src/HOL/Ring_and_Field.thy
author paulson
Fri Aug 24 14:21:33 2007 +0200 (2007-08-24)
changeset 24427 bc5cf3b09ff3
parent 24422 c0b5ff9e9e4d
child 24491 8d194c9198ae
permissions -rw-r--r--
revised blacklisting for ATP linkup
paulson@14265
     1
(*  Title:   HOL/Ring_and_Field.thy
paulson@14265
     2
    ID:      $Id$
nipkow@23477
     3
    Author:  Gertrud Bauer, Steven Obua, Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel,
avigad@16775
     4
             with contributions by Jeremy Avigad
paulson@14265
     5
*)
paulson@14265
     6
obua@14738
     7
header {* (Ordered) Rings and Fields *}
paulson@14265
     8
paulson@15229
     9
theory Ring_and_Field
nipkow@15140
    10
imports OrderedGroup
nipkow@15131
    11
begin
paulson@14504
    12
obua@14738
    13
text {*
obua@14738
    14
  The theory of partially ordered rings is taken from the books:
obua@14738
    15
  \begin{itemize}
obua@14738
    16
  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
obua@14738
    17
  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
obua@14738
    18
  \end{itemize}
obua@14738
    19
  Most of the used notions can also be looked up in 
obua@14738
    20
  \begin{itemize}
wenzelm@14770
    21
  \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
obua@14738
    22
  \item \emph{Algebra I} by van der Waerden, Springer.
obua@14738
    23
  \end{itemize}
obua@14738
    24
*}
paulson@14504
    25
haftmann@22390
    26
class semiring = ab_semigroup_add + semigroup_mult +
haftmann@22390
    27
  assumes left_distrib: "(a \<^loc>+ b) \<^loc>* c = a \<^loc>* c \<^loc>+ b \<^loc>* c"
haftmann@22390
    28
  assumes right_distrib: "a \<^loc>* (b \<^loc>+ c) = a \<^loc>* b \<^loc>+ a \<^loc>* c"
paulson@14504
    29
haftmann@22390
    30
class mult_zero = times + zero +
haftmann@22390
    31
  assumes mult_zero_left [simp]: "\<^loc>0 \<^loc>* a = \<^loc>0"
haftmann@22390
    32
  assumes mult_zero_right [simp]: "a \<^loc>* \<^loc>0 = \<^loc>0"
krauss@21199
    33
haftmann@22390
    34
class semiring_0 = semiring + comm_monoid_add + mult_zero
krauss@21199
    35
haftmann@22390
    36
class semiring_0_cancel = semiring + comm_monoid_add + cancel_ab_semigroup_add
paulson@14504
    37
krauss@21199
    38
instance semiring_0_cancel \<subseteq> semiring_0
krauss@21199
    39
proof
krauss@21199
    40
  fix a :: 'a
krauss@21199
    41
  have "0 * a + 0 * a = 0 * a + 0"
krauss@21199
    42
    by (simp add: left_distrib [symmetric])
krauss@21199
    43
  thus "0 * a = 0"
krauss@21199
    44
    by (simp only: add_left_cancel)
krauss@21199
    45
krauss@21199
    46
  have "a * 0 + a * 0 = a * 0 + 0"
krauss@21199
    47
    by (simp add: right_distrib [symmetric])
krauss@21199
    48
  thus "a * 0 = 0"
krauss@21199
    49
    by (simp only: add_left_cancel)
krauss@21199
    50
qed
obua@14940
    51
haftmann@22390
    52
class comm_semiring = ab_semigroup_add + ab_semigroup_mult +
haftmann@22390
    53
  assumes distrib: "(a \<^loc>+ b) \<^loc>* c = a \<^loc>* c \<^loc>+ b \<^loc>* c"
paulson@14504
    54
obua@14738
    55
instance comm_semiring \<subseteq> semiring
obua@14738
    56
proof
obua@14738
    57
  fix a b c :: 'a
obua@14738
    58
  show "(a + b) * c = a * c + b * c" by (simp add: distrib)
obua@14738
    59
  have "a * (b + c) = (b + c) * a" by (simp add: mult_ac)
obua@14738
    60
  also have "... = b * a + c * a" by (simp only: distrib)
obua@14738
    61
  also have "... = a * b + a * c" by (simp add: mult_ac)
obua@14738
    62
  finally show "a * (b + c) = a * b + a * c" by blast
paulson@14504
    63
qed
paulson@14504
    64
haftmann@22390
    65
class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero
paulson@14504
    66
obua@14738
    67
instance comm_semiring_0 \<subseteq> semiring_0 ..
paulson@14504
    68
haftmann@22390
    69
class comm_semiring_0_cancel = comm_semiring + comm_monoid_add + cancel_ab_semigroup_add
obua@14940
    70
obua@14940
    71
instance comm_semiring_0_cancel \<subseteq> semiring_0_cancel ..
obua@14940
    72
krauss@21199
    73
instance comm_semiring_0_cancel \<subseteq> comm_semiring_0 ..
krauss@21199
    74
haftmann@22390
    75
class zero_neq_one = zero + one +
haftmann@22390
    76
  assumes zero_neq_one [simp]: "\<^loc>0 \<noteq> \<^loc>1"
paulson@14265
    77
haftmann@22390
    78
class semiring_1 = zero_neq_one + semiring_0 + monoid_mult
paulson@14504
    79
haftmann@22390
    80
class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult
haftmann@22390
    81
  (*previously almost_semiring*)
obua@14738
    82
obua@14738
    83
instance comm_semiring_1 \<subseteq> semiring_1 ..
paulson@14421
    84
haftmann@22390
    85
class no_zero_divisors = zero + times +
haftmann@22390
    86
  assumes no_zero_divisors: "a \<noteq> \<^loc>0 \<Longrightarrow> b \<noteq> \<^loc>0 \<Longrightarrow> a \<^loc>* b \<noteq> \<^loc>0"
paulson@14504
    87
haftmann@22390
    88
class semiring_1_cancel = semiring + comm_monoid_add + zero_neq_one
haftmann@22390
    89
  + cancel_ab_semigroup_add + monoid_mult
obua@14940
    90
obua@14940
    91
instance semiring_1_cancel \<subseteq> semiring_0_cancel ..
obua@14940
    92
krauss@21199
    93
instance semiring_1_cancel \<subseteq> semiring_1 ..
krauss@21199
    94
haftmann@22390
    95
class comm_semiring_1_cancel = comm_semiring + comm_monoid_add + comm_monoid_mult
haftmann@22390
    96
  + zero_neq_one + cancel_ab_semigroup_add
obua@14738
    97
obua@14940
    98
instance comm_semiring_1_cancel \<subseteq> semiring_1_cancel ..
obua@14940
    99
obua@14940
   100
instance comm_semiring_1_cancel \<subseteq> comm_semiring_0_cancel ..
obua@14940
   101
krauss@21199
   102
instance comm_semiring_1_cancel \<subseteq> comm_semiring_1 ..
krauss@21199
   103
haftmann@22390
   104
class ring = semiring + ab_group_add
obua@14738
   105
obua@14940
   106
instance ring \<subseteq> semiring_0_cancel ..
paulson@14504
   107
haftmann@22390
   108
class comm_ring = comm_semiring + ab_group_add
obua@14738
   109
obua@14738
   110
instance comm_ring \<subseteq> ring ..
paulson@14504
   111
obua@14940
   112
instance comm_ring \<subseteq> comm_semiring_0_cancel ..
obua@14738
   113
haftmann@22390
   114
class ring_1 = ring + zero_neq_one + monoid_mult
paulson@14265
   115
obua@14940
   116
instance ring_1 \<subseteq> semiring_1_cancel ..
obua@14940
   117
haftmann@22390
   118
class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult
haftmann@22390
   119
  (*previously ring*)
obua@14738
   120
obua@14738
   121
instance comm_ring_1 \<subseteq> ring_1 ..
paulson@14421
   122
obua@14738
   123
instance comm_ring_1 \<subseteq> comm_semiring_1_cancel ..
paulson@14265
   124
huffman@22990
   125
class ring_no_zero_divisors = ring + no_zero_divisors
huffman@22990
   126
huffman@23544
   127
class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors
huffman@22990
   128
haftmann@22390
   129
class idom = comm_ring_1 + no_zero_divisors
paulson@14421
   130
huffman@23544
   131
instance idom \<subseteq> ring_1_no_zero_divisors ..
huffman@22990
   132
haftmann@22390
   133
class division_ring = ring_1 + inverse +
haftmann@22390
   134
  assumes left_inverse [simp]:  "a \<noteq> \<^loc>0 \<Longrightarrow> inverse a \<^loc>* a = \<^loc>1"
haftmann@22390
   135
  assumes right_inverse [simp]: "a \<noteq> \<^loc>0 \<Longrightarrow> a \<^loc>* inverse a = \<^loc>1"
huffman@20496
   136
huffman@23544
   137
instance division_ring \<subseteq> ring_1_no_zero_divisors
huffman@22987
   138
proof
huffman@22987
   139
  fix a b :: 'a
huffman@22987
   140
  assume a: "a \<noteq> 0" and b: "b \<noteq> 0"
huffman@22987
   141
  show "a * b \<noteq> 0"
huffman@22987
   142
  proof
huffman@22987
   143
    assume ab: "a * b = 0"
huffman@22987
   144
    hence "0 = inverse a * (a * b) * inverse b"
huffman@22987
   145
      by simp
huffman@22987
   146
    also have "\<dots> = (inverse a * a) * (b * inverse b)"
huffman@22987
   147
      by (simp only: mult_assoc)
huffman@22987
   148
    also have "\<dots> = 1"
huffman@22987
   149
      using a b by simp
huffman@22987
   150
    finally show False
huffman@22987
   151
      by simp
huffman@22987
   152
  qed
huffman@22987
   153
qed
huffman@20496
   154
huffman@22987
   155
class field = comm_ring_1 + inverse +
huffman@22987
   156
  assumes field_inverse:  "a \<noteq> 0 \<Longrightarrow> inverse a \<^loc>* a = \<^loc>1"
huffman@22987
   157
  assumes divide_inverse: "a \<^loc>/ b = a \<^loc>* inverse b"
huffman@20496
   158
huffman@20496
   159
instance field \<subseteq> division_ring
huffman@22987
   160
proof
huffman@22987
   161
  fix a :: 'a
huffman@22987
   162
  assume "a \<noteq> 0"
huffman@22987
   163
  thus "inverse a * a = 1" by (rule field_inverse)
huffman@22987
   164
  thus "a * inverse a = 1" by (simp only: mult_commute)
obua@14738
   165
qed
obua@14738
   166
huffman@22987
   167
instance field \<subseteq> idom ..
huffman@20496
   168
haftmann@22390
   169
class division_by_zero = zero + inverse +
haftmann@22390
   170
  assumes inverse_zero [simp]: "inverse \<^loc>0 = \<^loc>0"
paulson@14265
   171
wenzelm@23389
   172
paulson@14265
   173
subsection {* Distribution rules *}
paulson@14265
   174
paulson@14272
   175
text{*For the @{text combine_numerals} simproc*}
paulson@14421
   176
lemma combine_common_factor:
obua@14738
   177
     "a*e + (b*e + c) = (a+b)*e + (c::'a::semiring)"
paulson@14272
   178
by (simp add: left_distrib add_ac)
paulson@14272
   179
paulson@14265
   180
lemma minus_mult_left: "- (a * b) = (-a) * (b::'a::ring)"
paulson@14265
   181
apply (rule equals_zero_I)
paulson@14265
   182
apply (simp add: left_distrib [symmetric]) 
paulson@14265
   183
done
paulson@14265
   184
paulson@14265
   185
lemma minus_mult_right: "- (a * b) = a * -(b::'a::ring)"
paulson@14265
   186
apply (rule equals_zero_I)
paulson@14265
   187
apply (simp add: right_distrib [symmetric]) 
paulson@14265
   188
done
paulson@14265
   189
paulson@14268
   190
lemma minus_mult_minus [simp]: "(- a) * (- b) = a * (b::'a::ring)"
paulson@14268
   191
  by (simp add: minus_mult_left [symmetric] minus_mult_right [symmetric])
paulson@14268
   192
paulson@14365
   193
lemma minus_mult_commute: "(- a) * b = a * (- b::'a::ring)"
paulson@14365
   194
  by (simp add: minus_mult_left [symmetric] minus_mult_right [symmetric])
paulson@14365
   195
paulson@14265
   196
lemma right_diff_distrib: "a * (b - c) = a * b - a * (c::'a::ring)"
paulson@14265
   197
by (simp add: right_distrib diff_minus 
paulson@14265
   198
              minus_mult_left [symmetric] minus_mult_right [symmetric]) 
paulson@14265
   199
paulson@14272
   200
lemma left_diff_distrib: "(a - b) * c = a * c - b * (c::'a::ring)"
obua@14738
   201
by (simp add: left_distrib diff_minus 
obua@14738
   202
              minus_mult_left [symmetric] minus_mult_right [symmetric]) 
paulson@14265
   203
nipkow@23477
   204
lemmas ring_distribs =
nipkow@23477
   205
  right_distrib left_distrib left_diff_distrib right_diff_distrib
nipkow@23477
   206
nipkow@23477
   207
text{*This list of rewrites simplifies ring terms by multiplying
nipkow@23477
   208
everything out and bringing sums and products into a canonical form
nipkow@23477
   209
(by ordered rewriting). As a result it decides ring equalities but
nipkow@23477
   210
also helps with inequalities. *}
nipkow@23477
   211
lemmas ring_simps = group_simps ring_distribs
nipkow@23477
   212
haftmann@22390
   213
class mult_mono = times + zero + ord +
haftmann@22390
   214
  assumes mult_left_mono: "a \<sqsubseteq> b \<Longrightarrow> \<^loc>0 \<sqsubseteq> c \<Longrightarrow> c \<^loc>* a \<sqsubseteq> c \<^loc>* b"
haftmann@22390
   215
  assumes mult_right_mono: "a \<sqsubseteq> b \<Longrightarrow> \<^loc>0 \<sqsubseteq> c \<Longrightarrow> a \<^loc>* c \<sqsubseteq> b \<^loc>* c"
paulson@14267
   216
haftmann@22390
   217
class pordered_semiring = mult_mono + semiring_0 + pordered_ab_semigroup_add 
krauss@21199
   218
haftmann@22390
   219
class pordered_cancel_semiring = mult_mono + pordered_ab_semigroup_add
huffman@22987
   220
  + semiring + comm_monoid_add + cancel_ab_semigroup_add
paulson@14268
   221
obua@14940
   222
instance pordered_cancel_semiring \<subseteq> semiring_0_cancel ..
obua@14940
   223
krauss@21199
   224
instance pordered_cancel_semiring \<subseteq> pordered_semiring .. 
krauss@21199
   225
obua@23521
   226
class ordered_semiring = semiring + comm_monoid_add + ordered_cancel_ab_semigroup_add + mult_mono
obua@23521
   227
obua@23521
   228
instance ordered_semiring \<subseteq> pordered_cancel_semiring ..
obua@23521
   229
haftmann@22390
   230
class ordered_semiring_strict = semiring + comm_monoid_add + ordered_cancel_ab_semigroup_add +
haftmann@22390
   231
  assumes mult_strict_left_mono: "a \<sqsubset> b \<Longrightarrow> \<^loc>0 \<sqsubset> c \<Longrightarrow> c \<^loc>* a \<sqsubset> c \<^loc>* b"
haftmann@22390
   232
  assumes mult_strict_right_mono: "a \<sqsubset> b \<Longrightarrow> \<^loc>0 \<sqsubset> c \<Longrightarrow> a \<^loc>* c \<sqsubset> b \<^loc>* c"
paulson@14341
   233
obua@14940
   234
instance ordered_semiring_strict \<subseteq> semiring_0_cancel ..
obua@14940
   235
obua@23521
   236
instance ordered_semiring_strict \<subseteq> ordered_semiring
huffman@23550
   237
proof
huffman@23550
   238
  fix a b c :: 'a
huffman@23550
   239
  assume A: "a \<le> b" "0 \<le> c"
huffman@23550
   240
  from A show "c * a \<le> c * b"
huffman@23550
   241
    unfolding order_le_less
huffman@23550
   242
    using mult_strict_left_mono by auto
huffman@23550
   243
  from A show "a * c \<le> b * c"
huffman@23550
   244
    unfolding order_le_less
huffman@23550
   245
    using mult_strict_right_mono by auto
huffman@23550
   246
qed
paulson@14270
   247
haftmann@22390
   248
class mult_mono1 = times + zero + ord +
haftmann@22390
   249
  assumes mult_mono: "a \<sqsubseteq> b \<Longrightarrow> \<^loc>0 \<sqsubseteq> c \<Longrightarrow> c \<^loc>* a \<sqsubseteq> c \<^loc>* b"
paulson@14270
   250
haftmann@22390
   251
class pordered_comm_semiring = comm_semiring_0
haftmann@22390
   252
  + pordered_ab_semigroup_add + mult_mono1
paulson@14270
   253
haftmann@22390
   254
class pordered_cancel_comm_semiring = comm_semiring_0_cancel
haftmann@22390
   255
  + pordered_ab_semigroup_add + mult_mono1
krauss@21199
   256
  
obua@14738
   257
instance pordered_cancel_comm_semiring \<subseteq> pordered_comm_semiring ..
paulson@14270
   258
haftmann@22390
   259
class ordered_comm_semiring_strict = comm_semiring_0 + ordered_cancel_ab_semigroup_add +
haftmann@22390
   260
  assumes mult_strict_mono: "a \<sqsubset> b \<Longrightarrow> \<^loc>0 \<sqsubset> c \<Longrightarrow> c \<^loc>* a \<sqsubset> c \<^loc>* b"
paulson@14265
   261
obua@14738
   262
instance pordered_comm_semiring \<subseteq> pordered_semiring
krauss@21199
   263
proof
krauss@21199
   264
  fix a b c :: 'a
huffman@23550
   265
  assume "a \<le> b" "0 \<le> c"
huffman@23550
   266
  thus "c * a \<le> c * b" by (rule mult_mono)
huffman@23550
   267
  thus "a * c \<le> b * c" by (simp only: mult_commute)
krauss@21199
   268
qed
paulson@14265
   269
obua@14738
   270
instance pordered_cancel_comm_semiring \<subseteq> pordered_cancel_semiring ..
paulson@14265
   271
obua@14738
   272
instance ordered_comm_semiring_strict \<subseteq> ordered_semiring_strict
huffman@23550
   273
proof
huffman@23550
   274
  fix a b c :: 'a
huffman@23550
   275
  assume "a < b" "0 < c"
huffman@23550
   276
  thus "c * a < c * b" by (rule mult_strict_mono)
huffman@23550
   277
  thus "a * c < b * c" by (simp only: mult_commute)
huffman@23550
   278
qed
paulson@14272
   279
obua@14738
   280
instance ordered_comm_semiring_strict \<subseteq> pordered_cancel_comm_semiring
huffman@23550
   281
proof
huffman@23550
   282
  fix a b c :: 'a
huffman@23550
   283
  assume "a \<le> b" "0 \<le> c"
huffman@23550
   284
  thus "c * a \<le> c * b"
huffman@23550
   285
    unfolding order_le_less
huffman@23550
   286
    using mult_strict_mono by auto
huffman@23550
   287
qed
paulson@14272
   288
haftmann@22390
   289
class pordered_ring = ring + pordered_cancel_semiring 
paulson@14270
   290
obua@14738
   291
instance pordered_ring \<subseteq> pordered_ab_group_add ..
paulson@14270
   292
haftmann@22452
   293
class lordered_ring = pordered_ring + lordered_ab_group_abs
paulson@14270
   294
obua@14940
   295
instance lordered_ring \<subseteq> lordered_ab_group_meet ..
obua@14940
   296
obua@14940
   297
instance lordered_ring \<subseteq> lordered_ab_group_join ..
obua@14940
   298
haftmann@23879
   299
class abs_if = minus + ord + zero + abs +
haftmann@22390
   300
  assumes abs_if: "abs a = (if a \<sqsubset> 0 then (uminus a) else a)"
paulson@14270
   301
obua@23521
   302
(* The "strict" suffix can be seen as describing the combination of ordered_ring and no_zero_divisors.
obua@23521
   303
   Basically, ordered_ring + no_zero_divisors = ordered_ring_strict.
obua@23521
   304
 *)
obua@23521
   305
class ordered_ring = ring + ordered_semiring + lordered_ab_group + abs_if
paulson@14270
   306
huffman@23550
   307
instance ordered_ring \<subseteq> lordered_ring
huffman@23550
   308
proof
huffman@23550
   309
  fix x :: 'a
huffman@23550
   310
  show "\<bar>x\<bar> = sup x (- x)"
huffman@23550
   311
    by (simp only: abs_if sup_eq_if)
huffman@23550
   312
qed
obua@23521
   313
obua@23521
   314
class ordered_ring_strict = ring + ordered_semiring_strict + lordered_ab_group + abs_if
obua@23521
   315
obua@23521
   316
instance ordered_ring_strict \<subseteq> ordered_ring ..
paulson@14270
   317
haftmann@22390
   318
class pordered_comm_ring = comm_ring + pordered_comm_semiring
paulson@14270
   319
huffman@23527
   320
instance pordered_comm_ring \<subseteq> pordered_ring ..
huffman@23527
   321
huffman@23073
   322
instance pordered_comm_ring \<subseteq> pordered_cancel_comm_semiring ..
huffman@23073
   323
haftmann@22390
   324
class ordered_semidom = comm_semiring_1_cancel + ordered_comm_semiring_strict +
haftmann@22390
   325
  (*previously ordered_semiring*)
haftmann@22390
   326
  assumes zero_less_one [simp]: "\<^loc>0 \<sqsubset> \<^loc>1"
paulson@14270
   327
haftmann@24422
   328
lemma pos_add_strict:
haftmann@24422
   329
  fixes a b c :: "'a\<Colon>ordered_semidom"
haftmann@24422
   330
  shows "0 < a \<Longrightarrow> b < c \<Longrightarrow> b < a + c"
haftmann@24422
   331
  using add_strict_mono [of 0 a b c] by simp
haftmann@24422
   332
obua@23521
   333
class ordered_idom = comm_ring_1 + ordered_comm_semiring_strict + lordered_ab_group + abs_if
haftmann@22390
   334
  (*previously ordered_ring*)
paulson@14270
   335
obua@14738
   336
instance ordered_idom \<subseteq> ordered_ring_strict ..
paulson@14272
   337
huffman@23073
   338
instance ordered_idom \<subseteq> pordered_comm_ring ..
huffman@23073
   339
haftmann@22390
   340
class ordered_field = field + ordered_idom
paulson@14272
   341
nipkow@15923
   342
lemmas linorder_neqE_ordered_idom =
nipkow@15923
   343
 linorder_neqE[where 'a = "?'b::ordered_idom"]
nipkow@15923
   344
paulson@14272
   345
lemma eq_add_iff1:
nipkow@23477
   346
  "(a*e + c = b*e + d) = ((a-b)*e + c = (d::'a::ring))"
nipkow@23477
   347
by (simp add: ring_simps)
paulson@14272
   348
paulson@14272
   349
lemma eq_add_iff2:
nipkow@23477
   350
  "(a*e + c = b*e + d) = (c = (b-a)*e + (d::'a::ring))"
nipkow@23477
   351
by (simp add: ring_simps)
paulson@14272
   352
paulson@14272
   353
lemma less_add_iff1:
nipkow@23477
   354
  "(a*e + c < b*e + d) = ((a-b)*e + c < (d::'a::pordered_ring))"
nipkow@23477
   355
by (simp add: ring_simps)
paulson@14272
   356
paulson@14272
   357
lemma less_add_iff2:
nipkow@23477
   358
  "(a*e + c < b*e + d) = (c < (b-a)*e + (d::'a::pordered_ring))"
nipkow@23477
   359
by (simp add: ring_simps)
paulson@14272
   360
paulson@14272
   361
lemma le_add_iff1:
nipkow@23477
   362
  "(a*e + c \<le> b*e + d) = ((a-b)*e + c \<le> (d::'a::pordered_ring))"
nipkow@23477
   363
by (simp add: ring_simps)
paulson@14272
   364
paulson@14272
   365
lemma le_add_iff2:
nipkow@23477
   366
  "(a*e + c \<le> b*e + d) = (c \<le> (b-a)*e + (d::'a::pordered_ring))"
nipkow@23477
   367
by (simp add: ring_simps)
paulson@14272
   368
wenzelm@23389
   369
paulson@14270
   370
subsection {* Ordering Rules for Multiplication *}
paulson@14270
   371
paulson@14348
   372
lemma mult_left_le_imp_le:
nipkow@23477
   373
  "[|c*a \<le> c*b; 0 < c|] ==> a \<le> (b::'a::ordered_semiring_strict)"
nipkow@23477
   374
by (force simp add: mult_strict_left_mono linorder_not_less [symmetric])
paulson@14348
   375
 
paulson@14348
   376
lemma mult_right_le_imp_le:
nipkow@23477
   377
  "[|a*c \<le> b*c; 0 < c|] ==> a \<le> (b::'a::ordered_semiring_strict)"
nipkow@23477
   378
by (force simp add: mult_strict_right_mono linorder_not_less [symmetric])
paulson@14348
   379
paulson@14348
   380
lemma mult_left_less_imp_less:
obua@23521
   381
  "[|c*a < c*b; 0 \<le> c|] ==> a < (b::'a::ordered_semiring)"
nipkow@23477
   382
by (force simp add: mult_left_mono linorder_not_le [symmetric])
paulson@14348
   383
 
paulson@14348
   384
lemma mult_right_less_imp_less:
obua@23521
   385
  "[|a*c < b*c; 0 \<le> c|] ==> a < (b::'a::ordered_semiring)"
nipkow@23477
   386
by (force simp add: mult_right_mono linorder_not_le [symmetric])
paulson@14348
   387
paulson@14265
   388
lemma mult_strict_left_mono_neg:
nipkow@23477
   389
  "[|b < a; c < 0|] ==> c * a < c * (b::'a::ordered_ring_strict)"
paulson@14265
   390
apply (drule mult_strict_left_mono [of _ _ "-c"])
paulson@14265
   391
apply (simp_all add: minus_mult_left [symmetric]) 
paulson@14265
   392
done
paulson@14265
   393
obua@14738
   394
lemma mult_left_mono_neg:
nipkow@23477
   395
  "[|b \<le> a; c \<le> 0|] ==> c * a \<le>  c * (b::'a::pordered_ring)"
obua@14738
   396
apply (drule mult_left_mono [of _ _ "-c"])
obua@14738
   397
apply (simp_all add: minus_mult_left [symmetric]) 
obua@14738
   398
done
obua@14738
   399
paulson@14265
   400
lemma mult_strict_right_mono_neg:
nipkow@23477
   401
  "[|b < a; c < 0|] ==> a * c < b * (c::'a::ordered_ring_strict)"
paulson@14265
   402
apply (drule mult_strict_right_mono [of _ _ "-c"])
paulson@14265
   403
apply (simp_all add: minus_mult_right [symmetric]) 
paulson@14265
   404
done
paulson@14265
   405
obua@14738
   406
lemma mult_right_mono_neg:
nipkow@23477
   407
  "[|b \<le> a; c \<le> 0|] ==> a * c \<le>  (b::'a::pordered_ring) * c"
obua@14738
   408
apply (drule mult_right_mono [of _ _ "-c"])
obua@14738
   409
apply (simp)
obua@14738
   410
apply (simp_all add: minus_mult_right [symmetric]) 
obua@14738
   411
done
paulson@14265
   412
wenzelm@23389
   413
paulson@14265
   414
subsection{* Products of Signs *}
paulson@14265
   415
avigad@16775
   416
lemma mult_pos_pos: "[| (0::'a::ordered_semiring_strict) < a; 0 < b |] ==> 0 < a*b"
paulson@14265
   417
by (drule mult_strict_left_mono [of 0 b], auto)
paulson@14265
   418
avigad@16775
   419
lemma mult_nonneg_nonneg: "[| (0::'a::pordered_cancel_semiring) \<le> a; 0 \<le> b |] ==> 0 \<le> a*b"
obua@14738
   420
by (drule mult_left_mono [of 0 b], auto)
obua@14738
   421
obua@14738
   422
lemma mult_pos_neg: "[| (0::'a::ordered_semiring_strict) < a; b < 0 |] ==> a*b < 0"
paulson@14265
   423
by (drule mult_strict_left_mono [of b 0], auto)
paulson@14265
   424
avigad@16775
   425
lemma mult_nonneg_nonpos: "[| (0::'a::pordered_cancel_semiring) \<le> a; b \<le> 0 |] ==> a*b \<le> 0"
obua@14738
   426
by (drule mult_left_mono [of b 0], auto)
obua@14738
   427
obua@14738
   428
lemma mult_pos_neg2: "[| (0::'a::ordered_semiring_strict) < a; b < 0 |] ==> b*a < 0" 
obua@14738
   429
by (drule mult_strict_right_mono[of b 0], auto)
obua@14738
   430
avigad@16775
   431
lemma mult_nonneg_nonpos2: "[| (0::'a::pordered_cancel_semiring) \<le> a; b \<le> 0 |] ==> b*a \<le> 0" 
obua@14738
   432
by (drule mult_right_mono[of b 0], auto)
obua@14738
   433
avigad@16775
   434
lemma mult_neg_neg: "[| a < (0::'a::ordered_ring_strict); b < 0 |] ==> 0 < a*b"
paulson@14265
   435
by (drule mult_strict_right_mono_neg, auto)
paulson@14265
   436
avigad@16775
   437
lemma mult_nonpos_nonpos: "[| a \<le> (0::'a::pordered_ring); b \<le> 0 |] ==> 0 \<le> a*b"
obua@14738
   438
by (drule mult_right_mono_neg[of a 0 b ], auto)
obua@14738
   439
paulson@14341
   440
lemma zero_less_mult_pos:
obua@14738
   441
     "[| 0 < a*b; 0 < a|] ==> 0 < (b::'a::ordered_semiring_strict)"
haftmann@21328
   442
apply (cases "b\<le>0") 
paulson@14265
   443
 apply (auto simp add: order_le_less linorder_not_less)
paulson@14265
   444
apply (drule_tac mult_pos_neg [of a b]) 
paulson@14265
   445
 apply (auto dest: order_less_not_sym)
paulson@14265
   446
done
paulson@14265
   447
obua@14738
   448
lemma zero_less_mult_pos2:
obua@14738
   449
     "[| 0 < b*a; 0 < a|] ==> 0 < (b::'a::ordered_semiring_strict)"
haftmann@21328
   450
apply (cases "b\<le>0") 
obua@14738
   451
 apply (auto simp add: order_le_less linorder_not_less)
obua@14738
   452
apply (drule_tac mult_pos_neg2 [of a b]) 
obua@14738
   453
 apply (auto dest: order_less_not_sym)
obua@14738
   454
done
obua@14738
   455
paulson@14265
   456
lemma zero_less_mult_iff:
obua@14738
   457
     "((0::'a::ordered_ring_strict) < a*b) = (0 < a & 0 < b | a < 0 & b < 0)"
avigad@16775
   458
apply (auto simp add: order_le_less linorder_not_less mult_pos_pos 
avigad@16775
   459
  mult_neg_neg)
paulson@14265
   460
apply (blast dest: zero_less_mult_pos) 
obua@14738
   461
apply (blast dest: zero_less_mult_pos2)
paulson@14265
   462
done
paulson@14265
   463
huffman@22990
   464
lemma mult_eq_0_iff [simp]:
huffman@22990
   465
  fixes a b :: "'a::ring_no_zero_divisors"
huffman@22990
   466
  shows "(a * b = 0) = (a = 0 \<or> b = 0)"
huffman@22990
   467
by (cases "a = 0 \<or> b = 0", auto dest: no_zero_divisors)
huffman@22990
   468
huffman@22990
   469
instance ordered_ring_strict \<subseteq> ring_no_zero_divisors
huffman@22990
   470
apply intro_classes
paulson@14265
   471
apply (auto simp add: linorder_not_less order_le_less linorder_neq_iff)
paulson@14265
   472
apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono)+
paulson@14265
   473
done
paulson@14265
   474
paulson@14265
   475
lemma zero_le_mult_iff:
obua@14738
   476
     "((0::'a::ordered_ring_strict) \<le> a*b) = (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
paulson@14265
   477
by (auto simp add: eq_commute [of 0] order_le_less linorder_not_less
paulson@14265
   478
                   zero_less_mult_iff)
paulson@14265
   479
paulson@14265
   480
lemma mult_less_0_iff:
obua@14738
   481
     "(a*b < (0::'a::ordered_ring_strict)) = (0 < a & b < 0 | a < 0 & 0 < b)"
paulson@14265
   482
apply (insert zero_less_mult_iff [of "-a" b]) 
paulson@14265
   483
apply (force simp add: minus_mult_left[symmetric]) 
paulson@14265
   484
done
paulson@14265
   485
paulson@14265
   486
lemma mult_le_0_iff:
obua@14738
   487
     "(a*b \<le> (0::'a::ordered_ring_strict)) = (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
paulson@14265
   488
apply (insert zero_le_mult_iff [of "-a" b]) 
paulson@14265
   489
apply (force simp add: minus_mult_left[symmetric]) 
paulson@14265
   490
done
paulson@14265
   491
obua@14738
   492
lemma split_mult_pos_le: "(0 \<le> a & 0 \<le> b) | (a \<le> 0 & b \<le> 0) \<Longrightarrow> 0 \<le> a * (b::_::pordered_ring)"
avigad@16775
   493
by (auto simp add: mult_nonneg_nonneg mult_nonpos_nonpos)
obua@14738
   494
obua@14738
   495
lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> (0::_::pordered_cancel_semiring)" 
avigad@16775
   496
by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)
obua@14738
   497
obua@23095
   498
lemma zero_le_square[simp]: "(0::'a::ordered_ring_strict) \<le> a*a"
obua@23095
   499
by (simp add: zero_le_mult_iff linorder_linear)
obua@23095
   500
obua@23095
   501
lemma not_square_less_zero[simp]: "\<not> (a * a < (0::'a::ordered_ring_strict))"
obua@23095
   502
by (simp add: not_less)
paulson@14265
   503
obua@14738
   504
text{*Proving axiom @{text zero_less_one} makes all @{text ordered_semidom}
obua@14738
   505
      theorems available to members of @{term ordered_idom} *}
obua@14738
   506
obua@14738
   507
instance ordered_idom \<subseteq> ordered_semidom
paulson@14421
   508
proof
paulson@14421
   509
  have "(0::'a) \<le> 1*1" by (rule zero_le_square)
paulson@14430
   510
  thus "(0::'a) < 1" by (simp add: order_le_less) 
paulson@14421
   511
qed
paulson@14421
   512
obua@14738
   513
instance ordered_idom \<subseteq> idom ..
obua@14738
   514
paulson@14387
   515
text{*All three types of comparision involving 0 and 1 are covered.*}
paulson@14387
   516
paulson@17085
   517
lemmas one_neq_zero = zero_neq_one [THEN not_sym]
paulson@17085
   518
declare one_neq_zero [simp]
paulson@14387
   519
obua@14738
   520
lemma zero_le_one [simp]: "(0::'a::ordered_semidom) \<le> 1"
paulson@14268
   521
  by (rule zero_less_one [THEN order_less_imp_le]) 
paulson@14268
   522
obua@14738
   523
lemma not_one_le_zero [simp]: "~ (1::'a::ordered_semidom) \<le> 0"
obua@14738
   524
by (simp add: linorder_not_le) 
paulson@14387
   525
obua@14738
   526
lemma not_one_less_zero [simp]: "~ (1::'a::ordered_semidom) < 0"
obua@14738
   527
by (simp add: linorder_not_less) 
paulson@14268
   528
wenzelm@23389
   529
paulson@14268
   530
subsection{*More Monotonicity*}
paulson@14268
   531
paulson@14268
   532
text{*Strict monotonicity in both arguments*}
paulson@14268
   533
lemma mult_strict_mono:
obua@14738
   534
     "[|a<b; c<d; 0<b; 0\<le>c|] ==> a * c < b * (d::'a::ordered_semiring_strict)"
haftmann@21328
   535
apply (cases "c=0")
avigad@16775
   536
 apply (simp add: mult_pos_pos) 
paulson@14268
   537
apply (erule mult_strict_right_mono [THEN order_less_trans])
paulson@14268
   538
 apply (force simp add: order_le_less) 
paulson@14268
   539
apply (erule mult_strict_left_mono, assumption)
paulson@14268
   540
done
paulson@14268
   541
paulson@14268
   542
text{*This weaker variant has more natural premises*}
paulson@14268
   543
lemma mult_strict_mono':
obua@14738
   544
     "[| a<b; c<d; 0 \<le> a; 0 \<le> c|] ==> a * c < b * (d::'a::ordered_semiring_strict)"
paulson@14268
   545
apply (rule mult_strict_mono)
paulson@14268
   546
apply (blast intro: order_le_less_trans)+
paulson@14268
   547
done
paulson@14268
   548
paulson@14268
   549
lemma mult_mono:
paulson@14268
   550
     "[|a \<le> b; c \<le> d; 0 \<le> b; 0 \<le> c|] 
obua@14738
   551
      ==> a * c  \<le>  b * (d::'a::pordered_semiring)"
paulson@14268
   552
apply (erule mult_right_mono [THEN order_trans], assumption)
paulson@14268
   553
apply (erule mult_left_mono, assumption)
paulson@14268
   554
done
paulson@14268
   555
huffman@21258
   556
lemma mult_mono':
huffman@21258
   557
     "[|a \<le> b; c \<le> d; 0 \<le> a; 0 \<le> c|] 
huffman@21258
   558
      ==> a * c  \<le>  b * (d::'a::pordered_semiring)"
huffman@21258
   559
apply (rule mult_mono)
huffman@21258
   560
apply (fast intro: order_trans)+
huffman@21258
   561
done
huffman@21258
   562
obua@14738
   563
lemma less_1_mult: "[| 1 < m; 1 < n |] ==> 1 < m*(n::'a::ordered_semidom)"
paulson@14387
   564
apply (insert mult_strict_mono [of 1 m 1 n]) 
paulson@14430
   565
apply (simp add:  order_less_trans [OF zero_less_one]) 
paulson@14387
   566
done
paulson@14387
   567
avigad@16775
   568
lemma mult_less_le_imp_less: "(a::'a::ordered_semiring_strict) < b ==>
avigad@16775
   569
    c <= d ==> 0 <= a ==> 0 < c ==> a * c < b * d"
avigad@16775
   570
  apply (subgoal_tac "a * c < b * c")
avigad@16775
   571
  apply (erule order_less_le_trans)
avigad@16775
   572
  apply (erule mult_left_mono)
avigad@16775
   573
  apply simp
avigad@16775
   574
  apply (erule mult_strict_right_mono)
avigad@16775
   575
  apply assumption
avigad@16775
   576
done
avigad@16775
   577
avigad@16775
   578
lemma mult_le_less_imp_less: "(a::'a::ordered_semiring_strict) <= b ==>
avigad@16775
   579
    c < d ==> 0 < a ==> 0 <= c ==> a * c < b * d"
avigad@16775
   580
  apply (subgoal_tac "a * c <= b * c")
avigad@16775
   581
  apply (erule order_le_less_trans)
avigad@16775
   582
  apply (erule mult_strict_left_mono)
avigad@16775
   583
  apply simp
avigad@16775
   584
  apply (erule mult_right_mono)
avigad@16775
   585
  apply simp
avigad@16775
   586
done
avigad@16775
   587
wenzelm@23389
   588
paulson@14268
   589
subsection{*Cancellation Laws for Relationships With a Common Factor*}
paulson@14268
   590
paulson@14268
   591
text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
paulson@14268
   592
   also with the relations @{text "\<le>"} and equality.*}
paulson@14268
   593
paulson@15234
   594
text{*These ``disjunction'' versions produce two cases when the comparison is
paulson@15234
   595
 an assumption, but effectively four when the comparison is a goal.*}
paulson@15234
   596
paulson@15234
   597
lemma mult_less_cancel_right_disj:
obua@14738
   598
    "(a*c < b*c) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring_strict)))"
haftmann@21328
   599
apply (cases "c = 0")
paulson@14268
   600
apply (auto simp add: linorder_neq_iff mult_strict_right_mono 
paulson@14268
   601
                      mult_strict_right_mono_neg)
paulson@14268
   602
apply (auto simp add: linorder_not_less 
paulson@14268
   603
                      linorder_not_le [symmetric, of "a*c"]
paulson@14268
   604
                      linorder_not_le [symmetric, of a])
paulson@14268
   605
apply (erule_tac [!] notE)
paulson@14268
   606
apply (auto simp add: order_less_imp_le mult_right_mono 
paulson@14268
   607
                      mult_right_mono_neg)
paulson@14268
   608
done
paulson@14268
   609
paulson@15234
   610
lemma mult_less_cancel_left_disj:
obua@14738
   611
    "(c*a < c*b) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring_strict)))"
haftmann@21328
   612
apply (cases "c = 0")
obua@14738
   613
apply (auto simp add: linorder_neq_iff mult_strict_left_mono 
obua@14738
   614
                      mult_strict_left_mono_neg)
obua@14738
   615
apply (auto simp add: linorder_not_less 
obua@14738
   616
                      linorder_not_le [symmetric, of "c*a"]
obua@14738
   617
                      linorder_not_le [symmetric, of a])
obua@14738
   618
apply (erule_tac [!] notE)
obua@14738
   619
apply (auto simp add: order_less_imp_le mult_left_mono 
obua@14738
   620
                      mult_left_mono_neg)
obua@14738
   621
done
paulson@14268
   622
paulson@15234
   623
paulson@15234
   624
text{*The ``conjunction of implication'' lemmas produce two cases when the
paulson@15234
   625
comparison is a goal, but give four when the comparison is an assumption.*}
paulson@15234
   626
paulson@15234
   627
lemma mult_less_cancel_right:
paulson@15234
   628
  fixes c :: "'a :: ordered_ring_strict"
paulson@15234
   629
  shows      "(a*c < b*c) = ((0 \<le> c --> a < b) & (c \<le> 0 --> b < a))"
paulson@15234
   630
by (insert mult_less_cancel_right_disj [of a c b], auto)
paulson@15234
   631
paulson@15234
   632
lemma mult_less_cancel_left:
paulson@15234
   633
  fixes c :: "'a :: ordered_ring_strict"
paulson@15234
   634
  shows      "(c*a < c*b) = ((0 \<le> c --> a < b) & (c \<le> 0 --> b < a))"
paulson@15234
   635
by (insert mult_less_cancel_left_disj [of c a b], auto)
paulson@15234
   636
paulson@14268
   637
lemma mult_le_cancel_right:
obua@14738
   638
     "(a*c \<le> b*c) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring_strict)))"
paulson@15234
   639
by (simp add: linorder_not_less [symmetric] mult_less_cancel_right_disj)
paulson@14268
   640
paulson@14268
   641
lemma mult_le_cancel_left:
obua@14738
   642
     "(c*a \<le> c*b) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring_strict)))"
paulson@15234
   643
by (simp add: linorder_not_less [symmetric] mult_less_cancel_left_disj)
paulson@14268
   644
paulson@14268
   645
lemma mult_less_imp_less_left:
paulson@14341
   646
      assumes less: "c*a < c*b" and nonneg: "0 \<le> c"
obua@14738
   647
      shows "a < (b::'a::ordered_semiring_strict)"
paulson@14377
   648
proof (rule ccontr)
paulson@14377
   649
  assume "~ a < b"
paulson@14377
   650
  hence "b \<le> a" by (simp add: linorder_not_less)
wenzelm@23389
   651
  hence "c*b \<le> c*a" using nonneg by (rule mult_left_mono)
paulson@14377
   652
  with this and less show False 
paulson@14377
   653
    by (simp add: linorder_not_less [symmetric])
paulson@14377
   654
qed
paulson@14268
   655
paulson@14268
   656
lemma mult_less_imp_less_right:
obua@14738
   657
  assumes less: "a*c < b*c" and nonneg: "0 <= c"
obua@14738
   658
  shows "a < (b::'a::ordered_semiring_strict)"
obua@14738
   659
proof (rule ccontr)
obua@14738
   660
  assume "~ a < b"
obua@14738
   661
  hence "b \<le> a" by (simp add: linorder_not_less)
wenzelm@23389
   662
  hence "b*c \<le> a*c" using nonneg by (rule mult_right_mono)
obua@14738
   663
  with this and less show False 
obua@14738
   664
    by (simp add: linorder_not_less [symmetric])
obua@14738
   665
qed  
paulson@14268
   666
paulson@14268
   667
text{*Cancellation of equalities with a common factor*}
paulson@24286
   668
lemma mult_cancel_right [simp,noatp]:
huffman@22990
   669
  fixes a b c :: "'a::ring_no_zero_divisors"
huffman@22990
   670
  shows "(a * c = b * c) = (c = 0 \<or> a = b)"
huffman@22990
   671
proof -
huffman@22990
   672
  have "(a * c = b * c) = ((a - b) * c = 0)"
nipkow@23477
   673
    by (simp add: ring_distribs)
huffman@22990
   674
  thus ?thesis
huffman@22990
   675
    by (simp add: disj_commute)
huffman@22990
   676
qed
paulson@14268
   677
paulson@24286
   678
lemma mult_cancel_left [simp,noatp]:
huffman@22990
   679
  fixes a b c :: "'a::ring_no_zero_divisors"
huffman@22990
   680
  shows "(c * a = c * b) = (c = 0 \<or> a = b)"
huffman@22990
   681
proof -
huffman@22990
   682
  have "(c * a = c * b) = (c * (a - b) = 0)"
nipkow@23477
   683
    by (simp add: ring_distribs)
huffman@22990
   684
  thus ?thesis
huffman@22990
   685
    by simp
huffman@22990
   686
qed
paulson@14268
   687
paulson@15234
   688
paulson@15234
   689
subsubsection{*Special Cancellation Simprules for Multiplication*}
paulson@15234
   690
paulson@15234
   691
text{*These also produce two cases when the comparison is a goal.*}
paulson@15234
   692
paulson@15234
   693
lemma mult_le_cancel_right1:
paulson@15234
   694
  fixes c :: "'a :: ordered_idom"
paulson@15234
   695
  shows "(c \<le> b*c) = ((0<c --> 1\<le>b) & (c<0 --> b \<le> 1))"
paulson@15234
   696
by (insert mult_le_cancel_right [of 1 c b], simp)
paulson@15234
   697
paulson@15234
   698
lemma mult_le_cancel_right2:
paulson@15234
   699
  fixes c :: "'a :: ordered_idom"
paulson@15234
   700
  shows "(a*c \<le> c) = ((0<c --> a\<le>1) & (c<0 --> 1 \<le> a))"
paulson@15234
   701
by (insert mult_le_cancel_right [of a c 1], simp)
paulson@15234
   702
paulson@15234
   703
lemma mult_le_cancel_left1:
paulson@15234
   704
  fixes c :: "'a :: ordered_idom"
paulson@15234
   705
  shows "(c \<le> c*b) = ((0<c --> 1\<le>b) & (c<0 --> b \<le> 1))"
paulson@15234
   706
by (insert mult_le_cancel_left [of c 1 b], simp)
paulson@15234
   707
paulson@15234
   708
lemma mult_le_cancel_left2:
paulson@15234
   709
  fixes c :: "'a :: ordered_idom"
paulson@15234
   710
  shows "(c*a \<le> c) = ((0<c --> a\<le>1) & (c<0 --> 1 \<le> a))"
paulson@15234
   711
by (insert mult_le_cancel_left [of c a 1], simp)
paulson@15234
   712
paulson@15234
   713
lemma mult_less_cancel_right1:
paulson@15234
   714
  fixes c :: "'a :: ordered_idom"
paulson@15234
   715
  shows "(c < b*c) = ((0 \<le> c --> 1<b) & (c \<le> 0 --> b < 1))"
paulson@15234
   716
by (insert mult_less_cancel_right [of 1 c b], simp)
paulson@15234
   717
paulson@15234
   718
lemma mult_less_cancel_right2:
paulson@15234
   719
  fixes c :: "'a :: ordered_idom"
paulson@15234
   720
  shows "(a*c < c) = ((0 \<le> c --> a<1) & (c \<le> 0 --> 1 < a))"
paulson@15234
   721
by (insert mult_less_cancel_right [of a c 1], simp)
paulson@15234
   722
paulson@15234
   723
lemma mult_less_cancel_left1:
paulson@15234
   724
  fixes c :: "'a :: ordered_idom"
paulson@15234
   725
  shows "(c < c*b) = ((0 \<le> c --> 1<b) & (c \<le> 0 --> b < 1))"
paulson@15234
   726
by (insert mult_less_cancel_left [of c 1 b], simp)
paulson@15234
   727
paulson@15234
   728
lemma mult_less_cancel_left2:
paulson@15234
   729
  fixes c :: "'a :: ordered_idom"
paulson@15234
   730
  shows "(c*a < c) = ((0 \<le> c --> a<1) & (c \<le> 0 --> 1 < a))"
paulson@15234
   731
by (insert mult_less_cancel_left [of c a 1], simp)
paulson@15234
   732
paulson@15234
   733
lemma mult_cancel_right1 [simp]:
huffman@23544
   734
  fixes c :: "'a :: ring_1_no_zero_divisors"
paulson@15234
   735
  shows "(c = b*c) = (c = 0 | b=1)"
paulson@15234
   736
by (insert mult_cancel_right [of 1 c b], force)
paulson@15234
   737
paulson@15234
   738
lemma mult_cancel_right2 [simp]:
huffman@23544
   739
  fixes c :: "'a :: ring_1_no_zero_divisors"
paulson@15234
   740
  shows "(a*c = c) = (c = 0 | a=1)"
paulson@15234
   741
by (insert mult_cancel_right [of a c 1], simp)
paulson@15234
   742
 
paulson@15234
   743
lemma mult_cancel_left1 [simp]:
huffman@23544
   744
  fixes c :: "'a :: ring_1_no_zero_divisors"
paulson@15234
   745
  shows "(c = c*b) = (c = 0 | b=1)"
paulson@15234
   746
by (insert mult_cancel_left [of c 1 b], force)
paulson@15234
   747
paulson@15234
   748
lemma mult_cancel_left2 [simp]:
huffman@23544
   749
  fixes c :: "'a :: ring_1_no_zero_divisors"
paulson@15234
   750
  shows "(c*a = c) = (c = 0 | a=1)"
paulson@15234
   751
by (insert mult_cancel_left [of c a 1], simp)
paulson@15234
   752
paulson@15234
   753
paulson@15234
   754
text{*Simprules for comparisons where common factors can be cancelled.*}
paulson@15234
   755
lemmas mult_compare_simps =
paulson@15234
   756
    mult_le_cancel_right mult_le_cancel_left
paulson@15234
   757
    mult_le_cancel_right1 mult_le_cancel_right2
paulson@15234
   758
    mult_le_cancel_left1 mult_le_cancel_left2
paulson@15234
   759
    mult_less_cancel_right mult_less_cancel_left
paulson@15234
   760
    mult_less_cancel_right1 mult_less_cancel_right2
paulson@15234
   761
    mult_less_cancel_left1 mult_less_cancel_left2
paulson@15234
   762
    mult_cancel_right mult_cancel_left
paulson@15234
   763
    mult_cancel_right1 mult_cancel_right2
paulson@15234
   764
    mult_cancel_left1 mult_cancel_left2
paulson@15234
   765
paulson@15234
   766
paulson@14265
   767
subsection {* Fields *}
paulson@14265
   768
paulson@14288
   769
lemma right_inverse_eq: "b \<noteq> 0 ==> (a / b = 1) = (a = (b::'a::field))"
paulson@14288
   770
proof
paulson@14288
   771
  assume neq: "b \<noteq> 0"
paulson@14288
   772
  {
paulson@14288
   773
    hence "a = (a / b) * b" by (simp add: divide_inverse mult_ac)
paulson@14288
   774
    also assume "a / b = 1"
paulson@14288
   775
    finally show "a = b" by simp
paulson@14288
   776
  next
paulson@14288
   777
    assume "a = b"
paulson@14288
   778
    with neq show "a / b = 1" by (simp add: divide_inverse)
paulson@14288
   779
  }
paulson@14288
   780
qed
paulson@14288
   781
paulson@14288
   782
lemma nonzero_inverse_eq_divide: "a \<noteq> 0 ==> inverse (a::'a::field) = 1/a"
paulson@14288
   783
by (simp add: divide_inverse)
paulson@14288
   784
nipkow@23398
   785
lemma divide_self[simp]: "a \<noteq> 0 ==> a / (a::'a::field) = 1"
paulson@14288
   786
  by (simp add: divide_inverse)
paulson@14288
   787
paulson@14430
   788
lemma divide_zero [simp]: "a / 0 = (0::'a::{field,division_by_zero})"
paulson@14430
   789
by (simp add: divide_inverse)
paulson@14277
   790
paulson@15228
   791
lemma divide_self_if [simp]:
paulson@15228
   792
     "a / (a::'a::{field,division_by_zero}) = (if a=0 then 0 else 1)"
paulson@15228
   793
  by (simp add: divide_self)
paulson@15228
   794
paulson@14430
   795
lemma divide_zero_left [simp]: "0/a = (0::'a::field)"
paulson@14430
   796
by (simp add: divide_inverse)
paulson@14277
   797
paulson@14430
   798
lemma inverse_eq_divide: "inverse (a::'a::field) = 1/a"
paulson@14430
   799
by (simp add: divide_inverse)
paulson@14277
   800
paulson@14430
   801
lemma add_divide_distrib: "(a+b)/(c::'a::field) = a/c + b/c"
nipkow@23477
   802
by (simp add: divide_inverse ring_distribs) 
paulson@14293
   803
nipkow@23482
   804
(* what ordering?? this is a straight instance of mult_eq_0_iff
paulson@14270
   805
text{*Compared with @{text mult_eq_0_iff}, this version removes the requirement
paulson@14270
   806
      of an ordering.*}
huffman@20496
   807
lemma field_mult_eq_0_iff [simp]:
huffman@20496
   808
  "(a*b = (0::'a::division_ring)) = (a = 0 | b = 0)"
huffman@22990
   809
by simp
nipkow@23482
   810
*)
nipkow@23496
   811
(* subsumed by mult_cancel lemmas on ring_no_zero_divisors
paulson@14268
   812
text{*Cancellation of equalities with a common factor*}
paulson@14268
   813
lemma field_mult_cancel_right_lemma:
huffman@20496
   814
      assumes cnz: "c \<noteq> (0::'a::division_ring)"
huffman@20496
   815
         and eq:  "a*c = b*c"
huffman@20496
   816
        shows "a=b"
paulson@14377
   817
proof -
paulson@14268
   818
  have "(a * c) * inverse c = (b * c) * inverse c"
paulson@14268
   819
    by (simp add: eq)
paulson@14268
   820
  thus "a=b"
paulson@14268
   821
    by (simp add: mult_assoc cnz)
paulson@14377
   822
qed
paulson@14268
   823
paulson@14348
   824
lemma field_mult_cancel_right [simp]:
huffman@20496
   825
     "(a*c = b*c) = (c = (0::'a::division_ring) | a=b)"
huffman@22990
   826
by simp
paulson@14268
   827
paulson@14348
   828
lemma field_mult_cancel_left [simp]:
huffman@20496
   829
     "(c*a = c*b) = (c = (0::'a::division_ring) | a=b)"
huffman@22990
   830
by simp
nipkow@23496
   831
*)
huffman@20496
   832
lemma nonzero_imp_inverse_nonzero:
huffman@20496
   833
  "a \<noteq> 0 ==> inverse a \<noteq> (0::'a::division_ring)"
paulson@14377
   834
proof
paulson@14268
   835
  assume ianz: "inverse a = 0"
paulson@14268
   836
  assume "a \<noteq> 0"
paulson@14268
   837
  hence "1 = a * inverse a" by simp
paulson@14268
   838
  also have "... = 0" by (simp add: ianz)
huffman@20496
   839
  finally have "1 = (0::'a::division_ring)" .
paulson@14268
   840
  thus False by (simp add: eq_commute)
paulson@14377
   841
qed
paulson@14268
   842
paulson@14277
   843
paulson@14277
   844
subsection{*Basic Properties of @{term inverse}*}
paulson@14277
   845
huffman@20496
   846
lemma inverse_zero_imp_zero: "inverse a = 0 ==> a = (0::'a::division_ring)"
paulson@14268
   847
apply (rule ccontr) 
paulson@14268
   848
apply (blast dest: nonzero_imp_inverse_nonzero) 
paulson@14268
   849
done
paulson@14268
   850
paulson@14268
   851
lemma inverse_nonzero_imp_nonzero:
huffman@20496
   852
   "inverse a = 0 ==> a = (0::'a::division_ring)"
paulson@14268
   853
apply (rule ccontr) 
paulson@14268
   854
apply (blast dest: nonzero_imp_inverse_nonzero) 
paulson@14268
   855
done
paulson@14268
   856
paulson@14268
   857
lemma inverse_nonzero_iff_nonzero [simp]:
huffman@20496
   858
   "(inverse a = 0) = (a = (0::'a::{division_ring,division_by_zero}))"
paulson@14268
   859
by (force dest: inverse_nonzero_imp_nonzero) 
paulson@14268
   860
paulson@14268
   861
lemma nonzero_inverse_minus_eq:
huffman@20496
   862
      assumes [simp]: "a\<noteq>0"
huffman@20496
   863
      shows "inverse(-a) = -inverse(a::'a::division_ring)"
paulson@14377
   864
proof -
paulson@14377
   865
  have "-a * inverse (- a) = -a * - inverse a"
paulson@14377
   866
    by simp
paulson@14377
   867
  thus ?thesis 
nipkow@23496
   868
    by (simp only: mult_cancel_left, simp)
paulson@14377
   869
qed
paulson@14268
   870
paulson@14268
   871
lemma inverse_minus_eq [simp]:
huffman@20496
   872
   "inverse(-a) = -inverse(a::'a::{division_ring,division_by_zero})"
paulson@14377
   873
proof cases
paulson@14377
   874
  assume "a=0" thus ?thesis by (simp add: inverse_zero)
paulson@14377
   875
next
paulson@14377
   876
  assume "a\<noteq>0" 
paulson@14377
   877
  thus ?thesis by (simp add: nonzero_inverse_minus_eq)
paulson@14377
   878
qed
paulson@14268
   879
paulson@14268
   880
lemma nonzero_inverse_eq_imp_eq:
paulson@14269
   881
      assumes inveq: "inverse a = inverse b"
paulson@14269
   882
	  and anz:  "a \<noteq> 0"
paulson@14269
   883
	  and bnz:  "b \<noteq> 0"
huffman@20496
   884
	 shows "a = (b::'a::division_ring)"
paulson@14377
   885
proof -
paulson@14268
   886
  have "a * inverse b = a * inverse a"
paulson@14268
   887
    by (simp add: inveq)
paulson@14268
   888
  hence "(a * inverse b) * b = (a * inverse a) * b"
paulson@14268
   889
    by simp
paulson@14268
   890
  thus "a = b"
paulson@14268
   891
    by (simp add: mult_assoc anz bnz)
paulson@14377
   892
qed
paulson@14268
   893
paulson@14268
   894
lemma inverse_eq_imp_eq:
huffman@20496
   895
  "inverse a = inverse b ==> a = (b::'a::{division_ring,division_by_zero})"
haftmann@21328
   896
apply (cases "a=0 | b=0") 
paulson@14268
   897
 apply (force dest!: inverse_zero_imp_zero
paulson@14268
   898
              simp add: eq_commute [of "0::'a"])
paulson@14268
   899
apply (force dest!: nonzero_inverse_eq_imp_eq) 
paulson@14268
   900
done
paulson@14268
   901
paulson@14268
   902
lemma inverse_eq_iff_eq [simp]:
huffman@20496
   903
  "(inverse a = inverse b) = (a = (b::'a::{division_ring,division_by_zero}))"
huffman@20496
   904
by (force dest!: inverse_eq_imp_eq)
paulson@14268
   905
paulson@14270
   906
lemma nonzero_inverse_inverse_eq:
huffman@20496
   907
      assumes [simp]: "a \<noteq> 0"
huffman@20496
   908
      shows "inverse(inverse (a::'a::division_ring)) = a"
paulson@14270
   909
  proof -
paulson@14270
   910
  have "(inverse (inverse a) * inverse a) * a = a" 
paulson@14270
   911
    by (simp add: nonzero_imp_inverse_nonzero)
paulson@14270
   912
  thus ?thesis
paulson@14270
   913
    by (simp add: mult_assoc)
paulson@14270
   914
  qed
paulson@14270
   915
paulson@14270
   916
lemma inverse_inverse_eq [simp]:
huffman@20496
   917
     "inverse(inverse (a::'a::{division_ring,division_by_zero})) = a"
paulson@14270
   918
  proof cases
paulson@14270
   919
    assume "a=0" thus ?thesis by simp
paulson@14270
   920
  next
paulson@14270
   921
    assume "a\<noteq>0" 
paulson@14270
   922
    thus ?thesis by (simp add: nonzero_inverse_inverse_eq)
paulson@14270
   923
  qed
paulson@14270
   924
huffman@20496
   925
lemma inverse_1 [simp]: "inverse 1 = (1::'a::division_ring)"
paulson@14270
   926
  proof -
huffman@20496
   927
  have "inverse 1 * 1 = (1::'a::division_ring)" 
paulson@14270
   928
    by (rule left_inverse [OF zero_neq_one [symmetric]])
paulson@14270
   929
  thus ?thesis  by simp
paulson@14270
   930
  qed
paulson@14270
   931
paulson@15077
   932
lemma inverse_unique: 
paulson@15077
   933
  assumes ab: "a*b = 1"
huffman@20496
   934
  shows "inverse a = (b::'a::division_ring)"
paulson@15077
   935
proof -
paulson@15077
   936
  have "a \<noteq> 0" using ab by auto
paulson@15077
   937
  moreover have "inverse a * (a * b) = inverse a" by (simp add: ab) 
paulson@15077
   938
  ultimately show ?thesis by (simp add: mult_assoc [symmetric]) 
paulson@15077
   939
qed
paulson@15077
   940
paulson@14270
   941
lemma nonzero_inverse_mult_distrib: 
paulson@14270
   942
      assumes anz: "a \<noteq> 0"
paulson@14270
   943
          and bnz: "b \<noteq> 0"
huffman@20496
   944
      shows "inverse(a*b) = inverse(b) * inverse(a::'a::division_ring)"
paulson@14270
   945
  proof -
paulson@14270
   946
  have "inverse(a*b) * (a * b) * inverse(b) = inverse(b)" 
nipkow@23482
   947
    by (simp add: anz bnz)
paulson@14270
   948
  hence "inverse(a*b) * a = inverse(b)" 
paulson@14270
   949
    by (simp add: mult_assoc bnz)
paulson@14270
   950
  hence "inverse(a*b) * a * inverse(a) = inverse(b) * inverse(a)" 
paulson@14270
   951
    by simp
paulson@14270
   952
  thus ?thesis
paulson@14270
   953
    by (simp add: mult_assoc anz)
paulson@14270
   954
  qed
paulson@14270
   955
paulson@14270
   956
text{*This version builds in division by zero while also re-orienting
paulson@14270
   957
      the right-hand side.*}
paulson@14270
   958
lemma inverse_mult_distrib [simp]:
paulson@14270
   959
     "inverse(a*b) = inverse(a) * inverse(b::'a::{field,division_by_zero})"
paulson@14270
   960
  proof cases
paulson@14270
   961
    assume "a \<noteq> 0 & b \<noteq> 0" 
haftmann@22993
   962
    thus ?thesis
haftmann@22993
   963
      by (simp add: nonzero_inverse_mult_distrib mult_commute)
paulson@14270
   964
  next
paulson@14270
   965
    assume "~ (a \<noteq> 0 & b \<noteq> 0)" 
haftmann@22993
   966
    thus ?thesis
haftmann@22993
   967
      by force
paulson@14270
   968
  qed
paulson@14270
   969
huffman@20496
   970
lemma division_ring_inverse_add:
huffman@20496
   971
  "[|(a::'a::division_ring) \<noteq> 0; b \<noteq> 0|]
huffman@20496
   972
   ==> inverse a + inverse b = inverse a * (a+b) * inverse b"
nipkow@23477
   973
by (simp add: ring_simps)
huffman@20496
   974
huffman@20496
   975
lemma division_ring_inverse_diff:
huffman@20496
   976
  "[|(a::'a::division_ring) \<noteq> 0; b \<noteq> 0|]
huffman@20496
   977
   ==> inverse a - inverse b = inverse a * (b-a) * inverse b"
nipkow@23477
   978
by (simp add: ring_simps)
huffman@20496
   979
paulson@14270
   980
text{*There is no slick version using division by zero.*}
paulson@14270
   981
lemma inverse_add:
nipkow@23477
   982
  "[|a \<noteq> 0;  b \<noteq> 0|]
nipkow@23477
   983
   ==> inverse a + inverse b = (a+b) * inverse a * inverse (b::'a::field)"
huffman@20496
   984
by (simp add: division_ring_inverse_add mult_ac)
paulson@14270
   985
paulson@14365
   986
lemma inverse_divide [simp]:
nipkow@23477
   987
  "inverse (a/b) = b / (a::'a::{field,division_by_zero})"
nipkow@23477
   988
by (simp add: divide_inverse mult_commute)
paulson@14365
   989
wenzelm@23389
   990
avigad@16775
   991
subsection {* Calculations with fractions *}
avigad@16775
   992
nipkow@23413
   993
text{* There is a whole bunch of simp-rules just for class @{text
nipkow@23413
   994
field} but none for class @{text field} and @{text nonzero_divides}
nipkow@23413
   995
because the latter are covered by a simproc. *}
nipkow@23413
   996
paulson@24427
   997
lemma nonzero_mult_divide_mult_cancel_left[simp,noatp]:
nipkow@23477
   998
assumes [simp]: "b\<noteq>0" and [simp]: "c\<noteq>0" shows "(c*a)/(c*b) = a/(b::'a::field)"
paulson@14277
   999
proof -
paulson@14277
  1000
  have "(c*a)/(c*b) = c * a * (inverse b * inverse c)"
nipkow@23482
  1001
    by (simp add: divide_inverse nonzero_inverse_mult_distrib)
paulson@14277
  1002
  also have "... =  a * inverse b * (inverse c * c)"
paulson@14277
  1003
    by (simp only: mult_ac)
paulson@14277
  1004
  also have "... =  a * inverse b"
paulson@14277
  1005
    by simp
paulson@14277
  1006
    finally show ?thesis 
paulson@14277
  1007
    by (simp add: divide_inverse)
paulson@14277
  1008
qed
paulson@14277
  1009
nipkow@23413
  1010
lemma mult_divide_mult_cancel_left:
nipkow@23477
  1011
  "c\<noteq>0 ==> (c*a) / (c*b) = a / (b::'a::{field,division_by_zero})"
haftmann@21328
  1012
apply (cases "b = 0")
nipkow@23413
  1013
apply (simp_all add: nonzero_mult_divide_mult_cancel_left)
paulson@14277
  1014
done
paulson@14277
  1015
paulson@24427
  1016
lemma nonzero_mult_divide_mult_cancel_right [noatp]:
nipkow@23477
  1017
  "[|b\<noteq>0; c\<noteq>0|] ==> (a*c) / (b*c) = a/(b::'a::field)"
nipkow@23413
  1018
by (simp add: mult_commute [of _ c] nonzero_mult_divide_mult_cancel_left) 
paulson@14321
  1019
nipkow@23413
  1020
lemma mult_divide_mult_cancel_right:
nipkow@23477
  1021
  "c\<noteq>0 ==> (a*c) / (b*c) = a / (b::'a::{field,division_by_zero})"
haftmann@21328
  1022
apply (cases "b = 0")
nipkow@23413
  1023
apply (simp_all add: nonzero_mult_divide_mult_cancel_right)
paulson@14321
  1024
done
nipkow@23413
  1025
paulson@14284
  1026
lemma divide_1 [simp]: "a/1 = (a::'a::field)"
nipkow@23477
  1027
by (simp add: divide_inverse)
paulson@14284
  1028
paulson@15234
  1029
lemma times_divide_eq_right: "a * (b/c) = (a*b) / (c::'a::field)"
paulson@14430
  1030
by (simp add: divide_inverse mult_assoc)
paulson@14288
  1031
paulson@14430
  1032
lemma times_divide_eq_left: "(b/c) * a = (b*a) / (c::'a::field)"
paulson@14430
  1033
by (simp add: divide_inverse mult_ac)
paulson@14288
  1034
nipkow@23482
  1035
lemmas times_divide_eq = times_divide_eq_right times_divide_eq_left
nipkow@23482
  1036
paulson@24286
  1037
lemma divide_divide_eq_right [simp,noatp]:
nipkow@23477
  1038
  "a / (b/c) = (a*c) / (b::'a::{field,division_by_zero})"
paulson@14430
  1039
by (simp add: divide_inverse mult_ac)
paulson@14288
  1040
paulson@24286
  1041
lemma divide_divide_eq_left [simp,noatp]:
nipkow@23477
  1042
  "(a / b) / (c::'a::{field,division_by_zero}) = a / (b*c)"
paulson@14430
  1043
by (simp add: divide_inverse mult_assoc)
paulson@14288
  1044
avigad@16775
  1045
lemma add_frac_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==>
avigad@16775
  1046
    x / y + w / z = (x * z + w * y) / (y * z)"
nipkow@23477
  1047
apply (subgoal_tac "x / y = (x * z) / (y * z)")
nipkow@23477
  1048
apply (erule ssubst)
nipkow@23477
  1049
apply (subgoal_tac "w / z = (w * y) / (y * z)")
nipkow@23477
  1050
apply (erule ssubst)
nipkow@23477
  1051
apply (rule add_divide_distrib [THEN sym])
nipkow@23477
  1052
apply (subst mult_commute)
nipkow@23477
  1053
apply (erule nonzero_mult_divide_mult_cancel_left [THEN sym])
nipkow@23477
  1054
apply assumption
nipkow@23477
  1055
apply (erule nonzero_mult_divide_mult_cancel_right [THEN sym])
nipkow@23477
  1056
apply assumption
avigad@16775
  1057
done
paulson@14268
  1058
wenzelm@23389
  1059
paulson@15234
  1060
subsubsection{*Special Cancellation Simprules for Division*}
paulson@15234
  1061
paulson@24427
  1062
lemma mult_divide_mult_cancel_left_if[simp,noatp]:
nipkow@23477
  1063
fixes c :: "'a :: {field,division_by_zero}"
nipkow@23477
  1064
shows "(c*a) / (c*b) = (if c=0 then 0 else a/b)"
nipkow@23413
  1065
by (simp add: mult_divide_mult_cancel_left)
nipkow@23413
  1066
paulson@24427
  1067
lemma nonzero_mult_divide_cancel_right[simp,noatp]:
nipkow@23413
  1068
  "b \<noteq> 0 \<Longrightarrow> a * b / b = (a::'a::field)"
nipkow@23413
  1069
using nonzero_mult_divide_mult_cancel_right[of 1 b a] by simp
nipkow@23413
  1070
paulson@24427
  1071
lemma nonzero_mult_divide_cancel_left[simp,noatp]:
nipkow@23413
  1072
  "a \<noteq> 0 \<Longrightarrow> a * b / a = (b::'a::field)"
nipkow@23413
  1073
using nonzero_mult_divide_mult_cancel_left[of 1 a b] by simp
nipkow@23413
  1074
nipkow@23413
  1075
paulson@24427
  1076
lemma nonzero_divide_mult_cancel_right[simp,noatp]:
nipkow@23413
  1077
  "\<lbrakk> a\<noteq>0; b\<noteq>0 \<rbrakk> \<Longrightarrow> b / (a * b) = 1/(a::'a::field)"
nipkow@23413
  1078
using nonzero_mult_divide_mult_cancel_right[of a b 1] by simp
nipkow@23413
  1079
paulson@24427
  1080
lemma nonzero_divide_mult_cancel_left[simp,noatp]:
nipkow@23413
  1081
  "\<lbrakk> a\<noteq>0; b\<noteq>0 \<rbrakk> \<Longrightarrow> a / (a * b) = 1/(b::'a::field)"
nipkow@23413
  1082
using nonzero_mult_divide_mult_cancel_left[of b a 1] by simp
nipkow@23413
  1083
nipkow@23413
  1084
paulson@24427
  1085
lemma nonzero_mult_divide_mult_cancel_left2[simp,noatp]:
nipkow@23477
  1086
  "[|b\<noteq>0; c\<noteq>0|] ==> (c*a) / (b*c) = a/(b::'a::field)"
nipkow@23413
  1087
using nonzero_mult_divide_mult_cancel_left[of b c a] by(simp add:mult_ac)
nipkow@23413
  1088
paulson@24427
  1089
lemma nonzero_mult_divide_mult_cancel_right2[simp,noatp]:
nipkow@23477
  1090
  "[|b\<noteq>0; c\<noteq>0|] ==> (a*c) / (c*b) = a/(b::'a::field)"
nipkow@23413
  1091
using nonzero_mult_divide_mult_cancel_right[of b c a] by(simp add:mult_ac)
nipkow@23413
  1092
paulson@15234
  1093
paulson@14293
  1094
subsection {* Division and Unary Minus *}
paulson@14293
  1095
paulson@14293
  1096
lemma nonzero_minus_divide_left: "b \<noteq> 0 ==> - (a/b) = (-a) / (b::'a::field)"
paulson@14293
  1097
by (simp add: divide_inverse minus_mult_left)
paulson@14293
  1098
paulson@14293
  1099
lemma nonzero_minus_divide_right: "b \<noteq> 0 ==> - (a/b) = a / -(b::'a::field)"
paulson@14293
  1100
by (simp add: divide_inverse nonzero_inverse_minus_eq minus_mult_right)
paulson@14293
  1101
paulson@14293
  1102
lemma nonzero_minus_divide_divide: "b \<noteq> 0 ==> (-a)/(-b) = a / (b::'a::field)"
paulson@14293
  1103
by (simp add: divide_inverse nonzero_inverse_minus_eq)
paulson@14293
  1104
paulson@14430
  1105
lemma minus_divide_left: "- (a/b) = (-a) / (b::'a::field)"
paulson@14430
  1106
by (simp add: divide_inverse minus_mult_left [symmetric])
paulson@14293
  1107
paulson@14293
  1108
lemma minus_divide_right: "- (a/b) = a / -(b::'a::{field,division_by_zero})"
paulson@14430
  1109
by (simp add: divide_inverse minus_mult_right [symmetric])
paulson@14430
  1110
paulson@14293
  1111
paulson@14293
  1112
text{*The effect is to extract signs from divisions*}
paulson@17085
  1113
lemmas divide_minus_left = minus_divide_left [symmetric]
paulson@17085
  1114
lemmas divide_minus_right = minus_divide_right [symmetric]
paulson@17085
  1115
declare divide_minus_left [simp]   divide_minus_right [simp]
paulson@14293
  1116
paulson@14387
  1117
text{*Also, extract signs from products*}
paulson@17085
  1118
lemmas mult_minus_left = minus_mult_left [symmetric]
paulson@17085
  1119
lemmas mult_minus_right = minus_mult_right [symmetric]
paulson@17085
  1120
declare mult_minus_left [simp]   mult_minus_right [simp]
paulson@14387
  1121
paulson@14293
  1122
lemma minus_divide_divide [simp]:
nipkow@23477
  1123
  "(-a)/(-b) = a / (b::'a::{field,division_by_zero})"
haftmann@21328
  1124
apply (cases "b=0", simp) 
paulson@14293
  1125
apply (simp add: nonzero_minus_divide_divide) 
paulson@14293
  1126
done
paulson@14293
  1127
paulson@14430
  1128
lemma diff_divide_distrib: "(a-b)/(c::'a::field) = a/c - b/c"
paulson@14387
  1129
by (simp add: diff_minus add_divide_distrib) 
paulson@14387
  1130
nipkow@23482
  1131
lemma add_divide_eq_iff:
nipkow@23482
  1132
  "(z::'a::field) \<noteq> 0 \<Longrightarrow> x + y/z = (z*x + y)/z"
nipkow@23482
  1133
by(simp add:add_divide_distrib nonzero_mult_divide_cancel_left)
nipkow@23482
  1134
nipkow@23482
  1135
lemma divide_add_eq_iff:
nipkow@23482
  1136
  "(z::'a::field) \<noteq> 0 \<Longrightarrow> x/z + y = (x + z*y)/z"
nipkow@23482
  1137
by(simp add:add_divide_distrib nonzero_mult_divide_cancel_left)
nipkow@23482
  1138
nipkow@23482
  1139
lemma diff_divide_eq_iff:
nipkow@23482
  1140
  "(z::'a::field) \<noteq> 0 \<Longrightarrow> x - y/z = (z*x - y)/z"
nipkow@23482
  1141
by(simp add:diff_divide_distrib nonzero_mult_divide_cancel_left)
nipkow@23482
  1142
nipkow@23482
  1143
lemma divide_diff_eq_iff:
nipkow@23482
  1144
  "(z::'a::field) \<noteq> 0 \<Longrightarrow> x/z - y = (x - z*y)/z"
nipkow@23482
  1145
by(simp add:diff_divide_distrib nonzero_mult_divide_cancel_left)
nipkow@23482
  1146
nipkow@23482
  1147
lemma nonzero_eq_divide_eq: "c\<noteq>0 ==> ((a::'a::field) = b/c) = (a*c = b)"
nipkow@23482
  1148
proof -
nipkow@23482
  1149
  assume [simp]: "c\<noteq>0"
nipkow@23496
  1150
  have "(a = b/c) = (a*c = (b/c)*c)" by simp
nipkow@23496
  1151
  also have "... = (a*c = b)" by (simp add: divide_inverse mult_assoc)
nipkow@23482
  1152
  finally show ?thesis .
nipkow@23482
  1153
qed
nipkow@23482
  1154
nipkow@23482
  1155
lemma nonzero_divide_eq_eq: "c\<noteq>0 ==> (b/c = (a::'a::field)) = (b = a*c)"
nipkow@23482
  1156
proof -
nipkow@23482
  1157
  assume [simp]: "c\<noteq>0"
nipkow@23496
  1158
  have "(b/c = a) = ((b/c)*c = a*c)"  by simp
nipkow@23496
  1159
  also have "... = (b = a*c)"  by (simp add: divide_inverse mult_assoc) 
nipkow@23482
  1160
  finally show ?thesis .
nipkow@23482
  1161
qed
nipkow@23482
  1162
nipkow@23482
  1163
lemma eq_divide_eq:
nipkow@23482
  1164
  "((a::'a::{field,division_by_zero}) = b/c) = (if c\<noteq>0 then a*c = b else a=0)"
nipkow@23482
  1165
by (simp add: nonzero_eq_divide_eq) 
nipkow@23482
  1166
nipkow@23482
  1167
lemma divide_eq_eq:
nipkow@23482
  1168
  "(b/c = (a::'a::{field,division_by_zero})) = (if c\<noteq>0 then b = a*c else a=0)"
nipkow@23482
  1169
by (force simp add: nonzero_divide_eq_eq) 
nipkow@23482
  1170
nipkow@23482
  1171
lemma divide_eq_imp: "(c::'a::{division_by_zero,field}) ~= 0 ==>
nipkow@23482
  1172
    b = a * c ==> b / c = a"
nipkow@23482
  1173
  by (subst divide_eq_eq, simp)
nipkow@23482
  1174
nipkow@23482
  1175
lemma eq_divide_imp: "(c::'a::{division_by_zero,field}) ~= 0 ==>
nipkow@23482
  1176
    a * c = b ==> a = b / c"
nipkow@23482
  1177
  by (subst eq_divide_eq, simp)
nipkow@23482
  1178
nipkow@23482
  1179
nipkow@23482
  1180
lemmas field_eq_simps = ring_simps
nipkow@23482
  1181
  (* pull / out*)
nipkow@23482
  1182
  add_divide_eq_iff divide_add_eq_iff
nipkow@23482
  1183
  diff_divide_eq_iff divide_diff_eq_iff
nipkow@23482
  1184
  (* multiply eqn *)
nipkow@23482
  1185
  nonzero_eq_divide_eq nonzero_divide_eq_eq
nipkow@23482
  1186
(* is added later:
nipkow@23482
  1187
  times_divide_eq_left times_divide_eq_right
nipkow@23482
  1188
*)
nipkow@23482
  1189
nipkow@23482
  1190
text{*An example:*}
nipkow@23482
  1191
lemma fixes a b c d e f :: "'a::field"
nipkow@23482
  1192
shows "\<lbrakk>a\<noteq>b; c\<noteq>d; e\<noteq>f \<rbrakk> \<Longrightarrow> ((a-b)*(c-d)*(e-f))/((c-d)*(e-f)*(a-b)) = 1"
nipkow@23482
  1193
apply(subgoal_tac "(c-d)*(e-f)*(a-b) \<noteq> 0")
nipkow@23482
  1194
 apply(simp add:field_eq_simps)
nipkow@23482
  1195
apply(simp)
nipkow@23482
  1196
done
nipkow@23482
  1197
nipkow@23482
  1198
avigad@16775
  1199
lemma diff_frac_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==>
avigad@16775
  1200
    x / y - w / z = (x * z - w * y) / (y * z)"
nipkow@23482
  1201
by (simp add:field_eq_simps times_divide_eq)
nipkow@23482
  1202
nipkow@23482
  1203
lemma frac_eq_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==>
nipkow@23482
  1204
    (x / y = w / z) = (x * z = w * y)"
nipkow@23482
  1205
by (simp add:field_eq_simps times_divide_eq)
paulson@14293
  1206
wenzelm@23389
  1207
paulson@14268
  1208
subsection {* Ordered Fields *}
paulson@14268
  1209
paulson@14277
  1210
lemma positive_imp_inverse_positive: 
nipkow@23482
  1211
assumes a_gt_0: "0 < a"  shows "0 < inverse (a::'a::ordered_field)"
nipkow@23482
  1212
proof -
paulson@14268
  1213
  have "0 < a * inverse a" 
paulson@14268
  1214
    by (simp add: a_gt_0 [THEN order_less_imp_not_eq2] zero_less_one)
paulson@14268
  1215
  thus "0 < inverse a" 
paulson@14268
  1216
    by (simp add: a_gt_0 [THEN order_less_not_sym] zero_less_mult_iff)
nipkow@23482
  1217
qed
paulson@14268
  1218
paulson@14277
  1219
lemma negative_imp_inverse_negative:
nipkow@23482
  1220
  "a < 0 ==> inverse a < (0::'a::ordered_field)"
nipkow@23482
  1221
by (insert positive_imp_inverse_positive [of "-a"], 
nipkow@23482
  1222
    simp add: nonzero_inverse_minus_eq order_less_imp_not_eq)
paulson@14268
  1223
paulson@14268
  1224
lemma inverse_le_imp_le:
nipkow@23482
  1225
assumes invle: "inverse a \<le> inverse b" and apos:  "0 < a"
nipkow@23482
  1226
shows "b \<le> (a::'a::ordered_field)"
nipkow@23482
  1227
proof (rule classical)
paulson@14268
  1228
  assume "~ b \<le> a"
nipkow@23482
  1229
  hence "a < b"  by (simp add: linorder_not_le)
nipkow@23482
  1230
  hence bpos: "0 < b"  by (blast intro: apos order_less_trans)
paulson@14268
  1231
  hence "a * inverse a \<le> a * inverse b"
paulson@14268
  1232
    by (simp add: apos invle order_less_imp_le mult_left_mono)
paulson@14268
  1233
  hence "(a * inverse a) * b \<le> (a * inverse b) * b"
paulson@14268
  1234
    by (simp add: bpos order_less_imp_le mult_right_mono)
nipkow@23482
  1235
  thus "b \<le> a"  by (simp add: mult_assoc apos bpos order_less_imp_not_eq2)
nipkow@23482
  1236
qed
paulson@14268
  1237
paulson@14277
  1238
lemma inverse_positive_imp_positive:
nipkow@23482
  1239
assumes inv_gt_0: "0 < inverse a" and nz: "a \<noteq> 0"
nipkow@23482
  1240
shows "0 < (a::'a::ordered_field)"
wenzelm@23389
  1241
proof -
paulson@14277
  1242
  have "0 < inverse (inverse a)"
wenzelm@23389
  1243
    using inv_gt_0 by (rule positive_imp_inverse_positive)
paulson@14277
  1244
  thus "0 < a"
wenzelm@23389
  1245
    using nz by (simp add: nonzero_inverse_inverse_eq)
wenzelm@23389
  1246
qed
paulson@14277
  1247
paulson@14277
  1248
lemma inverse_positive_iff_positive [simp]:
nipkow@23482
  1249
  "(0 < inverse a) = (0 < (a::'a::{ordered_field,division_by_zero}))"
haftmann@21328
  1250
apply (cases "a = 0", simp)
paulson@14277
  1251
apply (blast intro: inverse_positive_imp_positive positive_imp_inverse_positive)
paulson@14277
  1252
done
paulson@14277
  1253
paulson@14277
  1254
lemma inverse_negative_imp_negative:
nipkow@23482
  1255
assumes inv_less_0: "inverse a < 0" and nz:  "a \<noteq> 0"
nipkow@23482
  1256
shows "a < (0::'a::ordered_field)"
wenzelm@23389
  1257
proof -
paulson@14277
  1258
  have "inverse (inverse a) < 0"
wenzelm@23389
  1259
    using inv_less_0 by (rule negative_imp_inverse_negative)
nipkow@23482
  1260
  thus "a < 0" using nz by (simp add: nonzero_inverse_inverse_eq)
wenzelm@23389
  1261
qed
paulson@14277
  1262
paulson@14277
  1263
lemma inverse_negative_iff_negative [simp]:
nipkow@23482
  1264
  "(inverse a < 0) = (a < (0::'a::{ordered_field,division_by_zero}))"
haftmann@21328
  1265
apply (cases "a = 0", simp)
paulson@14277
  1266
apply (blast intro: inverse_negative_imp_negative negative_imp_inverse_negative)
paulson@14277
  1267
done
paulson@14277
  1268
paulson@14277
  1269
lemma inverse_nonnegative_iff_nonnegative [simp]:
nipkow@23482
  1270
  "(0 \<le> inverse a) = (0 \<le> (a::'a::{ordered_field,division_by_zero}))"
paulson@14277
  1271
by (simp add: linorder_not_less [symmetric])
paulson@14277
  1272
paulson@14277
  1273
lemma inverse_nonpositive_iff_nonpositive [simp]:
nipkow@23482
  1274
  "(inverse a \<le> 0) = (a \<le> (0::'a::{ordered_field,division_by_zero}))"
paulson@14277
  1275
by (simp add: linorder_not_less [symmetric])
paulson@14277
  1276
chaieb@23406
  1277
lemma ordered_field_no_lb: "\<forall> x. \<exists>y. y < (x::'a::ordered_field)"
chaieb@23406
  1278
proof
chaieb@23406
  1279
  fix x::'a
chaieb@23406
  1280
  have m1: "- (1::'a) < 0" by simp
chaieb@23406
  1281
  from add_strict_right_mono[OF m1, where c=x] 
chaieb@23406
  1282
  have "(- 1) + x < x" by simp
chaieb@23406
  1283
  thus "\<exists>y. y < x" by blast
chaieb@23406
  1284
qed
chaieb@23406
  1285
chaieb@23406
  1286
lemma ordered_field_no_ub: "\<forall> x. \<exists>y. y > (x::'a::ordered_field)"
chaieb@23406
  1287
proof
chaieb@23406
  1288
  fix x::'a
chaieb@23406
  1289
  have m1: " (1::'a) > 0" by simp
chaieb@23406
  1290
  from add_strict_right_mono[OF m1, where c=x] 
chaieb@23406
  1291
  have "1 + x > x" by simp
chaieb@23406
  1292
  thus "\<exists>y. y > x" by blast
chaieb@23406
  1293
qed
paulson@14277
  1294
paulson@14277
  1295
subsection{*Anti-Monotonicity of @{term inverse}*}
paulson@14277
  1296
paulson@14268
  1297
lemma less_imp_inverse_less:
nipkow@23482
  1298
assumes less: "a < b" and apos:  "0 < a"
nipkow@23482
  1299
shows "inverse b < inverse (a::'a::ordered_field)"
nipkow@23482
  1300
proof (rule ccontr)
paulson@14268
  1301
  assume "~ inverse b < inverse a"
paulson@14268
  1302
  hence "inverse a \<le> inverse b"
paulson@14268
  1303
    by (simp add: linorder_not_less)
paulson@14268
  1304
  hence "~ (a < b)"
paulson@14268
  1305
    by (simp add: linorder_not_less inverse_le_imp_le [OF _ apos])
paulson@14268
  1306
  thus False
paulson@14268
  1307
    by (rule notE [OF _ less])
nipkow@23482
  1308
qed
paulson@14268
  1309
paulson@14268
  1310
lemma inverse_less_imp_less:
nipkow@23482
  1311
  "[|inverse a < inverse b; 0 < a|] ==> b < (a::'a::ordered_field)"
paulson@14268
  1312
apply (simp add: order_less_le [of "inverse a"] order_less_le [of "b"])
paulson@14268
  1313
apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq) 
paulson@14268
  1314
done
paulson@14268
  1315
paulson@14268
  1316
text{*Both premises are essential. Consider -1 and 1.*}
paulson@24286
  1317
lemma inverse_less_iff_less [simp,noatp]:
nipkow@23482
  1318
  "[|0 < a; 0 < b|] ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
paulson@14268
  1319
by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less) 
paulson@14268
  1320
paulson@14268
  1321
lemma le_imp_inverse_le:
nipkow@23482
  1322
  "[|a \<le> b; 0 < a|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
nipkow@23482
  1323
by (force simp add: order_le_less less_imp_inverse_less)
paulson@14268
  1324
paulson@24286
  1325
lemma inverse_le_iff_le [simp,noatp]:
nipkow@23482
  1326
 "[|0 < a; 0 < b|] ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
paulson@14268
  1327
by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le) 
paulson@14268
  1328
paulson@14268
  1329
paulson@14268
  1330
text{*These results refer to both operands being negative.  The opposite-sign
paulson@14268
  1331
case is trivial, since inverse preserves signs.*}
paulson@14268
  1332
lemma inverse_le_imp_le_neg:
nipkow@23482
  1333
  "[|inverse a \<le> inverse b; b < 0|] ==> b \<le> (a::'a::ordered_field)"
nipkow@23482
  1334
apply (rule classical) 
nipkow@23482
  1335
apply (subgoal_tac "a < 0") 
nipkow@23482
  1336
 prefer 2 apply (force simp add: linorder_not_le intro: order_less_trans) 
nipkow@23482
  1337
apply (insert inverse_le_imp_le [of "-b" "-a"])
nipkow@23482
  1338
apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
nipkow@23482
  1339
done
paulson@14268
  1340
paulson@14268
  1341
lemma less_imp_inverse_less_neg:
paulson@14268
  1342
   "[|a < b; b < 0|] ==> inverse b < inverse (a::'a::ordered_field)"
nipkow@23482
  1343
apply (subgoal_tac "a < 0") 
nipkow@23482
  1344
 prefer 2 apply (blast intro: order_less_trans) 
nipkow@23482
  1345
apply (insert less_imp_inverse_less [of "-b" "-a"])
nipkow@23482
  1346
apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
nipkow@23482
  1347
done
paulson@14268
  1348
paulson@14268
  1349
lemma inverse_less_imp_less_neg:
paulson@14268
  1350
   "[|inverse a < inverse b; b < 0|] ==> b < (a::'a::ordered_field)"
nipkow@23482
  1351
apply (rule classical) 
nipkow@23482
  1352
apply (subgoal_tac "a < 0") 
nipkow@23482
  1353
 prefer 2
nipkow@23482
  1354
 apply (force simp add: linorder_not_less intro: order_le_less_trans) 
nipkow@23482
  1355
apply (insert inverse_less_imp_less [of "-b" "-a"])
nipkow@23482
  1356
apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
nipkow@23482
  1357
done
paulson@14268
  1358
paulson@24286
  1359
lemma inverse_less_iff_less_neg [simp,noatp]:
nipkow@23482
  1360
  "[|a < 0; b < 0|] ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
nipkow@23482
  1361
apply (insert inverse_less_iff_less [of "-b" "-a"])
nipkow@23482
  1362
apply (simp del: inverse_less_iff_less 
nipkow@23482
  1363
            add: order_less_imp_not_eq nonzero_inverse_minus_eq)
nipkow@23482
  1364
done
paulson@14268
  1365
paulson@14268
  1366
lemma le_imp_inverse_le_neg:
nipkow@23482
  1367
  "[|a \<le> b; b < 0|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
nipkow@23482
  1368
by (force simp add: order_le_less less_imp_inverse_less_neg)
paulson@14268
  1369
paulson@24286
  1370
lemma inverse_le_iff_le_neg [simp,noatp]:
nipkow@23482
  1371
 "[|a < 0; b < 0|] ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
paulson@14268
  1372
by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg) 
paulson@14265
  1373
paulson@14277
  1374
paulson@14365
  1375
subsection{*Inverses and the Number One*}
paulson@14365
  1376
paulson@14365
  1377
lemma one_less_inverse_iff:
nipkow@23482
  1378
  "(1 < inverse x) = (0 < x & x < (1::'a::{ordered_field,division_by_zero}))"
nipkow@23482
  1379
proof cases
paulson@14365
  1380
  assume "0 < x"
paulson@14365
  1381
    with inverse_less_iff_less [OF zero_less_one, of x]
paulson@14365
  1382
    show ?thesis by simp
paulson@14365
  1383
next
paulson@14365
  1384
  assume notless: "~ (0 < x)"
paulson@14365
  1385
  have "~ (1 < inverse x)"
paulson@14365
  1386
  proof
paulson@14365
  1387
    assume "1 < inverse x"
paulson@14365
  1388
    also with notless have "... \<le> 0" by (simp add: linorder_not_less)
paulson@14365
  1389
    also have "... < 1" by (rule zero_less_one) 
paulson@14365
  1390
    finally show False by auto
paulson@14365
  1391
  qed
paulson@14365
  1392
  with notless show ?thesis by simp
paulson@14365
  1393
qed
paulson@14365
  1394
paulson@14365
  1395
lemma inverse_eq_1_iff [simp]:
nipkow@23482
  1396
  "(inverse x = 1) = (x = (1::'a::{field,division_by_zero}))"
paulson@14365
  1397
by (insert inverse_eq_iff_eq [of x 1], simp) 
paulson@14365
  1398
paulson@14365
  1399
lemma one_le_inverse_iff:
nipkow@23482
  1400
  "(1 \<le> inverse x) = (0 < x & x \<le> (1::'a::{ordered_field,division_by_zero}))"
paulson@14365
  1401
by (force simp add: order_le_less one_less_inverse_iff zero_less_one 
paulson@14365
  1402
                    eq_commute [of 1]) 
paulson@14365
  1403
paulson@14365
  1404
lemma inverse_less_1_iff:
nipkow@23482
  1405
  "(inverse x < 1) = (x \<le> 0 | 1 < (x::'a::{ordered_field,division_by_zero}))"
paulson@14365
  1406
by (simp add: linorder_not_le [symmetric] one_le_inverse_iff) 
paulson@14365
  1407
paulson@14365
  1408
lemma inverse_le_1_iff:
nipkow@23482
  1409
  "(inverse x \<le> 1) = (x \<le> 0 | 1 \<le> (x::'a::{ordered_field,division_by_zero}))"
paulson@14365
  1410
by (simp add: linorder_not_less [symmetric] one_less_inverse_iff) 
paulson@14365
  1411
wenzelm@23389
  1412
paulson@14288
  1413
subsection{*Simplification of Inequalities Involving Literal Divisors*}
paulson@14288
  1414
paulson@14288
  1415
lemma pos_le_divide_eq: "0 < (c::'a::ordered_field) ==> (a \<le> b/c) = (a*c \<le> b)"
paulson@14288
  1416
proof -
paulson@14288
  1417
  assume less: "0<c"
paulson@14288
  1418
  hence "(a \<le> b/c) = (a*c \<le> (b/c)*c)"
paulson@14288
  1419
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
paulson@14288
  1420
  also have "... = (a*c \<le> b)"
paulson@14288
  1421
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
paulson@14288
  1422
  finally show ?thesis .
paulson@14288
  1423
qed
paulson@14288
  1424
paulson@14288
  1425
lemma neg_le_divide_eq: "c < (0::'a::ordered_field) ==> (a \<le> b/c) = (b \<le> a*c)"
paulson@14288
  1426
proof -
paulson@14288
  1427
  assume less: "c<0"
paulson@14288
  1428
  hence "(a \<le> b/c) = ((b/c)*c \<le> a*c)"
paulson@14288
  1429
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
paulson@14288
  1430
  also have "... = (b \<le> a*c)"
paulson@14288
  1431
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
paulson@14288
  1432
  finally show ?thesis .
paulson@14288
  1433
qed
paulson@14288
  1434
paulson@14288
  1435
lemma le_divide_eq:
paulson@14288
  1436
  "(a \<le> b/c) = 
paulson@14288
  1437
   (if 0 < c then a*c \<le> b
paulson@14288
  1438
             else if c < 0 then b \<le> a*c
paulson@14288
  1439
             else  a \<le> (0::'a::{ordered_field,division_by_zero}))"
haftmann@21328
  1440
apply (cases "c=0", simp) 
paulson@14288
  1441
apply (force simp add: pos_le_divide_eq neg_le_divide_eq linorder_neq_iff) 
paulson@14288
  1442
done
paulson@14288
  1443
paulson@14288
  1444
lemma pos_divide_le_eq: "0 < (c::'a::ordered_field) ==> (b/c \<le> a) = (b \<le> a*c)"
paulson@14288
  1445
proof -
paulson@14288
  1446
  assume less: "0<c"
paulson@14288
  1447
  hence "(b/c \<le> a) = ((b/c)*c \<le> a*c)"
paulson@14288
  1448
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
paulson@14288
  1449
  also have "... = (b \<le> a*c)"
paulson@14288
  1450
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
paulson@14288
  1451
  finally show ?thesis .
paulson@14288
  1452
qed
paulson@14288
  1453
paulson@14288
  1454
lemma neg_divide_le_eq: "c < (0::'a::ordered_field) ==> (b/c \<le> a) = (a*c \<le> b)"
paulson@14288
  1455
proof -
paulson@14288
  1456
  assume less: "c<0"
paulson@14288
  1457
  hence "(b/c \<le> a) = (a*c \<le> (b/c)*c)"
paulson@14288
  1458
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
paulson@14288
  1459
  also have "... = (a*c \<le> b)"
paulson@14288
  1460
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
paulson@14288
  1461
  finally show ?thesis .
paulson@14288
  1462
qed
paulson@14288
  1463
paulson@14288
  1464
lemma divide_le_eq:
paulson@14288
  1465
  "(b/c \<le> a) = 
paulson@14288
  1466
   (if 0 < c then b \<le> a*c
paulson@14288
  1467
             else if c < 0 then a*c \<le> b
paulson@14288
  1468
             else 0 \<le> (a::'a::{ordered_field,division_by_zero}))"
haftmann@21328
  1469
apply (cases "c=0", simp) 
paulson@14288
  1470
apply (force simp add: pos_divide_le_eq neg_divide_le_eq linorder_neq_iff) 
paulson@14288
  1471
done
paulson@14288
  1472
paulson@14288
  1473
lemma pos_less_divide_eq:
paulson@14288
  1474
     "0 < (c::'a::ordered_field) ==> (a < b/c) = (a*c < b)"
paulson@14288
  1475
proof -
paulson@14288
  1476
  assume less: "0<c"
paulson@14288
  1477
  hence "(a < b/c) = (a*c < (b/c)*c)"
paulson@15234
  1478
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
paulson@14288
  1479
  also have "... = (a*c < b)"
paulson@14288
  1480
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
paulson@14288
  1481
  finally show ?thesis .
paulson@14288
  1482
qed
paulson@14288
  1483
paulson@14288
  1484
lemma neg_less_divide_eq:
paulson@14288
  1485
 "c < (0::'a::ordered_field) ==> (a < b/c) = (b < a*c)"
paulson@14288
  1486
proof -
paulson@14288
  1487
  assume less: "c<0"
paulson@14288
  1488
  hence "(a < b/c) = ((b/c)*c < a*c)"
paulson@15234
  1489
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
paulson@14288
  1490
  also have "... = (b < a*c)"
paulson@14288
  1491
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
paulson@14288
  1492
  finally show ?thesis .
paulson@14288
  1493
qed
paulson@14288
  1494
paulson@14288
  1495
lemma less_divide_eq:
paulson@14288
  1496
  "(a < b/c) = 
paulson@14288
  1497
   (if 0 < c then a*c < b
paulson@14288
  1498
             else if c < 0 then b < a*c
paulson@14288
  1499
             else  a < (0::'a::{ordered_field,division_by_zero}))"
haftmann@21328
  1500
apply (cases "c=0", simp) 
paulson@14288
  1501
apply (force simp add: pos_less_divide_eq neg_less_divide_eq linorder_neq_iff) 
paulson@14288
  1502
done
paulson@14288
  1503
paulson@14288
  1504
lemma pos_divide_less_eq:
paulson@14288
  1505
     "0 < (c::'a::ordered_field) ==> (b/c < a) = (b < a*c)"
paulson@14288
  1506
proof -
paulson@14288
  1507
  assume less: "0<c"
paulson@14288
  1508
  hence "(b/c < a) = ((b/c)*c < a*c)"
paulson@15234
  1509
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
paulson@14288
  1510
  also have "... = (b < a*c)"
paulson@14288
  1511
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
paulson@14288
  1512
  finally show ?thesis .
paulson@14288
  1513
qed
paulson@14288
  1514
paulson@14288
  1515
lemma neg_divide_less_eq:
paulson@14288
  1516
 "c < (0::'a::ordered_field) ==> (b/c < a) = (a*c < b)"
paulson@14288
  1517
proof -
paulson@14288
  1518
  assume less: "c<0"
paulson@14288
  1519
  hence "(b/c < a) = (a*c < (b/c)*c)"
paulson@15234
  1520
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
paulson@14288
  1521
  also have "... = (a*c < b)"
paulson@14288
  1522
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
paulson@14288
  1523
  finally show ?thesis .
paulson@14288
  1524
qed
paulson@14288
  1525
paulson@14288
  1526
lemma divide_less_eq:
paulson@14288
  1527
  "(b/c < a) = 
paulson@14288
  1528
   (if 0 < c then b < a*c
paulson@14288
  1529
             else if c < 0 then a*c < b
paulson@14288
  1530
             else 0 < (a::'a::{ordered_field,division_by_zero}))"
haftmann@21328
  1531
apply (cases "c=0", simp) 
paulson@14288
  1532
apply (force simp add: pos_divide_less_eq neg_divide_less_eq linorder_neq_iff) 
paulson@14288
  1533
done
paulson@14288
  1534
nipkow@23482
  1535
nipkow@23482
  1536
subsection{*Field simplification*}
nipkow@23482
  1537
nipkow@23482
  1538
text{* Lemmas @{text field_simps} multiply with denominators in
nipkow@23482
  1539
in(equations) if they can be proved to be non-zero (for equations) or
nipkow@23482
  1540
positive/negative (for inequations). *}
paulson@14288
  1541
nipkow@23482
  1542
lemmas field_simps = field_eq_simps
nipkow@23482
  1543
  (* multiply ineqn *)
nipkow@23482
  1544
  pos_divide_less_eq neg_divide_less_eq
nipkow@23482
  1545
  pos_less_divide_eq neg_less_divide_eq
nipkow@23482
  1546
  pos_divide_le_eq neg_divide_le_eq
nipkow@23482
  1547
  pos_le_divide_eq neg_le_divide_eq
paulson@14288
  1548
nipkow@23482
  1549
text{* Lemmas @{text sign_simps} is a first attempt to automate proofs
nipkow@23483
  1550
of positivity/negativity needed for @{text field_simps}. Have not added @{text
nipkow@23482
  1551
sign_simps} to @{text field_simps} because the former can lead to case
nipkow@23482
  1552
explosions. *}
paulson@14288
  1553
nipkow@23482
  1554
lemmas sign_simps = group_simps
nipkow@23482
  1555
  zero_less_mult_iff  mult_less_0_iff
paulson@14288
  1556
nipkow@23482
  1557
(* Only works once linear arithmetic is installed:
nipkow@23482
  1558
text{*An example:*}
nipkow@23482
  1559
lemma fixes a b c d e f :: "'a::ordered_field"
nipkow@23482
  1560
shows "\<lbrakk>a>b; c<d; e<f; 0 < u \<rbrakk> \<Longrightarrow>
nipkow@23482
  1561
 ((a-b)*(c-d)*(e-f))/((c-d)*(e-f)*(a-b)) <
nipkow@23482
  1562
 ((e-f)*(a-b)*(c-d))/((e-f)*(a-b)*(c-d)) + u"
nipkow@23482
  1563
apply(subgoal_tac "(c-d)*(e-f)*(a-b) > 0")
nipkow@23482
  1564
 prefer 2 apply(simp add:sign_simps)
nipkow@23482
  1565
apply(subgoal_tac "(c-d)*(e-f)*(a-b)*u > 0")
nipkow@23482
  1566
 prefer 2 apply(simp add:sign_simps)
nipkow@23482
  1567
apply(simp add:field_simps)
avigad@16775
  1568
done
nipkow@23482
  1569
*)
avigad@16775
  1570
wenzelm@23389
  1571
avigad@16775
  1572
subsection{*Division and Signs*}
avigad@16775
  1573
avigad@16775
  1574
lemma zero_less_divide_iff:
avigad@16775
  1575
     "((0::'a::{ordered_field,division_by_zero}) < a/b) = (0 < a & 0 < b | a < 0 & b < 0)"
avigad@16775
  1576
by (simp add: divide_inverse zero_less_mult_iff)
avigad@16775
  1577
avigad@16775
  1578
lemma divide_less_0_iff:
avigad@16775
  1579
     "(a/b < (0::'a::{ordered_field,division_by_zero})) = 
avigad@16775
  1580
      (0 < a & b < 0 | a < 0 & 0 < b)"
avigad@16775
  1581
by (simp add: divide_inverse mult_less_0_iff)
avigad@16775
  1582
avigad@16775
  1583
lemma zero_le_divide_iff:
avigad@16775
  1584
     "((0::'a::{ordered_field,division_by_zero}) \<le> a/b) =
avigad@16775
  1585
      (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
avigad@16775
  1586
by (simp add: divide_inverse zero_le_mult_iff)
avigad@16775
  1587
avigad@16775
  1588
lemma divide_le_0_iff:
avigad@16775
  1589
     "(a/b \<le> (0::'a::{ordered_field,division_by_zero})) =
avigad@16775
  1590
      (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
avigad@16775
  1591
by (simp add: divide_inverse mult_le_0_iff)
avigad@16775
  1592
paulson@24286
  1593
lemma divide_eq_0_iff [simp,noatp]:
avigad@16775
  1594
     "(a/b = 0) = (a=0 | b=(0::'a::{field,division_by_zero}))"
nipkow@23482
  1595
by (simp add: divide_inverse)
avigad@16775
  1596
nipkow@23482
  1597
lemma divide_pos_pos:
nipkow@23482
  1598
  "0 < (x::'a::ordered_field) ==> 0 < y ==> 0 < x / y"
nipkow@23482
  1599
by(simp add:field_simps)
nipkow@23482
  1600
avigad@16775
  1601
nipkow@23482
  1602
lemma divide_nonneg_pos:
nipkow@23482
  1603
  "0 <= (x::'a::ordered_field) ==> 0 < y ==> 0 <= x / y"
nipkow@23482
  1604
by(simp add:field_simps)
avigad@16775
  1605
nipkow@23482
  1606
lemma divide_neg_pos:
nipkow@23482
  1607
  "(x::'a::ordered_field) < 0 ==> 0 < y ==> x / y < 0"
nipkow@23482
  1608
by(simp add:field_simps)
avigad@16775
  1609
nipkow@23482
  1610
lemma divide_nonpos_pos:
nipkow@23482
  1611
  "(x::'a::ordered_field) <= 0 ==> 0 < y ==> x / y <= 0"
nipkow@23482
  1612
by(simp add:field_simps)
avigad@16775
  1613
nipkow@23482
  1614
lemma divide_pos_neg:
nipkow@23482
  1615
  "0 < (x::'a::ordered_field) ==> y < 0 ==> x / y < 0"
nipkow@23482
  1616
by(simp add:field_simps)
avigad@16775
  1617
nipkow@23482
  1618
lemma divide_nonneg_neg:
nipkow@23482
  1619
  "0 <= (x::'a::ordered_field) ==> y < 0 ==> x / y <= 0" 
nipkow@23482
  1620
by(simp add:field_simps)
avigad@16775
  1621
nipkow@23482
  1622
lemma divide_neg_neg:
nipkow@23482
  1623
  "(x::'a::ordered_field) < 0 ==> y < 0 ==> 0 < x / y"
nipkow@23482
  1624
by(simp add:field_simps)
avigad@16775
  1625
nipkow@23482
  1626
lemma divide_nonpos_neg:
nipkow@23482
  1627
  "(x::'a::ordered_field) <= 0 ==> y < 0 ==> 0 <= x / y"
nipkow@23482
  1628
by(simp add:field_simps)
paulson@15234
  1629
wenzelm@23389
  1630
paulson@14288
  1631
subsection{*Cancellation Laws for Division*}
paulson@14288
  1632
paulson@24286
  1633
lemma divide_cancel_right [simp,noatp]:
paulson@14288
  1634
     "(a/c = b/c) = (c = 0 | a = (b::'a::{field,division_by_zero}))"
nipkow@23482
  1635
apply (cases "c=0", simp)
nipkow@23496
  1636
apply (simp add: divide_inverse)
paulson@14288
  1637
done
paulson@14288
  1638
paulson@24286
  1639
lemma divide_cancel_left [simp,noatp]:
paulson@14288
  1640
     "(c/a = c/b) = (c = 0 | a = (b::'a::{field,division_by_zero}))" 
nipkow@23482
  1641
apply (cases "c=0", simp)
nipkow@23496
  1642
apply (simp add: divide_inverse)
paulson@14288
  1643
done
paulson@14288
  1644
wenzelm@23389
  1645
paulson@14353
  1646
subsection {* Division and the Number One *}
paulson@14353
  1647
paulson@14353
  1648
text{*Simplify expressions equated with 1*}
paulson@24286
  1649
lemma divide_eq_1_iff [simp,noatp]:
paulson@14353
  1650
     "(a/b = 1) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
nipkow@23482
  1651
apply (cases "b=0", simp)
nipkow@23482
  1652
apply (simp add: right_inverse_eq)
paulson@14353
  1653
done
paulson@14353
  1654
paulson@24286
  1655
lemma one_eq_divide_iff [simp,noatp]:
paulson@14353
  1656
     "(1 = a/b) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
nipkow@23482
  1657
by (simp add: eq_commute [of 1])
paulson@14353
  1658
paulson@24286
  1659
lemma zero_eq_1_divide_iff [simp,noatp]:
paulson@14353
  1660
     "((0::'a::{ordered_field,division_by_zero}) = 1/a) = (a = 0)"
nipkow@23482
  1661
apply (cases "a=0", simp)
nipkow@23482
  1662
apply (auto simp add: nonzero_eq_divide_eq)
paulson@14353
  1663
done
paulson@14353
  1664
paulson@24286
  1665
lemma one_divide_eq_0_iff [simp,noatp]:
paulson@14353
  1666
     "(1/a = (0::'a::{ordered_field,division_by_zero})) = (a = 0)"
nipkow@23482
  1667
apply (cases "a=0", simp)
nipkow@23482
  1668
apply (insert zero_neq_one [THEN not_sym])
nipkow@23482
  1669
apply (auto simp add: nonzero_divide_eq_eq)
paulson@14353
  1670
done
paulson@14353
  1671
paulson@14353
  1672
text{*Simplify expressions such as @{text "0 < 1/x"} to @{text "0 < x"}*}
paulson@18623
  1673
lemmas zero_less_divide_1_iff = zero_less_divide_iff [of 1, simplified]
paulson@18623
  1674
lemmas divide_less_0_1_iff = divide_less_0_iff [of 1, simplified]
paulson@18623
  1675
lemmas zero_le_divide_1_iff = zero_le_divide_iff [of 1, simplified]
paulson@18623
  1676
lemmas divide_le_0_1_iff = divide_le_0_iff [of 1, simplified]
paulson@17085
  1677
paulson@17085
  1678
declare zero_less_divide_1_iff [simp]
paulson@24286
  1679
declare divide_less_0_1_iff [simp,noatp]
paulson@17085
  1680
declare zero_le_divide_1_iff [simp]
paulson@24286
  1681
declare divide_le_0_1_iff [simp,noatp]
paulson@14353
  1682
wenzelm@23389
  1683
paulson@14293
  1684
subsection {* Ordering Rules for Division *}
paulson@14293
  1685
paulson@14293
  1686
lemma divide_strict_right_mono:
paulson@14293
  1687
     "[|a < b; 0 < c|] ==> a / c < b / (c::'a::ordered_field)"
paulson@14293
  1688
by (simp add: order_less_imp_not_eq2 divide_inverse mult_strict_right_mono 
nipkow@23482
  1689
              positive_imp_inverse_positive)
paulson@14293
  1690
paulson@14293
  1691
lemma divide_right_mono:
paulson@14293
  1692
     "[|a \<le> b; 0 \<le> c|] ==> a/c \<le> b/(c::'a::{ordered_field,division_by_zero})"
nipkow@23482
  1693
by (force simp add: divide_strict_right_mono order_le_less)
paulson@14293
  1694
avigad@16775
  1695
lemma divide_right_mono_neg: "(a::'a::{division_by_zero,ordered_field}) <= b 
avigad@16775
  1696
    ==> c <= 0 ==> b / c <= a / c"
nipkow@23482
  1697
apply (drule divide_right_mono [of _ _ "- c"])
nipkow@23482
  1698
apply auto
avigad@16775
  1699
done
avigad@16775
  1700
avigad@16775
  1701
lemma divide_strict_right_mono_neg:
avigad@16775
  1702
     "[|b < a; c < 0|] ==> a / c < b / (c::'a::ordered_field)"
nipkow@23482
  1703
apply (drule divide_strict_right_mono [of _ _ "-c"], simp)
nipkow@23482
  1704
apply (simp add: order_less_imp_not_eq nonzero_minus_divide_right [symmetric])
avigad@16775
  1705
done
paulson@14293
  1706
paulson@14293
  1707
text{*The last premise ensures that @{term a} and @{term b} 
paulson@14293
  1708
      have the same sign*}
paulson@14293
  1709
lemma divide_strict_left_mono:
nipkow@23482
  1710
  "[|b < a; 0 < c; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
nipkow@23482
  1711
by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_strict_right_mono)
paulson@14293
  1712
paulson@14293
  1713
lemma divide_left_mono:
nipkow@23482
  1714
  "[|b \<le> a; 0 \<le> c; 0 < a*b|] ==> c / a \<le> c / (b::'a::ordered_field)"
nipkow@23482
  1715
by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_right_mono)
paulson@14293
  1716
avigad@16775
  1717
lemma divide_left_mono_neg: "(a::'a::{division_by_zero,ordered_field}) <= b 
avigad@16775
  1718
    ==> c <= 0 ==> 0 < a * b ==> c / a <= c / b"
avigad@16775
  1719
  apply (drule divide_left_mono [of _ _ "- c"])
avigad@16775
  1720
  apply (auto simp add: mult_commute)
avigad@16775
  1721
done
avigad@16775
  1722
paulson@14293
  1723
lemma divide_strict_left_mono_neg:
nipkow@23482
  1724
  "[|a < b; c < 0; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
nipkow@23482
  1725
by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_strict_right_mono_neg)
nipkow@23482
  1726
paulson@14293
  1727
avigad@16775
  1728
text{*Simplify quotients that are compared with the value 1.*}
avigad@16775
  1729
paulson@24286
  1730
lemma le_divide_eq_1 [noatp]:
avigad@16775
  1731
  fixes a :: "'a :: {ordered_field,division_by_zero}"
avigad@16775
  1732
  shows "(1 \<le> b / a) = ((0 < a & a \<le> b) | (a < 0 & b \<le> a))"
avigad@16775
  1733
by (auto simp add: le_divide_eq)
avigad@16775
  1734
paulson@24286
  1735
lemma divide_le_eq_1 [noatp]:
avigad@16775
  1736
  fixes a :: "'a :: {ordered_field,division_by_zero}"
avigad@16775
  1737
  shows "(b / a \<le> 1) = ((0 < a & b \<le> a) | (a < 0 & a \<le> b) | a=0)"
avigad@16775
  1738
by (auto simp add: divide_le_eq)
avigad@16775
  1739
paulson@24286
  1740
lemma less_divide_eq_1 [noatp]:
avigad@16775
  1741
  fixes a :: "'a :: {ordered_field,division_by_zero}"
avigad@16775
  1742
  shows "(1 < b / a) = ((0 < a & a < b) | (a < 0 & b < a))"
avigad@16775
  1743
by (auto simp add: less_divide_eq)
avigad@16775
  1744
paulson@24286
  1745
lemma divide_less_eq_1 [noatp]:
avigad@16775
  1746
  fixes a :: "'a :: {ordered_field,division_by_zero}"
avigad@16775
  1747
  shows "(b / a < 1) = ((0 < a & b < a) | (a < 0 & a < b) | a=0)"
avigad@16775
  1748
by (auto simp add: divide_less_eq)
avigad@16775
  1749
wenzelm@23389
  1750
avigad@16775
  1751
subsection{*Conditional Simplification Rules: No Case Splits*}
avigad@16775
  1752
paulson@24286
  1753
lemma le_divide_eq_1_pos [simp,noatp]:
avigad@16775
  1754
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  1755
  shows "0 < a \<Longrightarrow> (1 \<le> b/a) = (a \<le> b)"
avigad@16775
  1756
by (auto simp add: le_divide_eq)
avigad@16775
  1757
paulson@24286
  1758
lemma le_divide_eq_1_neg [simp,noatp]:
avigad@16775
  1759
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  1760
  shows "a < 0 \<Longrightarrow> (1 \<le> b/a) = (b \<le> a)"
avigad@16775
  1761
by (auto simp add: le_divide_eq)
avigad@16775
  1762
paulson@24286
  1763
lemma divide_le_eq_1_pos [simp,noatp]:
avigad@16775
  1764
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  1765
  shows "0 < a \<Longrightarrow> (b/a \<le> 1) = (b \<le> a)"
avigad@16775
  1766
by (auto simp add: divide_le_eq)
avigad@16775
  1767
paulson@24286
  1768
lemma divide_le_eq_1_neg [simp,noatp]:
avigad@16775
  1769
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  1770
  shows "a < 0 \<Longrightarrow> (b/a \<le> 1) = (a \<le> b)"
avigad@16775
  1771
by (auto simp add: divide_le_eq)
avigad@16775
  1772
paulson@24286
  1773
lemma less_divide_eq_1_pos [simp,noatp]:
avigad@16775
  1774
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  1775
  shows "0 < a \<Longrightarrow> (1 < b/a) = (a < b)"
avigad@16775
  1776
by (auto simp add: less_divide_eq)
avigad@16775
  1777
paulson@24286
  1778
lemma less_divide_eq_1_neg [simp,noatp]:
avigad@16775
  1779
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  1780
  shows "a < 0 \<Longrightarrow> (1 < b/a) = (b < a)"
avigad@16775
  1781
by (auto simp add: less_divide_eq)
avigad@16775
  1782
paulson@24286
  1783
lemma divide_less_eq_1_pos [simp,noatp]:
avigad@16775
  1784
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  1785
  shows "0 < a \<Longrightarrow> (b/a < 1) = (b < a)"
paulson@18649
  1786
by (auto simp add: divide_less_eq)
paulson@18649
  1787
paulson@24286
  1788
lemma divide_less_eq_1_neg [simp,noatp]:
paulson@18649
  1789
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  1790
  shows "a < 0 \<Longrightarrow> b/a < 1 <-> a < b"
avigad@16775
  1791
by (auto simp add: divide_less_eq)
avigad@16775
  1792
paulson@24286
  1793
lemma eq_divide_eq_1 [simp,noatp]:
avigad@16775
  1794
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  1795
  shows "(1 = b/a) = ((a \<noteq> 0 & a = b))"
avigad@16775
  1796
by (auto simp add: eq_divide_eq)
avigad@16775
  1797
paulson@24286
  1798
lemma divide_eq_eq_1 [simp,noatp]:
avigad@16775
  1799
  fixes a :: "'a :: {ordered_field,division_by_zero}"
paulson@18649
  1800
  shows "(b/a = 1) = ((a \<noteq> 0 & a = b))"
avigad@16775
  1801
by (auto simp add: divide_eq_eq)
avigad@16775
  1802
wenzelm@23389
  1803
avigad@16775
  1804
subsection {* Reasoning about inequalities with division *}
avigad@16775
  1805
avigad@16775
  1806
lemma mult_right_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1
avigad@16775
  1807
    ==> x * y <= x"
avigad@16775
  1808
  by (auto simp add: mult_compare_simps);
avigad@16775
  1809
avigad@16775
  1810
lemma mult_left_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1
avigad@16775
  1811
    ==> y * x <= x"
avigad@16775
  1812
  by (auto simp add: mult_compare_simps);
avigad@16775
  1813
avigad@16775
  1814
lemma mult_imp_div_pos_le: "0 < (y::'a::ordered_field) ==> x <= z * y ==>
avigad@16775
  1815
    x / y <= z";
avigad@16775
  1816
  by (subst pos_divide_le_eq, assumption+);
avigad@16775
  1817
avigad@16775
  1818
lemma mult_imp_le_div_pos: "0 < (y::'a::ordered_field) ==> z * y <= x ==>
nipkow@23482
  1819
    z <= x / y"
nipkow@23482
  1820
by(simp add:field_simps)
avigad@16775
  1821
avigad@16775
  1822
lemma mult_imp_div_pos_less: "0 < (y::'a::ordered_field) ==> x < z * y ==>
avigad@16775
  1823
    x / y < z"
nipkow@23482
  1824
by(simp add:field_simps)
avigad@16775
  1825
avigad@16775
  1826
lemma mult_imp_less_div_pos: "0 < (y::'a::ordered_field) ==> z * y < x ==>
avigad@16775
  1827
    z < x / y"
nipkow@23482
  1828
by(simp add:field_simps)
avigad@16775
  1829
avigad@16775
  1830
lemma frac_le: "(0::'a::ordered_field) <= x ==> 
avigad@16775
  1831
    x <= y ==> 0 < w ==> w <= z  ==> x / z <= y / w"
avigad@16775
  1832
  apply (rule mult_imp_div_pos_le)
avigad@16775
  1833
  apply simp;
avigad@16775
  1834
  apply (subst times_divide_eq_left);
avigad@16775
  1835
  apply (rule mult_imp_le_div_pos, assumption)
avigad@16775
  1836
  apply (rule mult_mono)
avigad@16775
  1837
  apply simp_all
paulson@14293
  1838
done
paulson@14293
  1839
avigad@16775
  1840
lemma frac_less: "(0::'a::ordered_field) <= x ==> 
avigad@16775
  1841
    x < y ==> 0 < w ==> w <= z  ==> x / z < y / w"
avigad@16775
  1842
  apply (rule mult_imp_div_pos_less)
avigad@16775
  1843
  apply simp;
avigad@16775
  1844
  apply (subst times_divide_eq_left);
avigad@16775
  1845
  apply (rule mult_imp_less_div_pos, assumption)
avigad@16775
  1846
  apply (erule mult_less_le_imp_less)
avigad@16775
  1847
  apply simp_all
avigad@16775
  1848
done
avigad@16775
  1849
avigad@16775
  1850
lemma frac_less2: "(0::'a::ordered_field) < x ==> 
avigad@16775
  1851
    x <= y ==> 0 < w ==> w < z  ==> x / z < y / w"
avigad@16775
  1852
  apply (rule mult_imp_div_pos_less)
avigad@16775
  1853
  apply simp_all
avigad@16775
  1854
  apply (subst times_divide_eq_left);
avigad@16775
  1855
  apply (rule mult_imp_less_div_pos, assumption)
avigad@16775
  1856
  apply (erule mult_le_less_imp_less)
avigad@16775
  1857
  apply simp_all
avigad@16775
  1858
done
avigad@16775
  1859
avigad@16775
  1860
text{*It's not obvious whether these should be simprules or not. 
avigad@16775
  1861
  Their effect is to gather terms into one big fraction, like
avigad@16775
  1862
  a*b*c / x*y*z. The rationale for that is unclear, but many proofs 
avigad@16775
  1863
  seem to need them.*}
avigad@16775
  1864
avigad@16775
  1865
declare times_divide_eq [simp]
paulson@14293
  1866
wenzelm@23389
  1867
paulson@14293
  1868
subsection {* Ordered Fields are Dense *}
paulson@14293
  1869
obua@14738
  1870
lemma less_add_one: "a < (a+1::'a::ordered_semidom)"
paulson@14293
  1871
proof -
obua@14738
  1872
  have "a+0 < (a+1::'a::ordered_semidom)"
nipkow@23482
  1873
    by (blast intro: zero_less_one add_strict_left_mono)
paulson@14293
  1874
  thus ?thesis by simp
paulson@14293
  1875
qed
paulson@14293
  1876
obua@14738
  1877
lemma zero_less_two: "0 < (1+1::'a::ordered_semidom)"
nipkow@23482
  1878
by (blast intro: order_less_trans zero_less_one less_add_one)
paulson@14365
  1879
paulson@14293
  1880
lemma less_half_sum: "a < b ==> a < (a+b) / (1+1::'a::ordered_field)"
nipkow@23482
  1881
by (simp add: field_simps zero_less_two)
paulson@14293
  1882
paulson@14293
  1883
lemma gt_half_sum: "a < b ==> (a+b)/(1+1::'a::ordered_field) < b"
nipkow@23482
  1884
by (simp add: field_simps zero_less_two)
paulson@14293
  1885
haftmann@24422
  1886
instance ordered_field < dense_linear_order
haftmann@24422
  1887
proof
haftmann@24422
  1888
  fix x y :: 'a
haftmann@24422
  1889
  have "x < x + 1" by simp
haftmann@24422
  1890
  then show "\<exists>y. x < y" .. 
haftmann@24422
  1891
  have "x - 1 < x" by simp
haftmann@24422
  1892
  then show "\<exists>y. y < x" ..
haftmann@24422
  1893
  show "x < y \<Longrightarrow> \<exists>z>x. z < y" by (blast intro!: less_half_sum gt_half_sum)
haftmann@24422
  1894
qed
paulson@14293
  1895
paulson@15234
  1896
paulson@14293
  1897
subsection {* Absolute Value *}
paulson@14293
  1898
obua@14738
  1899
lemma abs_one [simp]: "abs 1 = (1::'a::ordered_idom)"
nipkow@23477
  1900
by (simp add: abs_if zero_less_one [THEN order_less_not_sym])
paulson@14294
  1901
obua@14738
  1902
lemma abs_le_mult: "abs (a * b) \<le> (abs a) * (abs (b::'a::lordered_ring))" 
obua@14738
  1903
proof -
obua@14738
  1904
  let ?x = "pprt a * pprt b - pprt a * nprt b - nprt a * pprt b + nprt a * nprt b"
obua@14738
  1905
  let ?y = "pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
obua@14738
  1906
  have a: "(abs a) * (abs b) = ?x"
nipkow@23477
  1907
    by (simp only: abs_prts[of a] abs_prts[of b] ring_simps)
obua@14738
  1908
  {
obua@14738
  1909
    fix u v :: 'a
paulson@15481
  1910
    have bh: "\<lbrakk>u = a; v = b\<rbrakk> \<Longrightarrow> 
paulson@15481
  1911
              u * v = pprt a * pprt b + pprt a * nprt b + 
paulson@15481
  1912
                      nprt a * pprt b + nprt a * nprt b"
obua@14738
  1913
      apply (subst prts[of u], subst prts[of v])
nipkow@23477
  1914
      apply (simp add: ring_simps) 
obua@14738
  1915
      done
obua@14738
  1916
  }
obua@14738
  1917
  note b = this[OF refl[of a] refl[of b]]
obua@14738
  1918
  note addm = add_mono[of "0::'a" _ "0::'a", simplified]
obua@14738
  1919
  note addm2 = add_mono[of _ "0::'a" _ "0::'a", simplified]
obua@14738
  1920
  have xy: "- ?x <= ?y"
obua@14754
  1921
    apply (simp)
obua@14754
  1922
    apply (rule_tac y="0::'a" in order_trans)
nipkow@16568
  1923
    apply (rule addm2)
avigad@16775
  1924
    apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos)
nipkow@16568
  1925
    apply (rule addm)
avigad@16775
  1926
    apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos)
obua@14754
  1927
    done
obua@14738
  1928
  have yx: "?y <= ?x"
nipkow@16568
  1929
    apply (simp add:diff_def)
obua@14754
  1930
    apply (rule_tac y=0 in order_trans)
avigad@16775
  1931
    apply (rule addm2, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+)
avigad@16775
  1932
    apply (rule addm, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+)
obua@14738
  1933
    done
obua@14738
  1934
  have i1: "a*b <= abs a * abs b" by (simp only: a b yx)
obua@14738
  1935
  have i2: "- (abs a * abs b) <= a*b" by (simp only: a b xy)
obua@14738
  1936
  show ?thesis
obua@14738
  1937
    apply (rule abs_leI)
obua@14738
  1938
    apply (simp add: i1)
obua@14738
  1939
    apply (simp add: i2[simplified minus_le_iff])
obua@14738
  1940
    done
obua@14738
  1941
qed
paulson@14294
  1942
obua@14738
  1943
lemma abs_eq_mult: 
obua@14738
  1944
  assumes "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0)"
obua@14738
  1945
  shows "abs (a*b) = abs a * abs (b::'a::lordered_ring)"
obua@14738
  1946
proof -
obua@14738
  1947
  have s: "(0 <= a*b) | (a*b <= 0)"
obua@14738
  1948
    apply (auto)    
obua@14738
  1949
    apply (rule_tac split_mult_pos_le)
obua@14738
  1950
    apply (rule_tac contrapos_np[of "a*b <= 0"])
obua@14738
  1951
    apply (simp)
obua@14738
  1952
    apply (rule_tac split_mult_neg_le)
obua@14738
  1953
    apply (insert prems)
obua@14738
  1954
    apply (blast)
obua@14738
  1955
    done
obua@14738
  1956
  have mulprts: "a * b = (pprt a + nprt a) * (pprt b + nprt b)"
obua@14738
  1957
    by (simp add: prts[symmetric])
obua@14738
  1958
  show ?thesis
obua@14738
  1959
  proof cases
obua@14738
  1960
    assume "0 <= a * b"
obua@14738
  1961
    then show ?thesis
obua@14738
  1962
      apply (simp_all add: mulprts abs_prts)
obua@14738
  1963
      apply (insert prems)
obua@14754
  1964
      apply (auto simp add: 
nipkow@23477
  1965
	ring_simps 
obua@14754
  1966
	iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_zero_pprt]
nipkow@15197
  1967
	iff2imp[OF le_zero_iff_pprt_id] iff2imp[OF zero_le_iff_nprt_id])
avigad@16775
  1968
	apply(drule (1) mult_nonneg_nonpos[of a b], simp)
avigad@16775
  1969
	apply(drule (1) mult_nonneg_nonpos2[of b a], simp)
obua@14738
  1970
      done
obua@14738
  1971
  next
obua@14738
  1972
    assume "~(0 <= a*b)"
obua@14738
  1973
    with s have "a*b <= 0" by simp
obua@14738
  1974
    then show ?thesis
obua@14738
  1975
      apply (simp_all add: mulprts abs_prts)
obua@14738
  1976
      apply (insert prems)
nipkow@23477
  1977
      apply (auto simp add: ring_simps)
avigad@16775
  1978
      apply(drule (1) mult_nonneg_nonneg[of a b],simp)
avigad@16775
  1979
      apply(drule (1) mult_nonpos_nonpos[of a b],simp)
obua@14738
  1980
      done
obua@14738
  1981
  qed
obua@14738
  1982
qed
paulson@14294
  1983
obua@14738
  1984
lemma abs_mult: "abs (a * b) = abs a * abs (b::'a::ordered_idom)" 
obua@14738
  1985
by (simp add: abs_eq_mult linorder_linear)
paulson@14293
  1986
obua@14738
  1987
lemma abs_mult_self: "abs a * abs a = a * (a::'a::ordered_idom)"
obua@14738
  1988
by (simp add: abs_if) 
paulson@14294
  1989
paulson@14294
  1990
lemma nonzero_abs_inverse:
paulson@14294
  1991
     "a \<noteq> 0 ==> abs (inverse (a::'a::ordered_field)) = inverse (abs a)"
paulson@14294
  1992
apply (auto simp add: linorder_neq_iff abs_if nonzero_inverse_minus_eq 
paulson@14294
  1993
                      negative_imp_inverse_negative)
paulson@14294
  1994
apply (blast intro: positive_imp_inverse_positive elim: order_less_asym) 
paulson@14294
  1995
done
paulson@14294
  1996
paulson@14294
  1997
lemma abs_inverse [simp]:
paulson@14294
  1998
     "abs (inverse (a::'a::{ordered_field,division_by_zero})) = 
paulson@14294
  1999
      inverse (abs a)"
haftmann@21328
  2000
apply (cases "a=0", simp) 
paulson@14294
  2001
apply (simp add: nonzero_abs_inverse) 
paulson@14294
  2002
done
paulson@14294
  2003
paulson@14294
  2004
lemma nonzero_abs_divide:
paulson@14294
  2005
     "b \<noteq> 0 ==> abs (a / (b::'a::ordered_field)) = abs a / abs b"
paulson@14294
  2006
by (simp add: divide_inverse abs_mult nonzero_abs_inverse) 
paulson@14294
  2007
paulson@15234
  2008
lemma abs_divide [simp]:
paulson@14294
  2009
     "abs (a / (b::'a::{ordered_field,division_by_zero})) = abs a / abs b"
haftmann@21328
  2010
apply (cases "b=0", simp) 
paulson@14294
  2011
apply (simp add: nonzero_abs_divide) 
paulson@14294
  2012
done
paulson@14294
  2013
paulson@14294
  2014
lemma abs_mult_less:
obua@14738
  2015
     "[| abs a < c; abs b < d |] ==> abs a * abs b < c*(d::'a::ordered_idom)"
paulson@14294
  2016
proof -
paulson@14294
  2017
  assume ac: "abs a < c"
paulson@14294
  2018
  hence cpos: "0<c" by (blast intro: order_le_less_trans abs_ge_zero)
paulson@14294
  2019
  assume "abs b < d"
paulson@14294
  2020
  thus ?thesis by (simp add: ac cpos mult_strict_mono) 
paulson@14294
  2021
qed
paulson@14293
  2022
obua@14738
  2023
lemma eq_minus_self_iff: "(a = -a) = (a = (0::'a::ordered_idom))"
obua@14738
  2024
by (force simp add: order_eq_iff le_minus_self_iff minus_le_self_iff)
obua@14738
  2025
obua@14738
  2026
lemma less_minus_self_iff: "(a < -a) = (a < (0::'a::ordered_idom))"
obua@14738
  2027
by (simp add: order_less_le le_minus_self_iff eq_minus_self_iff)
obua@14738
  2028
obua@14738
  2029
lemma abs_less_iff: "(abs a < b) = (a < b & -a < (b::'a::ordered_idom))" 
obua@14738
  2030
apply (simp add: order_less_le abs_le_iff)  
obua@14738
  2031
apply (auto simp add: abs_if minus_le_self_iff eq_minus_self_iff)
obua@14738
  2032
apply (simp add: le_minus_self_iff linorder_neq_iff) 
obua@14738
  2033
done
obua@14738
  2034
avigad@16775
  2035
lemma abs_mult_pos: "(0::'a::ordered_idom) <= x ==> 
avigad@16775
  2036
    (abs y) * x = abs (y * x)";
avigad@16775
  2037
  apply (subst abs_mult);
avigad@16775
  2038
  apply simp;
avigad@16775
  2039
done;
avigad@16775
  2040
avigad@16775
  2041
lemma abs_div_pos: "(0::'a::{division_by_zero,ordered_field}) < y ==> 
avigad@16775
  2042
    abs x / y = abs (x / y)";
avigad@16775
  2043
  apply (subst abs_divide);
avigad@16775
  2044
  apply (simp add: order_less_imp_le);
avigad@16775
  2045
done;
avigad@16775
  2046
wenzelm@23389
  2047
obua@19404
  2048
subsection {* Bounds of products via negative and positive Part *}
obua@15178
  2049
obua@15580
  2050
lemma mult_le_prts:
obua@15580
  2051
  assumes
obua@15580
  2052
  "a1 <= (a::'a::lordered_ring)"
obua@15580
  2053
  "a <= a2"
obua@15580
  2054
  "b1 <= b"
obua@15580
  2055
  "b <= b2"
obua@15580
  2056
  shows
obua@15580
  2057
  "a * b <= pprt a2 * pprt b2 + pprt a1 * nprt b2 + nprt a2 * pprt b1 + nprt a1 * nprt b1"
obua@15580
  2058
proof - 
obua@15580
  2059
  have "a * b = (pprt a + nprt a) * (pprt b + nprt b)" 
obua@15580
  2060
    apply (subst prts[symmetric])+
obua@15580
  2061
    apply simp
obua@15580
  2062
    done
obua@15580
  2063
  then have "a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
nipkow@23477
  2064
    by (simp add: ring_simps)
obua@15580
  2065
  moreover have "pprt a * pprt b <= pprt a2 * pprt b2"
obua@15580
  2066
    by (simp_all add: prems mult_mono)
obua@15580
  2067
  moreover have "pprt a * nprt b <= pprt a1 * nprt b2"
obua@15580
  2068
  proof -
obua@15580
  2069
    have "pprt a * nprt b <= pprt a * nprt b2"
obua@15580
  2070
      by (simp add: mult_left_mono prems)
obua@15580
  2071
    moreover have "pprt a * nprt b2 <= pprt a1 * nprt b2"
obua@15580
  2072
      by (simp add: mult_right_mono_neg prems)
obua@15580
  2073
    ultimately show ?thesis
obua@15580
  2074
      by simp
obua@15580
  2075
  qed
obua@15580
  2076
  moreover have "nprt a * pprt b <= nprt a2 * pprt b1"
obua@15580
  2077
  proof - 
obua@15580
  2078
    have "nprt a * pprt b <= nprt a2 * pprt b"
obua@15580
  2079
      by (simp add: mult_right_mono prems)
obua@15580
  2080
    moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1"
obua@15580
  2081
      by (simp add: mult_left_mono_neg prems)
obua@15580
  2082
    ultimately show ?thesis
obua@15580
  2083
      by simp
obua@15580
  2084
  qed
obua@15580
  2085
  moreover have "nprt a * nprt b <= nprt a1 * nprt b1"
obua@15580
  2086
  proof -
obua@15580
  2087
    have "nprt a * nprt b <= nprt a * nprt b1"
obua@15580
  2088
      by (simp add: mult_left_mono_neg prems)
obua@15580
  2089
    moreover have "nprt a * nprt b1 <= nprt a1 * nprt b1"
obua@15580
  2090
      by (simp add: mult_right_mono_neg prems)
obua@15580
  2091
    ultimately show ?thesis
obua@15580
  2092
      by simp
obua@15580
  2093
  qed
obua@15580
  2094
  ultimately show ?thesis
obua@15580
  2095
    by - (rule add_mono | simp)+
obua@15580
  2096
qed
obua@19404
  2097
obua@19404
  2098
lemma mult_ge_prts:
obua@15178
  2099
  assumes
obua@19404
  2100
  "a1 <= (a::'a::lordered_ring)"
obua@19404
  2101
  "a <= a2"
obua@19404
  2102
  "b1 <= b"
obua@19404
  2103
  "b <= b2"
obua@15178
  2104
  shows
obua@19404
  2105
  "a * b >= nprt a1 * pprt b2 + nprt a2 * nprt b2 + pprt a1 * pprt b1 + pprt a2 * nprt b1"
obua@19404
  2106
proof - 
obua@19404
  2107
  from prems have a1:"- a2 <= -a" by auto
obua@19404
  2108
  from prems have a2: "-a <= -a1" by auto
obua@19404
  2109
  from mult_le_prts[of "-a2" "-a" "-a1" "b1" b "b2", OF a1 a2 prems(3) prems(4), simplified nprt_neg pprt_neg] 
obua@19404
  2110
  have le: "- (a * b) <= - nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1" by simp  
obua@19404
  2111
  then have "-(- nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1) <= a * b"
obua@19404
  2112
    by (simp only: minus_le_iff)
obua@19404
  2113
  then show ?thesis by simp
obua@15178
  2114
qed
obua@15178
  2115
wenzelm@23389
  2116
haftmann@22842
  2117
subsection {* Theorems for proof tools *}
haftmann@22842
  2118
paulson@24427
  2119
lemma add_mono_thms_ordered_semiring [noatp]:
haftmann@22842
  2120
  fixes i j k :: "'a\<Colon>pordered_ab_semigroup_add"
haftmann@22842
  2121
  shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
haftmann@22842
  2122
    and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
haftmann@22842
  2123
    and "i \<le> j \<and> k = l \<Longrightarrow> i + k \<le> j + l"
haftmann@22842
  2124
    and "i = j \<and> k = l \<Longrightarrow> i + k = j + l"
haftmann@22842
  2125
by (rule add_mono, clarify+)+
haftmann@22842
  2126
paulson@24427
  2127
lemma add_mono_thms_ordered_field [noatp]:
haftmann@22842
  2128
  fixes i j k :: "'a\<Colon>pordered_cancel_ab_semigroup_add"
haftmann@22842
  2129
  shows "i < j \<and> k = l \<Longrightarrow> i + k < j + l"
haftmann@22842
  2130
    and "i = j \<and> k < l \<Longrightarrow> i + k < j + l"
haftmann@22842
  2131
    and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l"
haftmann@22842
  2132
    and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l"
haftmann@22842
  2133
    and "i < j \<and> k < l \<Longrightarrow> i + k < j + l"
haftmann@22842
  2134
by (auto intro: add_strict_right_mono add_strict_left_mono
haftmann@22842
  2135
  add_less_le_mono add_le_less_mono add_strict_mono)
haftmann@22842
  2136
paulson@14265
  2137
end