src/HOL/HOL.ML
author paulson
Tue Dec 23 11:40:18 1997 +0100 (1997-12-23)
changeset 4467 bd05e2a28602
parent 4302 2c99775d953f
child 4527 4878fb3d0ac5
permissions -rw-r--r--
New rules rev_iffD{1,2}
clasohm@1465
     1
(*  Title:      HOL/HOL.ML
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Tobias Nipkow
clasohm@923
     4
    Copyright   1991  University of Cambridge
clasohm@923
     5
clasohm@1465
     6
For HOL.thy
clasohm@923
     7
Derived rules from Appendix of Mike Gordons HOL Report, Cambridge TR 68 
clasohm@923
     8
*)
clasohm@923
     9
clasohm@923
    10
open HOL;
clasohm@923
    11
clasohm@923
    12
clasohm@923
    13
(** Equality **)
oheimb@1660
    14
section "=";
clasohm@923
    15
clasohm@923
    16
qed_goal "sym" HOL.thy "s=t ==> t=s"
clasohm@923
    17
 (fn prems => [cut_facts_tac prems 1, etac subst 1, rtac refl 1]);
clasohm@923
    18
clasohm@923
    19
(*calling "standard" reduces maxidx to 0*)
clasohm@923
    20
bind_thm ("ssubst", (sym RS subst));
clasohm@923
    21
clasohm@923
    22
qed_goal "trans" HOL.thy "[| r=s; s=t |] ==> r=t"
clasohm@923
    23
 (fn prems =>
clasohm@1465
    24
        [rtac subst 1, resolve_tac prems 1, resolve_tac prems 1]);
clasohm@923
    25
clasohm@923
    26
(*Useful with eresolve_tac for proving equalties from known equalities.
clasohm@1465
    27
        a = b
clasohm@1465
    28
        |   |
clasohm@1465
    29
        c = d   *)
clasohm@923
    30
qed_goal "box_equals" HOL.thy
clasohm@923
    31
    "[| a=b;  a=c;  b=d |] ==> c=d"  
clasohm@923
    32
 (fn prems=>
clasohm@923
    33
  [ (rtac trans 1),
clasohm@923
    34
    (rtac trans 1),
clasohm@923
    35
    (rtac sym 1),
clasohm@923
    36
    (REPEAT (resolve_tac prems 1)) ]);
clasohm@923
    37
oheimb@1660
    38
clasohm@923
    39
(** Congruence rules for meta-application **)
oheimb@1660
    40
section "Congruence";
clasohm@923
    41
clasohm@923
    42
(*similar to AP_THM in Gordon's HOL*)
clasohm@923
    43
qed_goal "fun_cong" HOL.thy "(f::'a=>'b) = g ==> f(x)=g(x)"
clasohm@923
    44
  (fn [prem] => [rtac (prem RS subst) 1, rtac refl 1]);
clasohm@923
    45
clasohm@923
    46
(*similar to AP_TERM in Gordon's HOL and FOL's subst_context*)
clasohm@923
    47
qed_goal "arg_cong" HOL.thy "x=y ==> f(x)=f(y)"
clasohm@923
    48
 (fn [prem] => [rtac (prem RS subst) 1, rtac refl 1]);
clasohm@923
    49
clasohm@923
    50
qed_goal "cong" HOL.thy
clasohm@923
    51
   "[| f = g; (x::'a) = y |] ==> f(x) = g(y)"
clasohm@923
    52
 (fn [prem1,prem2] =>
clasohm@923
    53
   [rtac (prem1 RS subst) 1, rtac (prem2 RS subst) 1, rtac refl 1]);
clasohm@923
    54
oheimb@1660
    55
clasohm@923
    56
(** Equality of booleans -- iff **)
oheimb@1660
    57
section "iff";
clasohm@923
    58
clasohm@923
    59
qed_goal "iffI" HOL.thy
clasohm@923
    60
   "[| P ==> Q;  Q ==> P |] ==> P=Q"
clasohm@923
    61
 (fn prems=> [ (REPEAT (ares_tac (prems@[impI, iff RS mp RS mp]) 1)) ]);
clasohm@923
    62
clasohm@923
    63
qed_goal "iffD2" HOL.thy "[| P=Q; Q |] ==> P"
clasohm@923
    64
 (fn prems =>
clasohm@1465
    65
        [rtac ssubst 1, resolve_tac prems 1, resolve_tac prems 1]);
clasohm@923
    66
paulson@4467
    67
qed_goal "rev_iffD2" HOL.thy "!!P. [| Q; P=Q |] ==> P"
paulson@4467
    68
 (fn _ => [etac iffD2 1, assume_tac 1]);
paulson@4467
    69
paulson@4467
    70
bind_thm ("iffD1", sym RS iffD2);
paulson@4467
    71
bind_thm ("rev_iffD1", sym RSN (2, rev_iffD2));
clasohm@923
    72
clasohm@923
    73
qed_goal "iffE" HOL.thy
clasohm@923
    74
    "[| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R"
clasohm@923
    75
 (fn [p1,p2] => [REPEAT(ares_tac([p1 RS iffD2, p1 RS iffD1, p2, impI])1)]);
clasohm@923
    76
oheimb@1660
    77
clasohm@923
    78
(** True **)
oheimb@1660
    79
section "True";
clasohm@923
    80
clasohm@923
    81
qed_goalw "TrueI" HOL.thy [True_def] "True"
clasohm@923
    82
  (fn _ => [rtac refl 1]);
clasohm@923
    83
wenzelm@4025
    84
qed_goal "eqTrueI" HOL.thy "P ==> P=True" 
clasohm@923
    85
 (fn prems => [REPEAT(resolve_tac ([iffI,TrueI]@prems) 1)]);
clasohm@923
    86
clasohm@923
    87
qed_goal "eqTrueE" HOL.thy "P=True ==> P" 
clasohm@923
    88
 (fn prems => [REPEAT(resolve_tac (prems@[TrueI,iffD2]) 1)]);
clasohm@923
    89
oheimb@1660
    90
clasohm@923
    91
(** Universal quantifier **)
oheimb@1660
    92
section "!";
clasohm@923
    93
clasohm@923
    94
qed_goalw "allI" HOL.thy [All_def] "(!!x::'a. P(x)) ==> !x. P(x)"
clasohm@923
    95
 (fn prems => [resolve_tac (prems RL [eqTrueI RS ext]) 1]);
clasohm@923
    96
wenzelm@3842
    97
qed_goalw "spec" HOL.thy [All_def] "! x::'a. P(x) ==> P(x)"
clasohm@923
    98
 (fn prems => [rtac eqTrueE 1, resolve_tac (prems RL [fun_cong]) 1]);
clasohm@923
    99
wenzelm@3842
   100
qed_goal "allE" HOL.thy "[| !x. P(x);  P(x) ==> R |] ==> R"
clasohm@923
   101
 (fn major::prems=>
clasohm@923
   102
  [ (REPEAT (resolve_tac (prems @ [major RS spec]) 1)) ]);
clasohm@923
   103
clasohm@923
   104
qed_goal "all_dupE" HOL.thy 
wenzelm@3842
   105
    "[| ! x. P(x);  [| P(x); ! x. P(x) |] ==> R |] ==> R"
clasohm@923
   106
 (fn prems =>
clasohm@923
   107
  [ (REPEAT (resolve_tac (prems @ (prems RL [spec])) 1)) ]);
clasohm@923
   108
clasohm@923
   109
clasohm@923
   110
(** False ** Depends upon spec; it is impossible to do propositional logic
clasohm@923
   111
             before quantifiers! **)
oheimb@1660
   112
section "False";
clasohm@923
   113
clasohm@923
   114
qed_goalw "FalseE" HOL.thy [False_def] "False ==> P"
clasohm@923
   115
 (fn [major] => [rtac (major RS spec) 1]);
clasohm@923
   116
clasohm@923
   117
qed_goal "False_neq_True" HOL.thy "False=True ==> P"
clasohm@923
   118
 (fn [prem] => [rtac (prem RS eqTrueE RS FalseE) 1]);
clasohm@923
   119
clasohm@923
   120
clasohm@923
   121
(** Negation **)
oheimb@1660
   122
section "~";
clasohm@923
   123
clasohm@923
   124
qed_goalw "notI" HOL.thy [not_def] "(P ==> False) ==> ~P"
clasohm@923
   125
 (fn prems=> [rtac impI 1, eresolve_tac prems 1]);
clasohm@923
   126
clasohm@923
   127
qed_goalw "notE" HOL.thy [not_def] "[| ~P;  P |] ==> R"
clasohm@923
   128
 (fn prems => [rtac (prems MRS mp RS FalseE) 1]);
clasohm@923
   129
oheimb@2442
   130
bind_thm ("classical2", notE RS notI);
oheimb@2442
   131
paulson@1840
   132
qed_goal "rev_notE" HOL.thy "!!P R. [| P; ~P |] ==> R"
paulson@1840
   133
 (fn _ => [REPEAT (ares_tac [notE] 1)]);
paulson@1840
   134
oheimb@1660
   135
clasohm@923
   136
(** Implication **)
oheimb@1660
   137
section "-->";
clasohm@923
   138
clasohm@923
   139
qed_goal "impE" HOL.thy "[| P-->Q;  P;  Q ==> R |] ==> R"
clasohm@923
   140
 (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]);
clasohm@923
   141
clasohm@923
   142
(* Reduces Q to P-->Q, allowing substitution in P. *)
clasohm@923
   143
qed_goal "rev_mp" HOL.thy "[| P;  P --> Q |] ==> Q"
clasohm@923
   144
 (fn prems=>  [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]);
clasohm@923
   145
clasohm@923
   146
qed_goal "contrapos" HOL.thy "[| ~Q;  P==>Q |] ==> ~P"
clasohm@923
   147
 (fn [major,minor]=> 
clasohm@923
   148
  [ (rtac (major RS notE RS notI) 1), 
clasohm@923
   149
    (etac minor 1) ]);
clasohm@923
   150
nipkow@1334
   151
qed_goal "rev_contrapos" HOL.thy "[| P==>Q; ~Q |] ==> ~P"
nipkow@1334
   152
 (fn [major,minor]=> 
nipkow@1334
   153
  [ (rtac (minor RS contrapos) 1), (etac major 1) ]);
nipkow@1334
   154
clasohm@923
   155
(* ~(?t = ?s) ==> ~(?s = ?t) *)
nipkow@1334
   156
bind_thm("not_sym", sym COMP rev_contrapos);
clasohm@923
   157
clasohm@923
   158
clasohm@923
   159
(** Existential quantifier **)
oheimb@1660
   160
section "?";
clasohm@923
   161
wenzelm@3842
   162
qed_goalw "exI" HOL.thy [Ex_def] "P(x) ==> ? x::'a. P(x)"
clasohm@923
   163
 (fn prems => [rtac selectI 1, resolve_tac prems 1]);
clasohm@923
   164
clasohm@923
   165
qed_goalw "exE" HOL.thy [Ex_def]
wenzelm@3842
   166
  "[| ? x::'a. P(x); !!x. P(x) ==> Q |] ==> Q"
clasohm@923
   167
  (fn prems => [REPEAT(resolve_tac prems 1)]);
clasohm@923
   168
clasohm@923
   169
clasohm@923
   170
(** Conjunction **)
oheimb@1660
   171
section "&";
clasohm@923
   172
clasohm@923
   173
qed_goalw "conjI" HOL.thy [and_def] "[| P; Q |] ==> P&Q"
clasohm@923
   174
 (fn prems =>
clasohm@923
   175
  [REPEAT (resolve_tac (prems@[allI,impI]) 1 ORELSE etac (mp RS mp) 1)]);
clasohm@923
   176
clasohm@923
   177
qed_goalw "conjunct1" HOL.thy [and_def] "[| P & Q |] ==> P"
clasohm@923
   178
 (fn prems =>
clasohm@923
   179
   [resolve_tac (prems RL [spec] RL [mp]) 1, REPEAT(ares_tac [impI] 1)]);
clasohm@923
   180
clasohm@923
   181
qed_goalw "conjunct2" HOL.thy [and_def] "[| P & Q |] ==> Q"
clasohm@923
   182
 (fn prems =>
clasohm@923
   183
   [resolve_tac (prems RL [spec] RL [mp]) 1, REPEAT(ares_tac [impI] 1)]);
clasohm@923
   184
clasohm@923
   185
qed_goal "conjE" HOL.thy "[| P&Q;  [| P; Q |] ==> R |] ==> R"
clasohm@923
   186
 (fn prems =>
clasohm@1465
   187
         [cut_facts_tac prems 1, resolve_tac prems 1,
clasohm@1465
   188
          etac conjunct1 1, etac conjunct2 1]);
clasohm@923
   189
oheimb@1660
   190
clasohm@923
   191
(** Disjunction *)
oheimb@1660
   192
section "|";
clasohm@923
   193
clasohm@923
   194
qed_goalw "disjI1" HOL.thy [or_def] "P ==> P|Q"
clasohm@923
   195
 (fn [prem] => [REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]);
clasohm@923
   196
clasohm@923
   197
qed_goalw "disjI2" HOL.thy [or_def] "Q ==> P|Q"
clasohm@923
   198
 (fn [prem] => [REPEAT(ares_tac [allI,impI, prem RSN (2,mp)] 1)]);
clasohm@923
   199
clasohm@923
   200
qed_goalw "disjE" HOL.thy [or_def] "[| P | Q; P ==> R; Q ==> R |] ==> R"
clasohm@923
   201
 (fn [a1,a2,a3] =>
clasohm@1465
   202
        [rtac (mp RS mp) 1, rtac spec 1, rtac a1 1,
clasohm@1465
   203
         rtac (a2 RS impI) 1, assume_tac 1, rtac (a3 RS impI) 1, assume_tac 1]);
clasohm@923
   204
oheimb@1660
   205
clasohm@923
   206
(** CCONTR -- classical logic **)
oheimb@1660
   207
section "classical logic";
clasohm@923
   208
clasohm@923
   209
qed_goalw "classical" HOL.thy [not_def]  "(~P ==> P) ==> P"
clasohm@923
   210
 (fn [prem] =>
clasohm@923
   211
   [rtac (True_or_False RS (disjE RS eqTrueE)) 1,  assume_tac 1,
clasohm@923
   212
    rtac (impI RS prem RS eqTrueI) 1,
clasohm@923
   213
    etac subst 1,  assume_tac 1]);
clasohm@923
   214
clasohm@923
   215
val ccontr = FalseE RS classical;
clasohm@923
   216
clasohm@923
   217
(*Double negation law*)
clasohm@923
   218
qed_goal "notnotD" HOL.thy "~~P ==> P"
clasohm@923
   219
 (fn [major]=>
clasohm@923
   220
  [ (rtac classical 1), (eresolve_tac [major RS notE] 1) ]);
clasohm@923
   221
oheimb@1660
   222
qed_goal "contrapos2" HOL.thy "[| Q; ~ P ==> ~ Q |] ==> P" (fn [p1,p2] => [
paulson@2031
   223
        rtac classical 1,
paulson@2031
   224
        dtac p2 1,
paulson@2031
   225
        etac notE 1,
paulson@2031
   226
        rtac p1 1]);
oheimb@1660
   227
oheimb@1660
   228
qed_goal "swap2" HOL.thy "[| P;  Q ==> ~ P |] ==> ~ Q" (fn [p1,p2] => [
paulson@2031
   229
        rtac notI 1,
paulson@2031
   230
        dtac p2 1,
paulson@2031
   231
        etac notE 1,
paulson@2031
   232
        rtac p1 1]);
clasohm@923
   233
clasohm@923
   234
(** Unique existence **)
oheimb@1660
   235
section "?!";
clasohm@923
   236
clasohm@923
   237
qed_goalw "ex1I" HOL.thy [Ex1_def]
paulson@2031
   238
            "[| P(a);  !!x. P(x) ==> x=a |] ==> ?! x. P(x)"
clasohm@923
   239
 (fn prems =>
clasohm@923
   240
  [REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)]);
clasohm@923
   241
paulson@3003
   242
(*Sometimes easier to use: the premises have no shared variables.  Safe!*)
paulson@3003
   243
qed_goal "ex_ex1I" HOL.thy
wenzelm@3842
   244
    "[| ? x. P(x);  !!x y. [| P(x); P(y) |] ==> x=y |] ==> ?! x. P(x)"
paulson@3003
   245
 (fn [ex,eq] => [ (rtac (ex RS exE) 1),
paulson@3003
   246
                  (REPEAT (ares_tac [ex1I,eq] 1)) ]);
paulson@3003
   247
clasohm@923
   248
qed_goalw "ex1E" HOL.thy [Ex1_def]
wenzelm@3842
   249
    "[| ?! x. P(x);  !!x. [| P(x);  ! y. P(y) --> y=x |] ==> R |] ==> R"
clasohm@923
   250
 (fn major::prems =>
clasohm@923
   251
  [rtac (major RS exE) 1, REPEAT (etac conjE 1 ORELSE ares_tac prems 1)]);
clasohm@923
   252
clasohm@923
   253
clasohm@923
   254
(** Select: Hilbert's Epsilon-operator **)
oheimb@1660
   255
section "@";
clasohm@923
   256
clasohm@923
   257
(*Easier to apply than selectI: conclusion has only one occurrence of P*)
clasohm@923
   258
qed_goal "selectI2" HOL.thy
wenzelm@3842
   259
    "[| P(a);  !!x. P(x) ==> Q(x) |] ==> Q(@x. P(x))"
clasohm@923
   260
 (fn prems => [ resolve_tac prems 1, 
clasohm@1465
   261
                rtac selectI 1, 
clasohm@1465
   262
                resolve_tac prems 1 ]);
clasohm@923
   263
nipkow@3646
   264
(*Easier to apply than selectI2 if witness ?a comes from an EX-formula*)
nipkow@3646
   265
qed_goal "selectI2EX" HOL.thy
wenzelm@3842
   266
  "[| ? a. P a; !!x. P x ==> Q x |] ==> Q(Eps P)"
nipkow@3646
   267
(fn [major,minor] => [rtac (major RS exE) 1, etac selectI2 1, etac minor 1]);
nipkow@3646
   268
clasohm@923
   269
qed_goal "select_equality" HOL.thy
wenzelm@3842
   270
    "[| P(a);  !!x. P(x) ==> x=a |] ==> (@x. P(x)) = a"
clasohm@923
   271
 (fn prems => [ rtac selectI2 1, 
clasohm@1465
   272
                REPEAT (ares_tac prems 1) ]);
clasohm@923
   273
nipkow@3646
   274
qed_goalw "select1_equality" HOL.thy [Ex1_def]
oheimb@4131
   275
  "!!P. [| ?!x. P(x); P(a) |] ==> (@x. P(x)) = a" (K [
oheimb@4131
   276
	  rtac select_equality 1, atac 1,
nipkow@3646
   277
          etac exE 1, etac conjE 1,
nipkow@3646
   278
          rtac allE 1, atac 1,
nipkow@3646
   279
          etac impE 1, atac 1, etac ssubst 1,
nipkow@3646
   280
          etac allE 1, etac impE 1, atac 1, etac ssubst 1,
nipkow@3646
   281
          rtac refl 1]);
nipkow@3436
   282
oheimb@4131
   283
qed_goal "select_eq_Ex" HOL.thy "P (@ x. P x) =  (? x. P x)" (K [
oheimb@1660
   284
        rtac iffI 1,
oheimb@1660
   285
        etac exI 1,
oheimb@1660
   286
        etac exE 1,
oheimb@1660
   287
        etac selectI 1]);
oheimb@1660
   288
oheimb@4131
   289
val Eps_eq = prove_goal HOL.thy "Eps (op = x) = x" (K [
oheimb@4131
   290
	rtac select_equality 1, rtac refl 1, etac sym 1]);
oheimb@4131
   291
oheimb@4131
   292
val ex1_Eps_eq = prove_goal HOL.thy "!!X. [|?!x. P x; P y|] ==> Eps P = y" (K [
oheimb@4131
   293
	rtac select_equality 1,
oheimb@4131
   294
	 atac 1,
oheimb@4131
   295
	etac ex1E 1,
oheimb@4131
   296
	etac all_dupE 1,
oheimb@4131
   297
	etac impE 1,
oheimb@4131
   298
	 atac 1,
oheimb@4131
   299
	rtac trans 1,
oheimb@4131
   300
	 etac sym 2,
oheimb@4131
   301
	dtac spec 1,
oheimb@4131
   302
	etac impE 1,
oheimb@4131
   303
	 ALLGOALS atac]);
oheimb@4131
   304
clasohm@923
   305
clasohm@923
   306
(** Classical intro rules for disjunction and existential quantifiers *)
oheimb@1660
   307
section "classical intro rules";
clasohm@923
   308
clasohm@923
   309
qed_goal "disjCI" HOL.thy "(~Q ==> P) ==> P|Q"
clasohm@923
   310
 (fn prems=>
clasohm@923
   311
  [ (rtac classical 1),
clasohm@923
   312
    (REPEAT (ares_tac (prems@[disjI1,notI]) 1)),
clasohm@923
   313
    (REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ]);
clasohm@923
   314
clasohm@923
   315
qed_goal "excluded_middle" HOL.thy "~P | P"
clasohm@923
   316
 (fn _ => [ (REPEAT (ares_tac [disjCI] 1)) ]);
clasohm@923
   317
clasohm@923
   318
(*For disjunctive case analysis*)
clasohm@923
   319
fun excluded_middle_tac sP =
clasohm@923
   320
    res_inst_tac [("Q",sP)] (excluded_middle RS disjE);
clasohm@923
   321
clasohm@923
   322
(*Classical implies (-->) elimination. *)
clasohm@923
   323
qed_goal "impCE" HOL.thy "[| P-->Q; ~P ==> R; Q ==> R |] ==> R" 
clasohm@923
   324
 (fn major::prems=>
clasohm@923
   325
  [ rtac (excluded_middle RS disjE) 1,
clasohm@923
   326
    REPEAT (DEPTH_SOLVE_1 (ares_tac (prems @ [major RS mp]) 1))]);
clasohm@923
   327
paulson@4302
   328
(*This version of --> elimination works on Q before P.  It works best for
paulson@4302
   329
  those cases in which P holds "almost everywhere".  Can't install as
paulson@4302
   330
  default: would break old proofs.*)
paulson@4302
   331
qed_goal "impCE'" thy 
paulson@4302
   332
    "[| P-->Q;  Q ==> R;  ~P ==> R |] ==> R"
paulson@4302
   333
 (fn major::prems=>
paulson@4302
   334
  [ (resolve_tac [excluded_middle RS disjE] 1),
paulson@4302
   335
    (DEPTH_SOLVE (ares_tac (prems@[major RS mp]) 1)) ]);
paulson@4302
   336
clasohm@923
   337
(*Classical <-> elimination. *)
clasohm@923
   338
qed_goal "iffCE" HOL.thy
clasohm@923
   339
    "[| P=Q;  [| P; Q |] ==> R;  [| ~P; ~Q |] ==> R |] ==> R"
clasohm@923
   340
 (fn major::prems =>
clasohm@923
   341
  [ (rtac (major RS iffE) 1),
clasohm@923
   342
    (REPEAT (DEPTH_SOLVE_1 
clasohm@1465
   343
        (eresolve_tac ([asm_rl,impCE,notE]@prems) 1))) ]);
clasohm@923
   344
wenzelm@3842
   345
qed_goal "exCI" HOL.thy "(! x. ~P(x) ==> P(a)) ==> ? x. P(x)"
clasohm@923
   346
 (fn prems=>
clasohm@923
   347
  [ (rtac ccontr 1),
clasohm@923
   348
    (REPEAT (ares_tac (prems@[exI,allI,notI,notE]) 1))  ]);
clasohm@923
   349
clasohm@923
   350
clasohm@923
   351
(* case distinction *)
clasohm@923
   352
clasohm@923
   353
qed_goal "case_split_thm" HOL.thy "[| P ==> Q; ~P ==> Q |] ==> Q"
clasohm@923
   354
  (fn [p1,p2] => [cut_facts_tac [excluded_middle] 1, etac disjE 1,
clasohm@923
   355
                  etac p2 1, etac p1 1]);
clasohm@923
   356
clasohm@923
   357
fun case_tac a = res_inst_tac [("P",a)] case_split_thm;
clasohm@923
   358
oheimb@1660
   359
clasohm@923
   360
(** Standard abbreviations **)
clasohm@923
   361
oheimb@1672
   362
fun stac th = CHANGED o rtac (th RS ssubst);
clasohm@923
   363
fun strip_tac i = REPEAT(resolve_tac [impI,allI] i); 
clasohm@1338
   364
paulson@2562
   365
paulson@2562
   366
(** strip ! and --> from proved goal while preserving !-bound var names **)
nipkow@1485
   367
nipkow@1485
   368
local
nipkow@1485
   369
nipkow@1515
   370
(* Use XXX to avoid forall_intr failing because of duplicate variable name *)
nipkow@1485
   371
val myspec = read_instantiate [("P","?XXX")] spec;
nipkow@1485
   372
val _ $ (_ $ (vx as Var(_,vxT))) = concl_of myspec;
nipkow@1485
   373
val cvx = cterm_of (#sign(rep_thm myspec)) vx;
nipkow@1485
   374
val aspec = forall_intr cvx myspec;
nipkow@1485
   375
nipkow@1485
   376
in
nipkow@1485
   377
nipkow@1515
   378
fun RSspec th =
nipkow@1515
   379
  (case concl_of th of
nipkow@1515
   380
     _ $ (Const("All",_) $ Abs(a,_,_)) =>
nipkow@1515
   381
         let val ca = cterm_of (#sign(rep_thm th)) (Var((a,0),vxT))
nipkow@1515
   382
         in th RS forall_elim ca aspec end
nipkow@1515
   383
  | _ => raise THM("RSspec",0,[th]));
nipkow@1515
   384
nipkow@1515
   385
fun RSmp th =
nipkow@1515
   386
  (case concl_of th of
nipkow@1515
   387
     _ $ (Const("op -->",_)$_$_) => th RS mp
nipkow@1515
   388
  | _ => raise THM("RSmp",0,[th]));
nipkow@1515
   389
nipkow@1515
   390
fun normalize_thm funs =
nipkow@1515
   391
let fun trans [] th = th
nipkow@1515
   392
      | trans (f::fs) th = (trans funs (f th)) handle THM _ => trans fs th
nipkow@1515
   393
in trans funs end;
nipkow@1515
   394
berghofe@3615
   395
fun qed_spec_mp name =
berghofe@3615
   396
  let val thm = normalize_thm [RSspec,RSmp] (result())
berghofe@3615
   397
  in bind_thm(name, thm) end;
berghofe@3615
   398
berghofe@3615
   399
fun qed_goal_spec_mp name thy s p = 
berghofe@3615
   400
	bind_thm (name, normalize_thm [RSspec,RSmp] (prove_goal thy s p));
berghofe@3615
   401
berghofe@3615
   402
fun qed_goalw_spec_mp name thy defs s p = 
berghofe@3615
   403
	bind_thm (name, normalize_thm [RSspec,RSmp] (prove_goalw thy defs s p));
oheimb@1660
   404
wenzelm@3621
   405
end;