> term -> bool
wenzelm@16710
   126
  val exists_Const: (string * typ -> bool) -> term -> bool
wenzelm@16710
   127
  val add_term_free_names: term * string list -> string list
wenzelm@16710
   128
  val add_typ_tvars: typ * (indexname * sort) list -> (indexname * sort) list
wenzelm@16710
   129
  val add_typ_tfree_names: typ * string list -> string list
wenzelm@16710
   130
  val add_typ_tfrees: typ * (string * sort) list -> (string * sort) list
wenzelm@16710
   131
  val add_typ_varnames: typ * string list -> string list
wenzelm@16710
   132
  val add_term_tvars: term * (indexname * sort) list -> (indexname * sort) list
wenzelm@16710
   133
  val add_term_tfrees: term * (string * sort) list -> (string * sort) list
wenzelm@16710
   134
  val add_term_tfree_names: term * string list -> string list
wenzelm@16710
   135
  val typ_tfrees: typ -> (string * sort) list
wenzelm@16710
   136
  val typ_tvars: typ -> (indexname * sort) list
wenzelm@16710
   137
  val term_tfrees: term -> (string * sort) list
wenzelm@16710
   138
  val term_tvars: term -> (indexname * sort) list
wenzelm@16710
   139
  val add_typ_ixns: indexname list * typ -> indexname list
wenzelm@16710
   140
  val add_term_tvar_ixns: term * indexname list -> indexname list
wenzelm@16710
   141
  val add_term_vars: term * term list -> term list
wenzelm@16710
   142
  val term_vars: term -> term list
wenzelm@4444
   143
  val add_term_frees: term * term list -> term list
wenzelm@4444
   144
  val term_frees: term -> term list
wenzelm@20160
   145
  val rename_wrt_term: term -> (string * 'a) list -> (string * 'a) list
wenzelm@15986
   146
  val show_question_marks: bool ref
wenzelm@4444
   147
end;
clasohm@0
   148
wenzelm@4444
   149
signature TERM =
wenzelm@4444
   150
sig
wenzelm@4444
   151
  include BASIC_TERM
wenzelm@19394
   152
  val aT: sort -> typ
wenzelm@19394
   153
  val itselfT: typ -> typ
wenzelm@19394
   154
  val a_itselfT: typ
wenzelm@22908
   155
  val argument_type_of: term -> int -> typ
wenzelm@21493
   156
  val head_name_of: term -> string
wenzelm@16943
   157
  val add_tvarsT: typ -> (indexname * sort) list -> (indexname * sort) list
wenzelm@16943
   158
  val add_tvars: term -> (indexname * sort) list -> (indexname * sort) list
wenzelm@16943
   159
  val add_vars: term -> (indexname * typ) list -> (indexname * typ) list
wenzelm@21682
   160
  val add_varnames: term -> indexname list -> indexname list
wenzelm@16943
   161
  val add_tfreesT: typ -> (string * sort) list -> (string * sort) list
wenzelm@16943
   162
  val add_tfrees: term -> (string * sort) list -> (string * sort) list
wenzelm@16943
   163
  val add_frees: term -> (string * typ) list -> (string * typ) list
wenzelm@25050
   164
  val hidden_polymorphism: term -> (indexname * sort) list
haftmann@20109
   165
  val strip_abs_eta: int -> term -> (string * typ) list * term
wenzelm@16678
   166
  val fast_indexname_ord: indexname * indexname -> order
wenzelm@16537
   167
  val indexname_ord: indexname * indexname -> order
wenzelm@16537
   168
  val sort_ord: sort * sort -> order
wenzelm@16537
   169
  val typ_ord: typ * typ -> order
wenzelm@16678
   170
  val fast_term_ord: term * term -> order
wenzelm@16537
   171
  val term_ord: term * term -> order
wenzelm@16537
   172
  val hd_ord: term * term -> order
wenzelm@16537
   173
  val termless: term * term -> bool
ballarin@20129
   174
  val term_lpo: (term -> int) -> term * term -> order
wenzelm@12981
   175
  val match_bvars: (term * term) * (string * string) list -> (string * string) list
haftmann@22031
   176
  val map_abs_vars: (string -> string) -> term -> term
wenzelm@12981
   177
  val rename_abs: term -> term -> term -> term option
wenzelm@16943
   178
  val eq_tvar: (indexname * sort) * (indexname * sort) -> bool
wenzelm@16882
   179
  val eq_var: (indexname * typ) * (indexname * typ) -> bool
wenzelm@16943
   180
  val tvar_ord: (indexname * sort) * (indexname * sort) -> order
wenzelm@16943
   181
  val var_ord: (indexname * typ) * (indexname * typ) -> order
wenzelm@25050
   182
  val close_schematic_term: term -> term
wenzelm@16710
   183
  val maxidx_typ: typ -> int -> int
wenzelm@16710
   184
  val maxidx_typs: typ list -> int -> int
wenzelm@16710
   185
  val maxidx_term: term -> int -> int
wenzelm@24671
   186
  val has_abs: term -> bool
wenzelm@20239
   187
  val dest_abs: string * typ * term -> string * term
wenzelm@24762
   188
  val declare_typ_names: typ -> Name.context -> Name.context
wenzelm@20148
   189
  val declare_term_names: term -> Name.context -> Name.context
wenzelm@20160
   190
  val variant_frees: term -> (string * 'a) list -> (string * 'a) list
wenzelm@9536
   191
  val dummy_patternN: string
wenzelm@18253
   192
  val dummy_pattern: typ -> term
wenzelm@22723
   193
  val is_dummy_pattern: term -> bool
wenzelm@24733
   194
  val free_dummy_patterns: term -> Name.context -> term * Name.context
wenzelm@9536
   195
  val no_dummy_patterns: term -> term
wenzelm@24762
   196
  val replace_dummy_patterns: term -> int -> term * int
wenzelm@10552
   197
  val is_replaced_dummy_pattern: indexname -> bool
wenzelm@16035
   198
  val show_dummy_patterns: term -> term
wenzelm@14786
   199
  val string_of_vname: indexname -> string
wenzelm@14786
   200
  val string_of_vname': indexname -> string
wenzelm@4444
   201
end;
wenzelm@4444
   202
wenzelm@4444
   203
structure Term: TERM =
clasohm@1364
   204
struct
clasohm@0
   205
clasohm@0
   206
(*Indexnames can be quickly renamed by adding an offset to the integer part,
clasohm@0
   207
  for resolution.*)
wenzelm@16537
   208
type indexname = string * int;
clasohm@0
   209
wenzelm@4626
   210
(* Types are classified by sorts. *)
clasohm@0
   211
type class = string;
clasohm@0
   212
type sort  = class list;
wenzelm@14829
   213
type arity = string * sort list * sort;
clasohm@0
   214
clasohm@0
   215
(* The sorts attached to TFrees and TVars specify the sort of that variable *)
clasohm@0
   216
datatype typ = Type  of string * typ list
clasohm@0
   217
             | TFree of string * sort
wenzelm@9536
   218
             | TVar  of indexname * sort;
clasohm@0
   219
paulson@6033
   220
(*Terms.  Bound variables are indicated by depth number.
clasohm@0
   221
  Free variables, (scheme) variables and constants have names.
wenzelm@4626
   222
  An term is "closed" if every bound variable of level "lev"
wenzelm@13000
   223
  is enclosed by at least "lev" abstractions.
clasohm@0
   224
clasohm@0
   225
  It is possible to create meaningless terms containing loose bound vars
clasohm@0
   226
  or type mismatches.  But such terms are not allowed in rules. *)
clasohm@0
   227
wenzelm@13000
   228
datatype term =
clasohm@0
   229
    Const of string * typ
wenzelm@13000
   230
  | Free  of string * typ
clasohm@0
   231
  | Var   of indexname * typ
clasohm@0
   232
  | Bound of int
clasohm@0
   233
  | Abs   of string*typ*term
wenzelm@3965
   234
  | op $  of term*term;
clasohm@0
   235
wenzelm@16537
   236
(*Errors involving type mismatches*)
clasohm@0
   237
exception TYPE of string * typ list * term list;
clasohm@0
   238
wenzelm@16537
   239
(*Errors errors involving terms*)
clasohm@0
   240
exception TERM of string * term list;
clasohm@0
   241
clasohm@0
   242
(*Note variable naming conventions!
clasohm@0
   243
    a,b,c: string
clasohm@0
   244
    f,g,h: functions (including terms of function type)
clasohm@0
   245
    i,j,m,n: int
clasohm@0
   246
    t,u: term
clasohm@0
   247
    v,w: indexnames
clasohm@0
   248
    x,y: any
clasohm@0
   249
    A,B,C: term (denoting formulae)
clasohm@0
   250
    T,U: typ
clasohm@0
   251
*)
clasohm@0
   252
clasohm@0
   253
paulson@6033
   254
(** Types **)
paulson@6033
   255
wenzelm@21353
   256
(*dummies for type-inference etc.*)
wenzelm@21353
   257
val dummyS = [""];
wenzelm@16537
   258
val dummyT = Type ("dummy", []);
wenzelm@16537
   259
wenzelm@16537
   260
fun no_dummyT typ =
wenzelm@16537
   261
  let
wenzelm@16537
   262
    fun check (T as Type ("dummy", _)) =
wenzelm@16537
   263
          raise TYPE ("Illegal occurrence of '_' dummy type", [T], [])
wenzelm@16537
   264
      | check (Type (_, Ts)) = List.app check Ts
wenzelm@16537
   265
      | check _ = ();
wenzelm@16537
   266
  in check typ; typ end;
wenzelm@16537
   267
paulson@6033
   268
fun S --> T = Type("fun",[S,T]);
paulson@6033
   269
paulson@6033
   270
(*handy for multiple args: [T1,...,Tn]--->T  gives  T1-->(T2--> ... -->T)*)
skalberg@15570
   271
val op ---> = Library.foldr (op -->);
paulson@6033
   272
paulson@6033
   273
fun dest_Type (Type x) = x
paulson@6033
   274
  | dest_Type T = raise TYPE ("dest_Type", [T], []);
dixon@15914
   275
fun dest_TVar (TVar x) = x
dixon@15914
   276
  | dest_TVar T = raise TYPE ("dest_TVar", [T], []);
dixon@15914
   277
fun dest_TFree (TFree x) = x
dixon@15914
   278
  | dest_TFree T = raise TYPE ("dest_TFree", [T], []);
paulson@6033
   279
wenzelm@16537
   280
clasohm@0
   281
(** Discriminators **)
clasohm@0
   282
nipkow@7318
   283
fun is_Bound (Bound _) = true
nipkow@7318
   284
  | is_Bound _         = false;
nipkow@7318
   285
clasohm@0
   286
fun is_Const (Const _) = true
clasohm@0
   287
  | is_Const _ = false;
clasohm@0
   288
clasohm@0
   289
fun is_Free (Free _) = true
clasohm@0
   290
  | is_Free _ = false;
clasohm@0
   291
clasohm@0
   292
fun is_Var (Var _) = true
clasohm@0
   293
  | is_Var _ = false;
clasohm@0
   294
clasohm@0
   295
fun is_TVar (TVar _) = true
clasohm@0
   296
  | is_TVar _ = false;
clasohm@0
   297
wenzelm@16537
   298
clasohm@0
   299
(** Destructors **)
clasohm@0
   300
clasohm@0
   301
fun dest_Const (Const x) =  x
clasohm@0
   302
  | dest_Const t = raise TERM("dest_Const", [t]);
clasohm@0
   303
clasohm@0
   304
fun dest_Free (Free x) =  x
clasohm@0
   305
  | dest_Free t = raise TERM("dest_Free", [t]);
clasohm@0
   306
clasohm@0
   307
fun dest_Var (Var x) =  x
clasohm@0
   308
  | dest_Var t = raise TERM("dest_Var", [t]);
clasohm@0
   309
clasohm@0
   310
paulson@4464
   311
fun domain_type (Type("fun", [T,_])) = T
paulson@4464
   312
and range_type  (Type("fun", [_,T])) = T;
paulson@4064
   313
clasohm@0
   314
(* maps  [T1,...,Tn]--->T  to the list  [T1,T2,...,Tn]*)
clasohm@0
   315
fun binder_types (Type("fun",[S,T])) = S :: binder_types T
clasohm@0
   316
  | binder_types _   =  [];
clasohm@0
   317
clasohm@0
   318
(* maps  [T1,...,Tn]--->T  to T*)
clasohm@0
   319
fun body_type (Type("fun",[S,T])) = body_type T
clasohm@0
   320
  | body_type T   =  T;
clasohm@0
   321
clasohm@0
   322
(* maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T)  *)
clasohm@0
   323
fun strip_type T : typ list * typ =
clasohm@0
   324
  (binder_types T, body_type T);
clasohm@0
   325
clasohm@0
   326
clasohm@0
   327
(*Compute the type of the term, checking that combinations are well-typed
clasohm@0
   328
  Ts = [T0,T1,...] holds types of bound variables 0, 1, ...*)
clasohm@0
   329
fun type_of1 (Ts, Const (_,T)) = T
clasohm@0
   330
  | type_of1 (Ts, Free  (_,T)) = T
skalberg@15570
   331
  | type_of1 (Ts, Bound i) = (List.nth (Ts,i)
skalberg@15570
   332
        handle Subscript => raise TYPE("type_of: bound variable", [], [Bound i]))
clasohm@0
   333
  | type_of1 (Ts, Var (_,T)) = T
clasohm@0
   334
  | type_of1 (Ts, Abs (_,T,body)) = T --> type_of1(T::Ts, body)
wenzelm@13000
   335
  | type_of1 (Ts, f$u) =
clasohm@0
   336
      let val U = type_of1(Ts,u)
clasohm@0
   337
          and T = type_of1(Ts,f)
clasohm@0
   338
      in case T of
wenzelm@9536
   339
            Type("fun",[T1,T2]) =>
wenzelm@9536
   340
              if T1=U then T2  else raise TYPE
wenzelm@9536
   341
                    ("type_of: type mismatch in application", [T1,U], [f$u])
wenzelm@13000
   342
          | _ => raise TYPE
wenzelm@9536
   343
                    ("type_of: function type is expected in application",
wenzelm@9536
   344
                     [T,U], [f$u])
clasohm@0
   345
      end;
clasohm@0
   346
clasohm@0
   347
fun type_of t : typ = type_of1 ([],t);
clasohm@0
   348
clasohm@0
   349
(*Determines the type of a term, with minimal checking*)
wenzelm@13000
   350
fun fastype_of1 (Ts, f$u) =
lcp@61
   351
    (case fastype_of1 (Ts,f) of
wenzelm@9536
   352
        Type("fun",[_,T]) => T
wenzelm@9536
   353
        | _ => raise TERM("fastype_of: expected function type", [f$u]))
lcp@61
   354
  | fastype_of1 (_, Const (_,T)) = T
lcp@61
   355
  | fastype_of1 (_, Free (_,T)) = T
skalberg@15570
   356
  | fastype_of1 (Ts, Bound i) = (List.nth(Ts,i)
skalberg@15570
   357
         handle Subscript => raise TERM("fastype_of: Bound", [Bound i]))
wenzelm@13000
   358
  | fastype_of1 (_, Var (_,T)) = T
lcp@61
   359
  | fastype_of1 (Ts, Abs (_,T,u)) = T --> fastype_of1 (T::Ts, u);
lcp@61
   360
lcp@61
   361
fun fastype_of t : typ = fastype_of1 ([],t);
clasohm@0
   362
wenzelm@16678
   363
(*Determine the argument type of a function*)
wenzelm@22908
   364
fun argument_type_of tm k =
wenzelm@16678
   365
  let
wenzelm@16678
   366
    fun argT i (Type ("fun", [T, U])) = if i = 0 then T else argT (i - 1) U
wenzelm@16678
   367
      | argT _ T = raise TYPE ("argument_type_of", [T], []);
wenzelm@16678
   368
wenzelm@16678
   369
    fun arg 0 _ (Abs (_, T, _)) = T
wenzelm@16678
   370
      | arg i Ts (Abs (_, T, t)) = arg (i - 1) (T :: Ts) t
wenzelm@16678
   371
      | arg i Ts (t $ _) = arg (i + 1) Ts t
wenzelm@16678
   372
      | arg i Ts a = argT i (fastype_of1 (Ts, a));
wenzelm@22908
   373
  in arg k [] tm end;
wenzelm@16678
   374
clasohm@0
   375
wenzelm@19473
   376
val list_abs = uncurry (fold_rev (fn (x, T) => fn t => Abs (x, T, t)));
wenzelm@10806
   377
haftmann@18927
   378
fun strip_abs (Abs (a, T, t)) =
haftmann@18927
   379
      let val (a', t') = strip_abs t
haftmann@18927
   380
      in ((a, T) :: a', t') end
haftmann@18927
   381
  | strip_abs t = ([], t);
haftmann@18927
   382
clasohm@0
   383
(* maps  (x1,...,xn)t   to   t  *)
wenzelm@13000
   384
fun strip_abs_body (Abs(_,_,t))  =  strip_abs_body t
clasohm@0
   385
  | strip_abs_body u  =  u;
clasohm@0
   386
clasohm@0
   387
(* maps  (x1,...,xn)t   to   [x1, ..., xn]  *)
wenzelm@13000
   388
fun strip_abs_vars (Abs(a,T,t))  =  (a,T) :: strip_abs_vars t
clasohm@0
   389
  | strip_abs_vars u  =  [] : (string*typ) list;
clasohm@0
   390
clasohm@0
   391
clasohm@0
   392
fun strip_qnt_body qnt =
clasohm@0
   393
let fun strip(tm as Const(c,_)$Abs(_,_,t)) = if c=qnt then strip t else tm
clasohm@0
   394
      | strip t = t
clasohm@0
   395
in strip end;
clasohm@0
   396
clasohm@0
   397
fun strip_qnt_vars qnt =
clasohm@0
   398
let fun strip(Const(c,_)$Abs(a,T,t)) = if c=qnt then (a,T)::strip t else []
clasohm@0
   399
      | strip t  =  [] : (string*typ) list
clasohm@0
   400
in strip end;
clasohm@0
   401
clasohm@0
   402
clasohm@0
   403
(* maps   (f, [t1,...,tn])  to  f(t1,...,tn) *)
skalberg@15570
   404
val list_comb : term * term list -> term = Library.foldl (op $);
clasohm@0
   405
clasohm@0
   406
clasohm@0
   407
(* maps   f(t1,...,tn)  to  (f, [t1,...,tn]) ; naturally tail-recursive*)
wenzelm@13000
   408
fun strip_comb u : term * term list =
clasohm@0
   409
    let fun stripc (f$t, ts) = stripc (f, t::ts)
wenzelm@13000
   410
        |   stripc  x =  x
clasohm@0
   411
    in  stripc(u,[])  end;
clasohm@0
   412
clasohm@0
   413
clasohm@0
   414
(* maps   f(t1,...,tn)  to  f , which is never a combination *)
clasohm@0
   415
fun head_of (f$t) = head_of f
clasohm@0
   416
  | head_of u = u;
clasohm@0
   417
wenzelm@21493
   418
fun head_name_of tm =
wenzelm@21493
   419
  (case head_of tm of
wenzelm@21493
   420
    t as Const (c, _) =>
wenzelm@21493
   421
      if NameSpace.is_qualified c then c
wenzelm@21493
   422
      else raise TERM ("Malformed constant name", [t])
wenzelm@21493
   423
  | t as Free (x, _) =>
wenzelm@21493
   424
      if not (NameSpace.is_qualified x) then x
wenzelm@21493
   425
      else raise TERM ("Malformed fixed variable name", [t])
wenzelm@21493
   426
  | t => raise TERM ("No fixed head of term", [t]));
clasohm@0
   427
wenzelm@16599
   428
(*number of atoms and abstractions in a term*)
wenzelm@16599
   429
fun size_of_term tm =
wenzelm@16599
   430
  let
wenzelm@16678
   431
    fun add_size (t $ u, n) = add_size (t, add_size (u, n))
wenzelm@16678
   432
      | add_size (Abs (_ ,_, t), n) = add_size (t, n + 1)
wenzelm@16678
   433
      | add_size (_, n) = n + 1;
wenzelm@16678
   434
  in add_size (tm, 0) end;
clasohm@0
   435
haftmann@18847
   436
fun map_atyps f (Type (a, Ts)) = Type (a, map (map_atyps f) Ts)
haftmann@18976
   437
  | map_atyps f T = f T;
haftmann@18847
   438
haftmann@18847
   439
fun map_aterms f (t $ u) = map_aterms f t $ map_aterms f u
haftmann@18847
   440
  | map_aterms f (Abs (a, T, t)) = Abs (a, T, map_aterms f t)
haftmann@18847
   441
  | map_aterms f t = f t;
haftmann@18847
   442
wenzelm@18981
   443
fun map_type_tvar f = map_atyps (fn TVar x => f x | T => T);
wenzelm@18981
   444
fun map_type_tfree f = map_atyps (fn TFree x => f x | T => T);
nipkow@949
   445
wenzelm@20548
   446
fun map_types f =
wenzelm@16678
   447
  let
wenzelm@16678
   448
    fun map_aux (Const (a, T)) = Const (a, f T)
wenzelm@16678
   449
      | map_aux (Free (a, T)) = Free (a, f T)
wenzelm@16678
   450
      | map_aux (Var (v, T)) = Var (v, f T)
wenzelm@16678
   451
      | map_aux (t as Bound _)  = t
wenzelm@16678
   452
      | map_aux (Abs (a, T, t)) = Abs (a, f T, map_aux t)
wenzelm@16678
   453
      | map_aux (t $ u) = map_aux t $ map_aux u;
wenzelm@16678
   454
  in map_aux end;
clasohm@0
   455
clasohm@0
   456
(* iterate a function over all types in a term *)
clasohm@0
   457
fun it_term_types f =
clasohm@0
   458
let fun iter(Const(_,T), a) = f(T,a)
clasohm@0
   459
      | iter(Free(_,T), a) = f(T,a)
clasohm@0
   460
      | iter(Var(_,T), a) = f(T,a)
clasohm@0
   461
      | iter(Abs(_,T,t), a) = iter(t,f(T,a))
clasohm@0
   462
      | iter(f$u, a) = iter(f, iter(u, a))
clasohm@0
   463
      | iter(Bound _, a) = a
clasohm@0
   464
in iter end
clasohm@0
   465
clasohm@0
   466
wenzelm@16943
   467
(* fold types and terms *)
wenzelm@16943
   468
wenzelm@16943
   469
(*fold atoms of type*)
wenzelm@16943
   470
fun fold_atyps f (Type (_, Ts)) = fold (fold_atyps f) Ts
wenzelm@16943
   471
  | fold_atyps f T = f T;
wenzelm@16943
   472
wenzelm@16943
   473
(*fold atoms of term*)
wenzelm@16943
   474
fun fold_aterms f (t $ u) = fold_aterms f t #> fold_aterms f u
wenzelm@16943
   475
  | fold_aterms f (Abs (_, _, t)) = fold_aterms f t
wenzelm@16943
   476
  | fold_aterms f a = f a;
wenzelm@16943
   477
wenzelm@16943
   478
(*fold types of term*)
wenzelm@16943
   479
fun fold_term_types f (t as Const (_, T)) = f t T
wenzelm@16943
   480
  | fold_term_types f (t as Free (_, T)) = f t T
wenzelm@16943
   481
  | fold_term_types f (t as Var (_, T)) = f t T
wenzelm@16943
   482
  | fold_term_types f (Bound _) = I
wenzelm@16943
   483
  | fold_term_types f (t as Abs (_, T, b)) = f t T #> fold_term_types f b
wenzelm@16943
   484
  | fold_term_types f (t $ u) = fold_term_types f t #> fold_term_types f u;
wenzelm@16943
   485
wenzelm@16943
   486
fun fold_types f = fold_term_types (K f);
wenzelm@16943
   487
wenzelm@24483
   488
fun replace_types (Const (c, _)) (T :: Ts) = (Const (c, T), Ts)
wenzelm@24483
   489
  | replace_types (Free (x, _)) (T :: Ts) = (Free (x, T), Ts)
wenzelm@24483
   490
  | replace_types (Var (xi, _)) (T :: Ts) = (Var (xi, T), Ts)
wenzelm@24483
   491
  | replace_types (Bound i) Ts = (Bound i, Ts)
wenzelm@24483
   492
  | replace_types (Abs (x, _, b)) (T :: Ts) =
wenzelm@24483
   493
      let val (b', Ts') = replace_types b Ts
wenzelm@24483
   494
      in (Abs (x, T, b'), Ts') end
wenzelm@24483
   495
  | replace_types (t $ u) Ts =
wenzelm@24483
   496
      let
wenzelm@24483
   497
        val (t', Ts') = replace_types t Ts;
wenzelm@24483
   498
        val (u', Ts'') = replace_types u Ts';
wenzelm@24483
   499
      in (t' $ u', Ts'') end;
wenzelm@24483
   500
wenzelm@24483
   501
fun burrow_types f ts =
wenzelm@24483
   502
  let
wenzelm@24483
   503
    val Ts = rev (fold (fold_types cons) ts []);
wenzelm@24483
   504
    val Ts' = f Ts;
wenzelm@24483
   505
    val (ts', []) = fold_map replace_types ts Ts';
wenzelm@24483
   506
  in ts' end;
wenzelm@24483
   507
wenzelm@16943
   508
(*collect variables*)
wenzelm@16943
   509
val add_tvarsT = fold_atyps (fn TVar v => insert (op =) v | _ => I);
wenzelm@16943
   510
val add_tvars = fold_types add_tvarsT;
wenzelm@16943
   511
val add_vars = fold_aterms (fn Var v => insert (op =) v | _ => I);
wenzelm@20199
   512
val add_varnames = fold_aterms (fn Var (xi, _) => insert (op =) xi | _ => I);
wenzelm@16943
   513
val add_tfreesT = fold_atyps (fn TFree v => insert (op =) v | _ => I);
wenzelm@16943
   514
val add_tfrees = fold_types add_tfreesT;
wenzelm@16943
   515
val add_frees = fold_aterms (fn Free v => insert (op =) v | _ => I);
wenzelm@16943
   516
wenzelm@25050
   517
(*extra type variables in a term, not covered by its type*)
wenzelm@25050
   518
fun hidden_polymorphism t =
wenzelm@21682
   519
  let
wenzelm@25050
   520
    val T = fastype_of t;
wenzelm@21682
   521
    val tvarsT = add_tvarsT T [];
wenzelm@21682
   522
    val extra_tvars = fold_types (fold_atyps
wenzelm@21682
   523
      (fn TVar v => if member (op =) tvarsT v then I else insert (op =) v | _ => I)) t [];
wenzelm@21682
   524
  in extra_tvars end;
wenzelm@21682
   525
wenzelm@16943
   526
wenzelm@25050
   527
wenzelm@16678
   528
(** Comparing terms, types, sorts etc. **)
wenzelm@16537
   529
wenzelm@20511
   530
(* alpha equivalence -- tuned for equalities *)
wenzelm@20511
   531
wenzelm@20511
   532
fun tm1 aconv tm2 =
wenzelm@20511
   533
  pointer_eq (tm1, tm2) orelse
wenzelm@20511
   534
    (case (tm1, tm2) of
wenzelm@20511
   535
      (t1 $ u1, t2 $ u2) => t1 aconv t2 andalso u1 aconv u2
wenzelm@20511
   536
    | (Abs (_, T1, t1), Abs (_, T2, t2)) => t1 aconv t2 andalso T1 = T2
wenzelm@20511
   537
    | (a1, a2) => a1 = a2);
wenzelm@20511
   538
wenzelm@20511
   539
wenzelm@20511
   540
(* fast syntactic ordering -- tuned for inequalities *)
wenzelm@16678
   541
wenzelm@16678
   542
fun fast_indexname_ord ((x, i), (y, j)) =
wenzelm@16678
   543
  (case int_ord (i, j) of EQUAL => fast_string_ord (x, y) | ord => ord);
wenzelm@16537
   544
wenzelm@16599
   545
fun sort_ord SS =
wenzelm@16599
   546
  if pointer_eq SS then EQUAL
wenzelm@16990
   547
  else dict_ord fast_string_ord SS;
wenzelm@16678
   548
wenzelm@16678
   549
local
wenzelm@16537
   550
wenzelm@16678
   551
fun cons_nr (TVar _) = 0
wenzelm@16678
   552
  | cons_nr (TFree _) = 1
wenzelm@16678
   553
  | cons_nr (Type _) = 2;
wenzelm@16537
   554
wenzelm@16678
   555
in
wenzelm@16537
   556
wenzelm@16537
   557
fun typ_ord TU =
wenzelm@16537
   558
  if pointer_eq TU then EQUAL
wenzelm@16537
   559
  else
wenzelm@16537
   560
    (case TU of
wenzelm@16678
   561
      (Type (a, Ts), Type (b, Us)) =>
wenzelm@16990
   562
        (case fast_string_ord (a, b) of EQUAL => dict_ord typ_ord (Ts, Us) | ord => ord)
wenzelm@16678
   563
    | (TFree (a, S), TFree (b, S')) =>
wenzelm@16678
   564
        (case fast_string_ord (a, b) of EQUAL => sort_ord (S, S') | ord => ord)
wenzelm@16678
   565
    | (TVar (xi, S), TVar (yj, S')) =>
wenzelm@16678
   566
        (case fast_indexname_ord (xi, yj) of EQUAL => sort_ord (S, S') | ord => ord)
wenzelm@16678
   567
    | (T, U) => int_ord (cons_nr T, cons_nr U));
wenzelm@16678
   568
wenzelm@16678
   569
end;
wenzelm@16678
   570
wenzelm@16678
   571
local
wenzelm@16678
   572
wenzelm@16678
   573
fun cons_nr (Const _) = 0
wenzelm@16678
   574
  | cons_nr (Free _) = 1
wenzelm@16678
   575
  | cons_nr (Var _) = 2
wenzelm@16678
   576
  | cons_nr (Bound _) = 3
wenzelm@16678
   577
  | cons_nr (Abs _) = 4
wenzelm@16678
   578
  | cons_nr (_ $ _) = 5;
wenzelm@16678
   579
wenzelm@16678
   580
fun struct_ord (Abs (_, _, t), Abs (_, _, u)) = struct_ord (t, u)
wenzelm@16678
   581
  | struct_ord (t1 $ t2, u1 $ u2) =
wenzelm@16678
   582
      (case struct_ord (t1, u1) of EQUAL => struct_ord (t2, u2) | ord => ord)
wenzelm@16678
   583
  | struct_ord (t, u) = int_ord (cons_nr t, cons_nr u);
wenzelm@16678
   584
wenzelm@16678
   585
fun atoms_ord (Abs (_, _, t), Abs (_, _, u)) = atoms_ord (t, u)
wenzelm@16678
   586
  | atoms_ord (t1 $ t2, u1 $ u2) =
wenzelm@16678
   587
      (case atoms_ord (t1, u1) of EQUAL => atoms_ord (t2, u2) | ord => ord)
wenzelm@16678
   588
  | atoms_ord (Const (a, _), Const (b, _)) = fast_string_ord (a, b)
wenzelm@16678
   589
  | atoms_ord (Free (x, _), Free (y, _)) = fast_string_ord (x, y)
wenzelm@16678
   590
  | atoms_ord (Var (xi, _), Var (yj, _)) = fast_indexname_ord (xi, yj)
wenzelm@16678
   591
  | atoms_ord (Bound i, Bound j) = int_ord (i, j)
wenzelm@16678
   592
  | atoms_ord _ = sys_error "atoms_ord";
wenzelm@16678
   593
wenzelm@16678
   594
fun types_ord (Abs (_, T, t), Abs (_, U, u)) =
wenzelm@16678
   595
      (case typ_ord (T, U) of EQUAL => types_ord (t, u) | ord => ord)
wenzelm@16678
   596
  | types_ord (t1 $ t2, u1 $ u2) =
wenzelm@16678
   597
      (case types_ord (t1, u1) of EQUAL => types_ord (t2, u2) | ord => ord)
wenzelm@16678
   598
  | types_ord (Const (_, T), Const (_, U)) = typ_ord (T, U)
wenzelm@16678
   599
  | types_ord (Free (_, T), Free (_, U)) = typ_ord (T, U)
wenzelm@16678
   600
  | types_ord (Var (_, T), Var (_, U)) = typ_ord (T, U)
wenzelm@16678
   601
  | types_ord (Bound _, Bound _) = EQUAL
wenzelm@16678
   602
  | types_ord _ = sys_error "types_ord";
wenzelm@16678
   603
wenzelm@16678
   604
in
wenzelm@16678
   605
wenzelm@16678
   606
fun fast_term_ord tu =
wenzelm@16678
   607
  if pointer_eq tu then EQUAL
wenzelm@16678
   608
  else
wenzelm@16678
   609
    (case struct_ord tu of
wenzelm@16678
   610
      EQUAL => (case atoms_ord tu of EQUAL => types_ord tu | ord => ord)
wenzelm@16678
   611
    | ord => ord);
wenzelm@16678
   612
wenzelm@16678
   613
structure Vartab = TableFun(type key = indexname val ord = fast_indexname_ord);
wenzelm@16678
   614
structure Typtab = TableFun(type key = typ val ord = typ_ord);
wenzelm@16678
   615
structure Termtab = TableFun(type key = term val ord = fast_term_ord);
wenzelm@16678
   616
wenzelm@16678
   617
end;
wenzelm@16537
   618
wenzelm@16537
   619
wenzelm@16537
   620
(* term_ord *)
wenzelm@16537
   621
wenzelm@16537
   622
(*a linear well-founded AC-compatible ordering for terms:
wenzelm@16537
   623
  s < t <=> 1. size(s) < size(t) or
wenzelm@16537
   624
            2. size(s) = size(t) and s=f(...) and t=g(...) and f<g or
wenzelm@16537
   625
            3. size(s) = size(t) and s=f(s1..sn) and t=f(t1..tn) and
wenzelm@16537
   626
               (s1..sn) < (t1..tn) (lexicographically)*)
wenzelm@16678
   627
wenzelm@16678
   628
fun indexname_ord ((x, i), (y, j)) =
wenzelm@16678
   629
  (case int_ord (i, j) of EQUAL => string_ord (x, y) | ord => ord);
wenzelm@16678
   630
wenzelm@16667
   631
local
wenzelm@16667
   632
wenzelm@16667
   633
fun hd_depth (t $ _, n) = hd_depth (t, n + 1)
wenzelm@16667
   634
  | hd_depth p = p;
wenzelm@16537
   635
wenzelm@16537
   636
fun dest_hd (Const (a, T)) = (((a, 0), T), 0)
wenzelm@16537
   637
  | dest_hd (Free (a, T)) = (((a, 0), T), 1)
wenzelm@16537
   638
  | dest_hd (Var v) = (v, 2)
wenzelm@16537
   639
  | dest_hd (Bound i) = ((("", i), dummyT), 3)
wenzelm@16537
   640
  | dest_hd (Abs (_, T, _)) = ((("", 0), T), 4);
wenzelm@16537
   641
wenzelm@16667
   642
in
wenzelm@16667
   643
wenzelm@16537
   644
fun term_ord tu =
wenzelm@16537
   645
  if pointer_eq tu then EQUAL
wenzelm@16537
   646
  else
wenzelm@16537
   647
    (case tu of
wenzelm@16537
   648
      (Abs (_, T, t), Abs(_, U, u)) =>
wenzelm@16537
   649
        (case term_ord (t, u) of EQUAL => typ_ord (T, U) | ord => ord)
wenzelm@16667
   650
    | (t, u) =>
wenzelm@16537
   651
        (case int_ord (size_of_term t, size_of_term u) of
wenzelm@16537
   652
          EQUAL =>
wenzelm@16943
   653
            (case prod_ord hd_ord int_ord (hd_depth (t, 0), hd_depth (u, 0)) of
wenzelm@16943
   654
              EQUAL => args_ord (t, u) | ord => ord)
wenzelm@16537
   655
        | ord => ord))
wenzelm@16537
   656
and hd_ord (f, g) =
wenzelm@16537
   657
  prod_ord (prod_ord indexname_ord typ_ord) int_ord (dest_hd f, dest_hd g)
wenzelm@16667
   658
and args_ord (f $ t, g $ u) =
wenzelm@16667
   659
      (case args_ord (f, g) of EQUAL => term_ord (t, u) | ord => ord)
wenzelm@16667
   660
  | args_ord _ = EQUAL;
wenzelm@16537
   661
wenzelm@16537
   662
fun termless tu = (term_ord tu = LESS);
wenzelm@16537
   663
wenzelm@16667
   664
end;
wenzelm@16667
   665
wenzelm@16667
   666
wenzelm@16667
   667
(** Lexicographic path order on terms **)
wenzelm@16667
   668
wenzelm@16667
   669
(*
nipkow@16570
   670
  See Baader & Nipkow, Term rewriting, CUP 1998.
nipkow@16570
   671
  Without variables.  Const, Var, Bound, Free and Abs are treated all as
nipkow@16570
   672
  constants.
nipkow@16570
   673
ballarin@20129
   674
  f_ord maps terms to integers and serves two purposes:
nipkow@16570
   675
  - Predicate on constant symbols.  Those that are not recognised by f_ord
nipkow@16570
   676
    must be mapped to ~1.
nipkow@16570
   677
  - Order on the recognised symbols.  These must be mapped to distinct
nipkow@16570
   678
    integers >= 0.
ballarin@20129
   679
  The argument of f_ord is never an application.
wenzelm@16667
   680
*)
nipkow@16570
   681
nipkow@16570
   682
local
ballarin@20129
   683
ballarin@20129
   684
fun unrecognized (Const (a, T)) = ((1, ((a, 0), T)), 0)
ballarin@20129
   685
  | unrecognized (Free (a, T)) = ((1, ((a, 0), T)), 0)
ballarin@20129
   686
  | unrecognized (Var v) = ((1, v), 1)
ballarin@20129
   687
  | unrecognized (Bound i) = ((1, (("", i), dummyT)), 2)
ballarin@20129
   688
  | unrecognized (Abs (_, T, _)) = ((1, (("", 0), T)), 3);
ballarin@20129
   689
ballarin@20129
   690
fun dest_hd f_ord t =
ballarin@20129
   691
      let val ord = f_ord t in
ballarin@20129
   692
        if ord = ~1 then unrecognized t else ((0, (("", ord), fastype_of t)), 0)
nipkow@16570
   693
      end
nipkow@16570
   694
nipkow@16570
   695
fun term_lpo f_ord (s, t) =
nipkow@16570
   696
  let val (f, ss) = strip_comb s and (g, ts) = strip_comb t in
nipkow@16570
   697
    if forall (fn si => term_lpo f_ord (si, t) = LESS) ss
nipkow@16570
   698
    then case hd_ord f_ord (f, g) of
wenzelm@16667
   699
        GREATER =>
wenzelm@16667
   700
          if forall (fn ti => term_lpo f_ord (s, ti) = GREATER) ts
wenzelm@16667
   701
          then GREATER else LESS
nipkow@16570
   702
      | EQUAL =>
wenzelm@16667
   703
          if forall (fn ti => term_lpo f_ord (s, ti) = GREATER) ts
wenzelm@16667
   704
          then list_ord (term_lpo f_ord) (ss, ts)
wenzelm@16667
   705
          else LESS
nipkow@16570
   706
      | LESS => LESS
nipkow@16570
   707
    else GREATER
nipkow@16570
   708
  end
nipkow@16570
   709
and hd_ord f_ord (f, g) = case (f, g) of
nipkow@16570
   710
    (Abs (_, T, t), Abs (_, U, u)) =>
nipkow@16570
   711
      (case term_lpo f_ord (t, u) of EQUAL => typ_ord (T, U) | ord => ord)
nipkow@16570
   712
  | (_, _) => prod_ord (prod_ord int_ord
nipkow@16570
   713
                  (prod_ord indexname_ord typ_ord)) int_ord
nipkow@16570
   714
                (dest_hd f_ord f, dest_hd f_ord g)
nipkow@16570
   715
in
nipkow@16570
   716
val term_lpo = term_lpo
nipkow@16570
   717
end;
nipkow@16570
   718
wenzelm@16537
   719
clasohm@0
   720
(** Connectives of higher order logic **)
clasohm@0
   721
wenzelm@24850
   722
fun aT S = TFree (Name.aT, S);
wenzelm@19394
   723
wenzelm@375
   724
fun itselfT ty = Type ("itself", [ty]);
wenzelm@24850
   725
val a_itselfT = itselfT (TFree (Name.aT, []));
wenzelm@375
   726
clasohm@0
   727
val propT : typ = Type("prop",[]);
clasohm@0
   728
clasohm@0
   729
val implies = Const("==>", propT-->propT-->propT);
clasohm@0
   730
clasohm@0
   731
fun all T = Const("all", (T-->propT)-->propT);
clasohm@0
   732
clasohm@0
   733
fun equals T = Const("==", T-->T-->propT);
clasohm@0
   734
clasohm@0
   735
(* maps  !!x1...xn. t   to   t  *)
wenzelm@13000
   736
fun strip_all_body (Const("all",_)$Abs(_,_,t))  =  strip_all_body t
clasohm@0
   737
  | strip_all_body t  =  t;
clasohm@0
   738
clasohm@0
   739
(* maps  !!x1...xn. t   to   [x1, ..., xn]  *)
clasohm@0
   740
fun strip_all_vars (Const("all",_)$Abs(a,T,t))  =
wenzelm@13000
   741
                (a,T) :: strip_all_vars t
clasohm@0
   742
  | strip_all_vars t  =  [] : (string*typ) list;
clasohm@0
   743
clasohm@0
   744
(*increments a term's non-local bound variables
clasohm@0
   745
  required when moving a term within abstractions
clasohm@0
   746
     inc is  increment for bound variables
clasohm@0
   747
     lev is  level at which a bound variable is considered 'loose'*)
wenzelm@13000
   748
fun incr_bv (inc, lev, u as Bound i) = if i>=lev then Bound(i+inc) else u
clasohm@0
   749
  | incr_bv (inc, lev, Abs(a,T,body)) =
wenzelm@9536
   750
        Abs(a, T, incr_bv(inc,lev+1,body))
wenzelm@13000
   751
  | incr_bv (inc, lev, f$t) =
clasohm@0
   752
      incr_bv(inc,lev,f) $ incr_bv(inc,lev,t)
clasohm@0
   753
  | incr_bv (inc, lev, u) = u;
clasohm@0
   754
clasohm@0
   755
fun incr_boundvars  0  t = t
clasohm@0
   756
  | incr_boundvars inc t = incr_bv(inc,0,t);
clasohm@0
   757
wenzelm@12981
   758
(*Scan a pair of terms; while they are similar,
wenzelm@12981
   759
  accumulate corresponding bound vars in "al"*)
wenzelm@12981
   760
fun match_bvs(Abs(x,_,s),Abs(y,_,t), al) =
wenzelm@12981
   761
      match_bvs(s, t, if x="" orelse y="" then al
wenzelm@12981
   762
                                          else (x,y)::al)
wenzelm@12981
   763
  | match_bvs(f$s, g$t, al) = match_bvs(f,g,match_bvs(s,t,al))
wenzelm@12981
   764
  | match_bvs(_,_,al) = al;
wenzelm@12981
   765
wenzelm@12981
   766
(* strip abstractions created by parameters *)
wenzelm@12981
   767
fun match_bvars((s,t),al) = match_bvs(strip_abs_body s, strip_abs_body t, al);
wenzelm@12981
   768
haftmann@22031
   769
fun map_abs_vars f (t $ u) = map_abs_vars f t $ map_abs_vars f u
haftmann@22031
   770
  | map_abs_vars f (Abs (a, T, t)) = Abs (f a, T, map_abs_vars f t)
haftmann@22031
   771
  | map_abs_vars f t = t;
haftmann@22031
   772
wenzelm@12981
   773
fun rename_abs pat obj t =
wenzelm@12981
   774
  let
wenzelm@12981
   775
    val ren = match_bvs (pat, obj, []);
wenzelm@12981
   776
    fun ren_abs (Abs (x, T, b)) =
wenzelm@18942
   777
          Abs (the_default x (AList.lookup (op =) ren x), T, ren_abs b)
wenzelm@12981
   778
      | ren_abs (f $ t) = ren_abs f $ ren_abs t
wenzelm@12981
   779
      | ren_abs t = t
skalberg@15531
   780
  in if null ren then NONE else SOME (ren_abs t) end;
clasohm@0
   781
clasohm@0
   782
(*Accumulate all 'loose' bound vars referring to level 'lev' or beyond.
clasohm@0
   783
   (Bound 0) is loose at level 0 *)
wenzelm@13000
   784
fun add_loose_bnos (Bound i, lev, js) =
haftmann@20854
   785
        if i<lev then js else insert (op =) (i - lev) js
clasohm@0
   786
  | add_loose_bnos (Abs (_,_,t), lev, js) = add_loose_bnos (t, lev+1, js)
clasohm@0
   787
  | add_loose_bnos (f$t, lev, js) =
wenzelm@13000
   788
        add_loose_bnos (f, lev, add_loose_bnos (t, lev, js))
clasohm@0
   789
  | add_loose_bnos (_, _, js) = js;
clasohm@0
   790
clasohm@0
   791
fun loose_bnos t = add_loose_bnos (t, 0, []);
clasohm@0
   792
clasohm@0
   793
(* loose_bvar(t,k) iff t contains a 'loose' bound variable referring to
clasohm@0
   794
   level k or beyond. *)
clasohm@0
   795
fun loose_bvar(Bound i,k) = i >= k
clasohm@0
   796
  | loose_bvar(f$t, k) = loose_bvar(f,k) orelse loose_bvar(t,k)
clasohm@0
   797
  | loose_bvar(Abs(_,_,t),k) = loose_bvar(t,k+1)
clasohm@0
   798
  | loose_bvar _ = false;
clasohm@0
   799
nipkow@2792
   800
fun loose_bvar1(Bound i,k) = i = k
nipkow@2792
   801
  | loose_bvar1(f$t, k) = loose_bvar1(f,k) orelse loose_bvar1(t,k)
nipkow@2792
   802
  | loose_bvar1(Abs(_,_,t),k) = loose_bvar1(t,k+1)
nipkow@2792
   803
  | loose_bvar1 _ = false;
clasohm@0
   804
clasohm@0
   805
(*Substitute arguments for loose bound variables.
clasohm@0
   806
  Beta-reduction of arg(n-1)...arg0 into t replacing (Bound i) with (argi).
wenzelm@4626
   807
  Note that for ((%x y. c) a b), the bound vars in c are x=1 and y=0
wenzelm@9536
   808
        and the appropriate call is  subst_bounds([b,a], c) .
clasohm@0
   809
  Loose bound variables >=n are reduced by "n" to
clasohm@0
   810
     compensate for the disappearance of lambdas.
clasohm@0
   811
*)
wenzelm@13000
   812
fun subst_bounds (args: term list, t) : term =
wenzelm@19065
   813
  let
wenzelm@19065
   814
    exception SAME;
wenzelm@19065
   815
    val n = length args;
wenzelm@19065
   816
    fun subst (t as Bound i, lev) =
wenzelm@19065
   817
         (if i < lev then raise SAME   (*var is locally bound*)
wenzelm@19065
   818
          else incr_boundvars lev (List.nth (args, i - lev))
wenzelm@19065
   819
            handle Subscript => Bound (i - n))  (*loose: change it*)
wenzelm@19065
   820
      | subst (Abs (a, T, body), lev) = Abs (a, T, subst (body, lev + 1))
wenzelm@19065
   821
      | subst (f $ t, lev) =
wenzelm@19065
   822
          (subst (f, lev) $ (subst (t, lev) handle SAME => t) handle SAME => f $ subst (t, lev))
wenzelm@19065
   823
      | subst _ = raise SAME;
wenzelm@19065
   824
  in case args of [] => t | _ => (subst (t, 0) handle SAME => t) end;
clasohm@0
   825
paulson@2192
   826
(*Special case: one argument*)
wenzelm@13000
   827
fun subst_bound (arg, t) : term =
wenzelm@19065
   828
  let
wenzelm@19065
   829
    exception SAME;
wenzelm@19065
   830
    fun subst (Bound i, lev) =
wenzelm@19065
   831
          if i < lev then raise SAME   (*var is locally bound*)
wenzelm@19065
   832
          else if i = lev then incr_boundvars lev arg
wenzelm@19065
   833
          else Bound (i - 1)   (*loose: change it*)
wenzelm@19065
   834
      | subst (Abs (a, T, body), lev) = Abs (a, T, subst (body, lev + 1))
wenzelm@19065
   835
      | subst (f $ t, lev) =
wenzelm@19065
   836
          (subst (f, lev) $ (subst (t, lev) handle SAME => t) handle SAME => f $ subst (t, lev))
wenzelm@19065
   837
      | subst _ = raise SAME;
wenzelm@19065
   838
  in subst (t, 0) handle SAME => t end;
paulson@2192
   839
clasohm@0
   840
(*beta-reduce if possible, else form application*)
paulson@2192
   841
fun betapply (Abs(_,_,t), u) = subst_bound (u,t)
clasohm@0
   842
  | betapply (f,u) = f$u;
clasohm@0
   843
wenzelm@18183
   844
val betapplys = Library.foldl betapply;
wenzelm@18183
   845
wenzelm@14786
   846
haftmann@20109
   847
(*unfolding abstractions with substitution
haftmann@20109
   848
  of bound variables and implicit eta-expansion*)
haftmann@20109
   849
fun strip_abs_eta k t =
haftmann@20109
   850
  let
wenzelm@20122
   851
    val used = fold_aterms (fn Free (v, _) => Name.declare v | _ => I) t Name.context;
haftmann@20109
   852
    fun strip_abs t (0, used) = (([], t), (0, used))
haftmann@20109
   853
      | strip_abs (Abs (v, T, t)) (k, used) =
haftmann@20109
   854
          let
wenzelm@20122
   855
            val ([v'], used') = Name.variants [v] used;
haftmann@21013
   856
            val t' = subst_bound (Free (v', T), t);
wenzelm@20122
   857
            val ((vs, t''), (k', used'')) = strip_abs t' (k - 1, used');
wenzelm@20122
   858
          in (((v', T) :: vs, t''), (k', used'')) end
haftmann@20109
   859
      | strip_abs t (k, used) = (([], t), (k, used));
haftmann@20109
   860
    fun expand_eta [] t _ = ([], t)
haftmann@20109
   861
      | expand_eta (T::Ts) t used =
haftmann@20109
   862
          let
wenzelm@20122
   863
            val ([v], used') = Name.variants [""] used;
wenzelm@20122
   864
            val (vs, t') = expand_eta Ts (t $ Free (v, T)) used';
haftmann@20109
   865
          in ((v, T) :: vs, t') end;
haftmann@20109
   866
    val ((vs1, t'), (k', used')) = strip_abs t (k, used);
haftmann@20109
   867
    val Ts = (fst o chop k' o fst o strip_type o fastype_of) t';
haftmann@20109
   868
    val (vs2, t'') = expand_eta Ts t' used';
haftmann@20109
   869
  in (vs1 @ vs2, t'') end;
haftmann@20109
   870
haftmann@20109
   871
wenzelm@20199
   872
(* comparing variables *)
wenzelm@16882
   873
wenzelm@16724
   874
fun eq_ix ((x, i): indexname, (y, j)) = i = j andalso x = y;
paulson@2192
   875
wenzelm@16943
   876
fun eq_tvar ((xi, S: sort), (xi', S')) = eq_ix (xi, xi') andalso S = S';
wenzelm@16943
   877
fun eq_var ((xi, T: typ), (xi', T')) = eq_ix (xi, xi') andalso T = T';
wenzelm@16943
   878
wenzelm@16943
   879
val tvar_ord = prod_ord indexname_ord sort_ord;
wenzelm@16943
   880
val var_ord = prod_ord indexname_ord typ_ord;
wenzelm@16882
   881
wenzelm@16882
   882
wenzelm@13000
   883
(*A fast unification filter: true unless the two terms cannot be unified.
clasohm@0
   884
  Terms must be NORMAL.  Treats all Vars as distinct. *)
clasohm@0
   885
fun could_unify (t,u) =
clasohm@0
   886
  let fun matchrands (f$t, g$u) = could_unify(t,u) andalso  matchrands(f,g)
wenzelm@9536
   887
        | matchrands _ = true
clasohm@0
   888
  in case (head_of t , head_of u) of
wenzelm@9536
   889
        (_, Var _) => true
clasohm@0
   890
      | (Var _, _) => true
clasohm@0
   891
      | (Const(a,_), Const(b,_)) =>  a=b andalso matchrands(t,u)
clasohm@0
   892
      | (Free(a,_), Free(b,_)) =>  a=b andalso matchrands(t,u)
clasohm@0
   893
      | (Bound i, Bound j) =>  i=j andalso matchrands(t,u)
clasohm@0
   894
      | (Abs _, _) =>  true   (*because of possible eta equality*)
clasohm@0
   895
      | (_, Abs _) =>  true
clasohm@0
   896
      | _ => false
clasohm@0
   897
  end;
clasohm@0
   898
clasohm@0
   899
(*Substitute new for free occurrences of old in a term*)
clasohm@0
   900
fun subst_free [] = (fn t=>t)
clasohm@0
   901
  | subst_free pairs =
wenzelm@13000
   902
      let fun substf u =
haftmann@17314
   903
            case AList.lookup (op aconv) pairs u of
skalberg@15531
   904
                SOME u' => u'
skalberg@15531
   905
              | NONE => (case u of Abs(a,T,t) => Abs(a, T, substf t)
wenzelm@9536
   906
                                 | t$u' => substf t $ substf u'
wenzelm@9536
   907
                                 | _ => u)
clasohm@0
   908
      in  substf  end;
clasohm@0
   909
wenzelm@13000
   910
(*Abstraction of the term "body" over its occurrences of v,
clasohm@0
   911
    which must contain no loose bound variables.
clasohm@0
   912
  The resulting term is ready to become the body of an Abs.*)
wenzelm@16882
   913
fun abstract_over (v, body) =
wenzelm@16882
   914
  let
wenzelm@16990
   915
    exception SAME;
wenzelm@16990
   916
    fun abs lev tm =
wenzelm@16990
   917
      if v aconv tm then Bound lev
wenzelm@16882
   918
      else
wenzelm@16990
   919
        (case tm of
wenzelm@16990
   920
          Abs (a, T, t) => Abs (a, T, abs (lev + 1) t)
wenzelm@16990
   921
        | t $ u => (abs lev t $ (abs lev u handle SAME => u) handle SAME => t $ abs lev u)
wenzelm@16990
   922
        | _ => raise SAME);
wenzelm@16990
   923
  in abs 0 body handle SAME => body end;
clasohm@0
   924
wenzelm@21975
   925
fun lambda v t =
wenzelm@21975
   926
  let val x =
wenzelm@21975
   927
    (case v of
wenzelm@21975
   928
      Const (x, _) => NameSpace.base x
wenzelm@21975
   929
    | Free (x, _) => x
wenzelm@21975
   930
    | Var ((x, _), _) => x
wenzelm@24850
   931
    | _ => Name.uu)
wenzelm@21975
   932
  in Abs (x, fastype_of v, abstract_over (v, t)) end;
clasohm@0
   933
clasohm@0
   934
(*Form an abstraction over a free variable.*)
wenzelm@21975
   935
fun absfree (a,T,body) = Abs (a, T, abstract_over (Free (a, T), body));
wenzelm@24850
   936
fun absdummy (T, body) = Abs (Name.internal Name.uu, T, body);
clasohm@0
   937
clasohm@0
   938
(*Abstraction over a list of free variables*)
clasohm@0
   939
fun list_abs_free ([ ] ,     t) = t
wenzelm@13000
   940
  | list_abs_free ((a,T)::vars, t) =
clasohm@0
   941
      absfree(a, T, list_abs_free(vars,t));
clasohm@0
   942
clasohm@0
   943
(*Quantification over a list of free variables*)
clasohm@0
   944
fun list_all_free ([], t: term) = t
wenzelm@13000
   945
  | list_all_free ((a,T)::vars, t) =
clasohm@0
   946
        (all T) $ (absfree(a, T, list_all_free(vars,t)));
clasohm@0
   947
clasohm@0
   948
(*Quantification over a list of variables (already bound in body) *)
clasohm@0
   949
fun list_all ([], t) = t
wenzelm@13000
   950
  | list_all ((a,T)::vars, t) =
clasohm@0
   951
        (all T) $ (Abs(a, T, list_all(vars,t)));
clasohm@0
   952
wenzelm@16678
   953
(*Replace the ATOMIC term ti by ui;    inst = [(t1,u1), ..., (tn,un)].
clasohm@0
   954
  A simultaneous substitution:  [ (a,b), (b,a) ] swaps a and b.  *)
wenzelm@16678
   955
fun subst_atomic [] tm = tm
wenzelm@16678
   956
  | subst_atomic inst tm =
wenzelm@16678
   957
      let
wenzelm@16678
   958
        fun subst (Abs (a, T, body)) = Abs (a, T, subst body)
wenzelm@16678
   959
          | subst (t $ u) = subst t $ subst u
wenzelm@18942
   960
          | subst t = the_default t (AList.lookup (op aconv) inst t);
wenzelm@16678
   961
      in subst tm end;
clasohm@0
   962
wenzelm@16678
   963
(*Replace the ATOMIC type Ti by Ui;    inst = [(T1,U1), ..., (Tn,Un)].*)
wenzelm@16678
   964
fun typ_subst_atomic [] ty = ty
wenzelm@16678
   965
  | typ_subst_atomic inst ty =
wenzelm@16678
   966
      let
wenzelm@16678
   967
        fun subst (Type (a, Ts)) = Type (a, map subst Ts)
wenzelm@18942
   968
          | subst T = the_default T (AList.lookup (op = : typ * typ -> bool) inst T);
wenzelm@16678
   969
      in subst ty end;
berghofe@15797
   970
wenzelm@16678
   971
fun subst_atomic_types [] tm = tm
wenzelm@20548
   972
  | subst_atomic_types inst tm = map_types (typ_subst_atomic inst) tm;
wenzelm@16678
   973
wenzelm@16678
   974
fun typ_subst_TVars [] ty = ty
wenzelm@16678
   975
  | typ_subst_TVars inst ty =
wenzelm@16678
   976
      let
wenzelm@16678
   977
        fun subst (Type (a, Ts)) = Type (a, map subst Ts)
wenzelm@18942
   978
          | subst (T as TVar (xi, _)) = the_default T (AList.lookup (op =) inst xi)
wenzelm@16678
   979
          | subst T = T;
wenzelm@16678
   980
      in subst ty end;
clasohm@0
   981
wenzelm@16678
   982
fun subst_TVars [] tm = tm
wenzelm@20548
   983
  | subst_TVars inst tm = map_types (typ_subst_TVars inst) tm;
clasohm@0
   984
wenzelm@16678
   985
fun subst_Vars [] tm = tm
wenzelm@16678
   986
  | subst_Vars inst tm =
wenzelm@16678
   987
      let
wenzelm@18942
   988
        fun subst (t as Var (xi, _)) = the_default t (AList.lookup (op =) inst xi)
wenzelm@16678
   989
          | subst (Abs (a, T, t)) = Abs (a, T, subst t)
wenzelm@16678
   990
          | subst (t $ u) = subst t $ subst u
wenzelm@16678
   991
          | subst t = t;
wenzelm@16678
   992
      in subst tm end;
clasohm@0
   993
wenzelm@16678
   994
fun subst_vars ([], []) tm = tm
wenzelm@16678
   995
  | subst_vars ([], inst) tm = subst_Vars inst tm
wenzelm@16678
   996
  | subst_vars (instT, inst) tm =
wenzelm@16678
   997
      let
wenzelm@16678
   998
        fun subst (Const (a, T)) = Const (a, typ_subst_TVars instT T)
wenzelm@16678
   999
          | subst (Free (a, T)) = Free (a, typ_subst_TVars instT T)
wenzelm@16678
  1000
          | subst (t as Var (xi, T)) =
haftmann@17271
  1001
              (case AList.lookup (op =) inst xi of
wenzelm@16678
  1002
                NONE => Var (xi, typ_subst_TVars instT T)
wenzelm@16678
  1003
              | SOME t => t)
wenzelm@16678
  1004
          | subst (t as Bound _) = t
wenzelm@16678
  1005
          | subst (Abs (a, T, t)) = Abs (a, typ_subst_TVars instT T, subst t)
wenzelm@16678
  1006
          | subst (t $ u) = subst t $ subst u;
wenzelm@16678
  1007
      in subst tm end;
clasohm@0
  1008
wenzelm@25050
  1009
fun close_schematic_term t =
wenzelm@25050
  1010
  let
wenzelm@25050
  1011
    val extra_types = map (fn v => Const ("TYPE", itselfT (TVar v))) (hidden_polymorphism t);
wenzelm@25050
  1012
    val extra_terms = map Var (rev (add_vars t []));
wenzelm@25050
  1013
  in fold_rev lambda (extra_types @ extra_terms) t end;
wenzelm@25050
  1014
wenzelm@25050
  1015
clasohm@0
  1016
paulson@15573
  1017
(** Identifying first-order terms **)
paulson@15573
  1018
wenzelm@20199
  1019
(*Differs from proofterm/is_fun in its treatment of TVar*)
wenzelm@20199
  1020
fun is_funtype (Type("fun",[_,_])) = true
wenzelm@20199
  1021
  | is_funtype _ = false;
wenzelm@20199
  1022
paulson@15573
  1023
(*Argument Ts is a reverse list of binder types, needed if term t contains Bound vars*)
paulson@15573
  1024
fun has_not_funtype Ts t = not (is_funtype (fastype_of1 (Ts,t)));
paulson@15573
  1025
wenzelm@16537
  1026
(*First order means in all terms of the form f(t1,...,tn) no argument has a
paulson@16589
  1027
  function type. The supplied quantifiers are excluded: their argument always
paulson@16589
  1028
  has a function type through a recursive call into its body.*)
wenzelm@16667
  1029
fun is_first_order quants =
paulson@16589
  1030
  let fun first_order1 Ts (Abs (_,T,body)) = first_order1 (T::Ts) body
wenzelm@16667
  1031
        | first_order1 Ts (Const(q,_) $ Abs(a,T,body)) =
wenzelm@20664
  1032
            member (op =) quants q  andalso   (*it is a known quantifier*)
paulson@16589
  1033
            not (is_funtype T)   andalso first_order1 (T::Ts) body
wenzelm@16667
  1034
        | first_order1 Ts t =
wenzelm@16667
  1035
            case strip_comb t of
wenzelm@16667
  1036
                 (Var _, ts) => forall (first_order1 Ts andf has_not_funtype Ts) ts
wenzelm@16667
  1037
               | (Free _, ts) => forall (first_order1 Ts andf has_not_funtype Ts) ts
wenzelm@16667
  1038
               | (Const _, ts) => forall (first_order1 Ts andf has_not_funtype Ts) ts
wenzelm@16667
  1039
               | (Bound _, ts) => forall (first_order1 Ts andf has_not_funtype Ts) ts
wenzelm@16667
  1040
               | (Abs _, ts) => false (*not in beta-normal form*)
wenzelm@16667
  1041
               | _ => error "first_order: unexpected case"
paulson@16589
  1042
    in  first_order1 []  end;
paulson@15573
  1043
wenzelm@16710
  1044
wenzelm@16990
  1045
(* maximum index of typs and terms *)
clasohm@0
  1046
wenzelm@16710
  1047
fun maxidx_typ (TVar ((_, j), _)) i = Int.max (i, j)
wenzelm@16710
  1048
  | maxidx_typ (Type (_, Ts)) i = maxidx_typs Ts i
wenzelm@16710
  1049
  | maxidx_typ (TFree _) i = i
wenzelm@16710
  1050
and maxidx_typs [] i = i
wenzelm@16710
  1051
  | maxidx_typs (T :: Ts) i = maxidx_typs Ts (maxidx_typ T i);
clasohm@0
  1052
wenzelm@16710
  1053
fun maxidx_term (Var ((_, j), T)) i = maxidx_typ T (Int.max (i, j))
wenzelm@16710
  1054
  | maxidx_term (Const (_, T)) i = maxidx_typ T i
wenzelm@16710
  1055
  | maxidx_term (Free (_, T)) i = maxidx_typ T i
wenzelm@16710
  1056
  | maxidx_term (Bound _) i = i
wenzelm@16710
  1057
  | maxidx_term (Abs (_, T, t)) i = maxidx_term t (maxidx_typ T i)
wenzelm@16710
  1058
  | maxidx_term (t $ u) i = maxidx_term u (maxidx_term t i);
clasohm@0
  1059
wenzelm@16710
  1060
fun maxidx_of_typ T = maxidx_typ T ~1;
wenzelm@16710
  1061
fun maxidx_of_typs Ts = maxidx_typs Ts ~1;
wenzelm@16710
  1062
fun maxidx_of_term t = maxidx_term t ~1;
berghofe@13665
  1063
clasohm@0
  1064
clasohm@0
  1065
clasohm@0
  1066
(**** Syntax-related declarations ****)
clasohm@0
  1067
wenzelm@19909
  1068
(* substructure *)
wenzelm@4017
  1069
wenzelm@19909
  1070
fun exists_subtype P =
wenzelm@19909
  1071
  let
wenzelm@19909
  1072
    fun ex ty = P ty orelse
wenzelm@19909
  1073
      (case ty of Type (_, Ts) => exists ex Ts | _ => false);
wenzelm@19909
  1074
  in ex end;
nipkow@13646
  1075
wenzelm@20531
  1076
fun exists_type P =
wenzelm@20531
  1077
  let
wenzelm@20531
  1078
    fun ex (Const (_, T)) = P T
wenzelm@20531
  1079
      | ex (Free (_, T)) = P T
wenzelm@20531
  1080
      | ex (Var (_, T)) = P T
wenzelm@20531
  1081
      | ex (Bound _) = false
wenzelm@20531
  1082
      | ex (Abs (_, T, t)) = P T orelse ex t
wenzelm@20531
  1083
      | ex (t $ u) = ex t orelse ex u;
wenzelm@20531
  1084
  in ex end;
wenzelm@20531
  1085
wenzelm@16943
  1086
fun exists_subterm P =
wenzelm@16943
  1087
  let
wenzelm@16943
  1088
    fun ex tm = P tm orelse
wenzelm@16943
  1089
      (case tm of
wenzelm@16943
  1090
        t $ u => ex t orelse ex u
wenzelm@16943
  1091
      | Abs (_, _, t) => ex t
wenzelm@16943
  1092
      | _ => false);
wenzelm@16943
  1093
  in ex end;
obua@16108
  1094
wenzelm@24671
  1095
fun has_abs (Abs _) = true
wenzelm@24671
  1096
  | has_abs (t $ u) = has_abs t orelse has_abs u
wenzelm@24671
  1097
  | has_abs _ = false;
wenzelm@24671
  1098
wenzelm@24671
  1099
wenzelm@19909
  1100
wenzelm@19909
  1101
(** Consts etc. **)
wenzelm@19909
  1102
wenzelm@19909
  1103
fun add_term_consts (Const (c, _), cs) = insert (op =) c cs
wenzelm@19909
  1104
  | add_term_consts (t $ u, cs) = add_term_consts (t, add_term_consts (u, cs))
wenzelm@19909
  1105
  | add_term_consts (Abs (_, _, t), cs) = add_term_consts (t, cs)
wenzelm@19909
  1106
  | add_term_consts (_, cs) = cs;
wenzelm@19909
  1107
wenzelm@19909
  1108
fun term_consts t = add_term_consts(t,[]);
wenzelm@19909
  1109
wenzelm@16943
  1110
fun exists_Const P = exists_subterm (fn Const c => P c | _ => false);
nipkow@4631
  1111
wenzelm@4017
  1112
clasohm@0
  1113
(** TFrees and TVars **)
clasohm@0
  1114
wenzelm@12802
  1115
(*Accumulates the names of Frees in the term, suppressing duplicates.*)
haftmann@20854
  1116
fun add_term_free_names (Free(a,_), bs) = insert (op =) a bs
wenzelm@12802
  1117
  | add_term_free_names (f$u, bs) = add_term_free_names (f, add_term_free_names(u, bs))
wenzelm@12802
  1118
  | add_term_free_names (Abs(_,_,t), bs) = add_term_free_names(t,bs)
wenzelm@12802
  1119
  | add_term_free_names (_, bs) = bs;
wenzelm@12802
  1120
clasohm@0
  1121
(*Accumulates the names in the term, suppressing duplicates.
clasohm@0
  1122
  Includes Frees and Consts.  For choosing unambiguous bound var names.*)
haftmann@20854
  1123
fun add_term_names (Const(a,_), bs) = insert (op =) (NameSpace.base a) bs
haftmann@20854
  1124
  | add_term_names (Free(a,_), bs) = insert (op =) a bs
clasohm@0
  1125
  | add_term_names (f$u, bs) = add_term_names (f, add_term_names(u, bs))
clasohm@0
  1126
  | add_term_names (Abs(_,_,t), bs) = add_term_names(t,bs)
clasohm@0
  1127
  | add_term_names (_, bs) = bs;
clasohm@0
  1128
clasohm@0
  1129
(*Accumulates the TVars in a type, suppressing duplicates. *)
wenzelm@23178
  1130
fun add_typ_tvars(Type(_,Ts),vs) = List.foldr add_typ_tvars vs Ts
clasohm@0
  1131
  | add_typ_tvars(TFree(_),vs) = vs
wenzelm@16294
  1132
  | add_typ_tvars(TVar(v),vs) = insert (op =) v vs;
clasohm@0
  1133
clasohm@0
  1134
(*Accumulates the TFrees in a type, suppressing duplicates. *)
wenzelm@23178
  1135
fun add_typ_tfree_names(Type(_,Ts),fs) = List.foldr add_typ_tfree_names fs Ts
haftmann@20854
  1136
  | add_typ_tfree_names(TFree(f,_),fs) = insert (op =) f fs
clasohm@0
  1137
  | add_typ_tfree_names(TVar(_),fs) = fs;
clasohm@0
  1138
wenzelm@23178
  1139
fun add_typ_tfrees(Type(_,Ts),fs) = List.foldr add_typ_tfrees fs Ts
wenzelm@16294
  1140
  | add_typ_tfrees(TFree(f),fs) = insert (op =) f fs
clasohm@0
  1141
  | add_typ_tfrees(TVar(_),fs) = fs;
clasohm@0
  1142
wenzelm@23178
  1143
fun add_typ_varnames(Type(_,Ts),nms) = List.foldr add_typ_varnames nms Ts
haftmann@20854
  1144
  | add_typ_varnames(TFree(nm,_),nms) = insert (op =) nm nms
haftmann@20854
  1145
  | add_typ_varnames(TVar((nm,_),_),nms) = insert (op =) nm nms;
nipkow@949
  1146
clasohm@0
  1147
(*Accumulates the TVars in a term, suppressing duplicates. *)
clasohm@0
  1148
val add_term_tvars = it_term_types add_typ_tvars;
clasohm@0
  1149
clasohm@0
  1150
(*Accumulates the TFrees in a term, suppressing duplicates. *)
clasohm@0
  1151
val add_term_tfrees = it_term_types add_typ_tfrees;
clasohm@0
  1152
val add_term_tfree_names = it_term_types add_typ_tfree_names;
clasohm@0
  1153
clasohm@0
  1154
(*Non-list versions*)
clasohm@0
  1155
fun typ_tfrees T = add_typ_tfrees(T,[]);
clasohm@0
  1156
fun typ_tvars T = add_typ_tvars(T,[]);
clasohm@0
  1157
fun term_tfrees t = add_term_tfrees(t,[]);
clasohm@0
  1158
fun term_tvars t = add_term_tvars(t,[]);
clasohm@0
  1159
nipkow@949
  1160
(*special code to enforce left-to-right collection of TVar-indexnames*)
nipkow@949
  1161
skalberg@15570
  1162
fun add_typ_ixns(ixns,Type(_,Ts)) = Library.foldl add_typ_ixns (ixns,Ts)
wenzelm@20082
  1163
  | add_typ_ixns(ixns,TVar(ixn,_)) = if member (op =) ixns ixn then ixns
wenzelm@9536
  1164
                                     else ixns@[ixn]
nipkow@949
  1165
  | add_typ_ixns(ixns,TFree(_)) = ixns;
nipkow@949
  1166
nipkow@949
  1167
fun add_term_tvar_ixns(Const(_,T),ixns) = add_typ_ixns(ixns,T)
nipkow@949
  1168
  | add_term_tvar_ixns(Free(_,T),ixns) = add_typ_ixns(ixns,T)
nipkow@949
  1169
  | add_term_tvar_ixns(Var(_,T),ixns) = add_typ_ixns(ixns,T)
nipkow@949
  1170
  | add_term_tvar_ixns(Bound _,ixns) = ixns
nipkow@949
  1171
  | add_term_tvar_ixns(Abs(_,T,t),ixns) =
nipkow@949
  1172
      add_term_tvar_ixns(t,add_typ_ixns(ixns,T))
nipkow@949
  1173
  | add_term_tvar_ixns(f$t,ixns) =
nipkow@949
  1174
      add_term_tvar_ixns(t,add_term_tvar_ixns(f,ixns));
nipkow@949
  1175
wenzelm@16537
  1176
clasohm@0
  1177
(** Frees and Vars **)
clasohm@0
  1178
clasohm@0
  1179
(*Accumulates the Vars in the term, suppressing duplicates*)
clasohm@0
  1180
fun add_term_vars (t, vars: term list) = case t of
wenzelm@16990
  1181
    Var   _ => OrdList.insert term_ord t vars
clasohm@0
  1182
  | Abs (_,_,body) => add_term_vars(body,vars)
clasohm@0
  1183
  | f$t =>  add_term_vars (f, add_term_vars(t, vars))
clasohm@0
  1184
  | _ => vars;
clasohm@0
  1185
clasohm@0
  1186
fun term_vars t = add_term_vars(t,[]);
clasohm@0
  1187
clasohm@0
  1188
(*Accumulates the Frees in the term, suppressing duplicates*)
clasohm@0
  1189
fun add_term_frees (t, frees: term list) = case t of
wenzelm@16990
  1190
    Free   _ => OrdList.insert term_ord t frees
clasohm@0
  1191
  | Abs (_,_,body) => add_term_frees(body,frees)
clasohm@0
  1192
  | f$t =>  add_term_frees (f, add_term_frees(t, frees))
clasohm@0
  1193
  | _ => frees;
clasohm@0
  1194
clasohm@0
  1195
fun term_frees t = add_term_frees(t,[]);
clasohm@0
  1196
wenzelm@20199
  1197
wenzelm@20199
  1198
(* dest abstraction *)
clasohm@0
  1199
wenzelm@16678
  1200
fun dest_abs (x, T, body) =
wenzelm@16678
  1201
  let
wenzelm@16678
  1202
    fun name_clash (Free (y, _)) = (x = y)
wenzelm@16678
  1203
      | name_clash (t $ u) = name_clash t orelse name_clash u
wenzelm@16678
  1204
      | name_clash (Abs (_, _, t)) = name_clash t
wenzelm@16678
  1205
      | name_clash _ = false;
wenzelm@16678
  1206
  in
wenzelm@16678
  1207
    if name_clash body then
wenzelm@20082
  1208
      dest_abs (Name.variant [x] x, T, body)    (*potentially slow, but rarely happens*)
wenzelm@16678
  1209
    else (x, subst_bound (Free (x, T), body))
wenzelm@16678
  1210
  end;
wenzelm@16678
  1211
wenzelm@20160
  1212
wenzelm@20160
  1213
(* renaming variables *)
clasohm@0
  1214
wenzelm@24762
  1215
val declare_typ_names = fold_atyps (fn TFree (a, _) => Name.declare a | _ => I);
wenzelm@24762
  1216
wenzelm@20239
  1217
fun declare_term_names tm =
wenzelm@20239
  1218
  fold_aterms
wenzelm@20239
  1219
    (fn Const (a, _) => Name.declare (NameSpace.base a)
wenzelm@20239
  1220
      | Free (a, _) => Name.declare a
wenzelm@20239
  1221
      | _ => I) tm #>
wenzelm@24762
  1222
  fold_types declare_typ_names tm;
wenzelm@20239
  1223
wenzelm@20160
  1224
fun variant_frees t frees =
wenzelm@20160
  1225
  fst (Name.variants (map fst frees) (declare_term_names t Name.context)) ~~ map snd frees;
wenzelm@20160
  1226
wenzelm@20160
  1227
fun rename_wrt_term t frees = rev (variant_frees t frees);  (*reversed result!*)
clasohm@1364
  1228
paulson@1417
  1229
wenzelm@9536
  1230
(* dummy patterns *)
wenzelm@9536
  1231
wenzelm@9536
  1232
val dummy_patternN = "dummy_pattern";
wenzelm@9536
  1233
wenzelm@18253
  1234
fun dummy_pattern T = Const (dummy_patternN, T);
wenzelm@18253
  1235
wenzelm@9536
  1236
fun is_dummy_pattern (Const ("dummy_pattern", _)) = true
wenzelm@9536
  1237
  | is_dummy_pattern _ = false;
wenzelm@9536
  1238
wenzelm@9536
  1239
fun no_dummy_patterns tm =
haftmann@16787
  1240
  if not (fold_aterms (fn t => fn b => b orelse is_dummy_pattern t) tm false) then tm
wenzelm@9536
  1241
  else raise TERM ("Illegal occurrence of '_' dummy pattern", [tm]);
wenzelm@9536
  1242
wenzelm@24733
  1243
fun free_dummy_patterns (Const ("dummy_pattern", T)) used =
wenzelm@24850
  1244
      let val [x] = Name.invents used Name.uu 1
wenzelm@24733
  1245
      in (Free (Name.internal x, T), Name.declare x used) end
wenzelm@24733
  1246
  | free_dummy_patterns (Abs (x, T, b)) used =
wenzelm@24733
  1247
      let val (b', used') = free_dummy_patterns b used
wenzelm@24733
  1248
      in (Abs (x, T, b'), used') end
wenzelm@24733
  1249
  | free_dummy_patterns (t $ u) used =
wenzelm@24733
  1250
      let
wenzelm@24733
  1251
        val (t', used') = free_dummy_patterns t used;
wenzelm@24733
  1252
        val (u', used'') = free_dummy_patterns u used';
wenzelm@24733
  1253
      in (t' $ u', used'') end
wenzelm@24733
  1254
  | free_dummy_patterns a used = (a, used);
wenzelm@24733
  1255
wenzelm@24762
  1256
fun replace_dummy Ts (Const ("dummy_pattern", T)) i =
wenzelm@24762
  1257
      (list_comb (Var (("_dummy_", i), Ts ---> T), map Bound (0 upto length Ts - 1)), i + 1)
wenzelm@24762
  1258
  | replace_dummy Ts (Abs (x, T, t)) i =
wenzelm@24762
  1259
      let val (t', i') = replace_dummy (T :: Ts) t i
wenzelm@24762
  1260
      in (Abs (x, T, t'), i') end
wenzelm@24762
  1261
  | replace_dummy Ts (t $ u) i =
wenzelm@24762
  1262
      let
wenzelm@24762
  1263
        val (t', i') = replace_dummy Ts t i;
wenzelm@24762
  1264
        val (u', i'') = replace_dummy Ts u i';
wenzelm@24762
  1265
      in (t' $ u', i'') end
wenzelm@24762
  1266
  | replace_dummy _ a i = (a, i);
wenzelm@11903
  1267
wenzelm@11903
  1268
val replace_dummy_patterns = replace_dummy [];
wenzelm@9536
  1269
wenzelm@10552
  1270
fun is_replaced_dummy_pattern ("_dummy_", _) = true
wenzelm@10552
  1271
  | is_replaced_dummy_pattern _ = false;
wenzelm@9536
  1272
wenzelm@16035
  1273
fun show_dummy_patterns (Var (("_dummy_", _), T)) = Const ("dummy_pattern", T)
wenzelm@16035
  1274
  | show_dummy_patterns (t $ u) = show_dummy_patterns t $ show_dummy_patterns u
wenzelm@16035
  1275
  | show_dummy_patterns (Abs (x, T, t)) = Abs (x, T, show_dummy_patterns t)
wenzelm@16035
  1276
  | show_dummy_patterns a = a;
wenzelm@16035
  1277
wenzelm@13484
  1278
wenzelm@20100
  1279
(* display variables *)
wenzelm@20100
  1280
wenzelm@15986
  1281
val show_question_marks = ref true;
berghofe@15472
  1282
wenzelm@14786
  1283
fun string_of_vname (x, i) =
wenzelm@14786
  1284
  let
wenzelm@15986
  1285
    val question_mark = if ! show_question_marks then "?" else "";
wenzelm@15986
  1286
    val idx = string_of_int i;
wenzelm@15986
  1287
    val dot =
wenzelm@15986
  1288
      (case rev (Symbol.explode x) of
wenzelm@15986
  1289
        _ :: "\\<^isub>" :: _ => false
wenzelm@15986
  1290
      | _ :: "\\<^isup>" :: _ => false
wenzelm@15986
  1291
      | c :: _ => Symbol.is_digit c
wenzelm@15986
  1292
      | _ => true);
wenzelm@14786
  1293
  in
wenzelm@15986
  1294
    if dot then question_mark ^ x ^ "." ^ idx
wenzelm@15986
  1295
    else if i <> 0 then question_mark ^ x ^ idx
wenzelm@15986
  1296
    else question_mark ^ x
wenzelm@14786
  1297
  end;
wenzelm@14786
  1298
wenzelm@14786
  1299
fun string_of_vname' (x, ~1) = x
wenzelm@14786
  1300
  | string_of_vname' xi = string_of_vname xi;
wenzelm@14786
  1301
clasohm@1364
  1302
end;
clasohm@1364
  1303
wenzelm@4444
  1304
structure BasicTerm: BASIC_TERM = Term;
wenzelm@4444
  1305
open BasicTerm;