src/HOL/Library/FuncSet.thy
author paulson
Wed May 19 11:30:56 2004 +0200 (2004-05-19)
changeset 14762 bd349ff7907a
parent 14745 94be403deb84
child 14853 8d710bece29f
permissions -rw-r--r--
new bij_betw operator
paulson@13586
     1
(*  Title:      HOL/Library/FuncSet.thy
paulson@13586
     2
    ID:         $Id$
paulson@13586
     3
    Author:     Florian Kammueller and Lawrence C Paulson
paulson@13586
     4
*)
paulson@13586
     5
wenzelm@14706
     6
header {* Pi and Function Sets *}
paulson@13586
     7
paulson@13586
     8
theory FuncSet = Main:
paulson@13586
     9
paulson@13586
    10
constdefs
wenzelm@14706
    11
  Pi :: "['a set, 'a => 'b set] => ('a => 'b) set"
wenzelm@14706
    12
  "Pi A B == {f. \<forall>x. x \<in> A --> f x \<in> B x}"
paulson@13586
    13
paulson@13586
    14
  extensional :: "'a set => ('a => 'b) set"
wenzelm@14706
    15
  "extensional A == {f. \<forall>x. x~:A --> f x = arbitrary}"
paulson@13586
    16
wenzelm@14706
    17
  "restrict" :: "['a => 'b, 'a set] => ('a => 'b)"
wenzelm@14706
    18
  "restrict f A == (%x. if x \<in> A then f x else arbitrary)"
paulson@13586
    19
paulson@13586
    20
syntax
paulson@13586
    21
  "@Pi"  :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3PI _:_./ _)" 10)
paulson@13586
    22
  funcset :: "['a set, 'b set] => ('a => 'b) set"      (infixr "->" 60)
paulson@13586
    23
  "@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3%_:_./ _)" [0,0,3] 3)
paulson@13586
    24
paulson@13586
    25
syntax (xsymbols)
paulson@13586
    26
  "@Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
wenzelm@14706
    27
  funcset :: "['a set, 'b set] => ('a => 'b) set"  (infixr "\<rightarrow>" 60)
paulson@13586
    28
  "@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
paulson@13586
    29
kleing@14565
    30
syntax (HTML output)
kleing@14565
    31
  "@Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
kleing@14565
    32
  "@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
kleing@14565
    33
paulson@13586
    34
translations
paulson@13586
    35
  "PI x:A. B" => "Pi A (%x. B)"
wenzelm@14706
    36
  "A -> B" => "Pi A (_K B)"
wenzelm@14706
    37
  "%x:A. f" == "restrict (%x. f) A"
paulson@13586
    38
paulson@13586
    39
constdefs
wenzelm@14706
    40
  "compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)"
paulson@13586
    41
  "compose A g f == \<lambda>x\<in>A. g (f x)"
paulson@13586
    42
paulson@13595
    43
print_translation {* [("Pi", dependent_tr' ("@Pi", "funcset"))] *}
paulson@13586
    44
paulson@13586
    45
paulson@13586
    46
subsection{*Basic Properties of @{term Pi}*}
paulson@13586
    47
paulson@13586
    48
lemma Pi_I: "(!!x. x \<in> A ==> f x \<in> B x) ==> f \<in> Pi A B"
wenzelm@14706
    49
  by (simp add: Pi_def)
paulson@13586
    50
paulson@13586
    51
lemma funcsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f \<in> A -> B"
wenzelm@14706
    52
  by (simp add: Pi_def)
paulson@13586
    53
paulson@13586
    54
lemma Pi_mem: "[|f: Pi A B; x \<in> A|] ==> f x \<in> B x"
wenzelm@14706
    55
  by (simp add: Pi_def)
paulson@13586
    56
paulson@13586
    57
lemma funcset_mem: "[|f \<in> A -> B; x \<in> A|] ==> f x \<in> B"
wenzelm@14706
    58
  by (simp add: Pi_def)
paulson@13586
    59
paulson@14762
    60
lemma funcset_image: "f \<in> A\<rightarrow>B ==> f ` A \<subseteq> B"
paulson@14762
    61
by (auto simp add: Pi_def)
paulson@14762
    62
paulson@13586
    63
lemma Pi_eq_empty: "((PI x: A. B x) = {}) = (\<exists>x\<in>A. B(x) = {})"
paulson@13593
    64
apply (simp add: Pi_def, auto)
paulson@13586
    65
txt{*Converse direction requires Axiom of Choice to exhibit a function
paulson@13586
    66
picking an element from each non-empty @{term "B x"}*}
paulson@13593
    67
apply (drule_tac x = "%u. SOME y. y \<in> B u" in spec, auto)
wenzelm@14706
    68
apply (cut_tac P= "%y. y \<in> B x" in some_eq_ex, auto)
paulson@13586
    69
done
paulson@13586
    70
paulson@13593
    71
lemma Pi_empty [simp]: "Pi {} B = UNIV"
wenzelm@14706
    72
  by (simp add: Pi_def)
paulson@13593
    73
paulson@13593
    74
lemma Pi_UNIV [simp]: "A -> UNIV = UNIV"
wenzelm@14706
    75
  by (simp add: Pi_def)
paulson@13586
    76
paulson@13586
    77
text{*Covariance of Pi-sets in their second argument*}
paulson@13586
    78
lemma Pi_mono: "(!!x. x \<in> A ==> B x <= C x) ==> Pi A B <= Pi A C"
wenzelm@14706
    79
  by (simp add: Pi_def, blast)
paulson@13586
    80
paulson@13586
    81
text{*Contravariance of Pi-sets in their first argument*}
paulson@13586
    82
lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B"
wenzelm@14706
    83
  by (simp add: Pi_def, blast)
paulson@13586
    84
paulson@13586
    85
paulson@13586
    86
subsection{*Composition With a Restricted Domain: @{term compose}*}
paulson@13586
    87
wenzelm@14706
    88
lemma funcset_compose:
wenzelm@14706
    89
    "[| f \<in> A -> B; g \<in> B -> C |]==> compose A g f \<in> A -> C"
wenzelm@14706
    90
  by (simp add: Pi_def compose_def restrict_def)
paulson@13586
    91
paulson@13586
    92
lemma compose_assoc:
wenzelm@14706
    93
    "[| f \<in> A -> B; g \<in> B -> C; h \<in> C -> D |]
paulson@13586
    94
      ==> compose A h (compose A g f) = compose A (compose B h g) f"
wenzelm@14706
    95
  by (simp add: expand_fun_eq Pi_def compose_def restrict_def)
paulson@13586
    96
paulson@13586
    97
lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))"
wenzelm@14706
    98
  by (simp add: compose_def restrict_def)
paulson@13586
    99
paulson@13586
   100
lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C"
wenzelm@14706
   101
  by (auto simp add: image_def compose_eq)
paulson@13586
   102
paulson@13586
   103
lemma inj_on_compose:
wenzelm@14706
   104
    "[| f ` A = B; inj_on f A; inj_on g B |] ==> inj_on (compose A g f) A"
wenzelm@14706
   105
  by (auto simp add: inj_on_def compose_eq)
paulson@13586
   106
paulson@13586
   107
paulson@13586
   108
subsection{*Bounded Abstraction: @{term restrict}*}
paulson@13586
   109
paulson@13586
   110
lemma restrict_in_funcset: "(!!x. x \<in> A ==> f x \<in> B) ==> (\<lambda>x\<in>A. f x) \<in> A -> B"
wenzelm@14706
   111
  by (simp add: Pi_def restrict_def)
paulson@13586
   112
paulson@13586
   113
lemma restrictI: "(!!x. x \<in> A ==> f x \<in> B x) ==> (\<lambda>x\<in>A. f x) \<in> Pi A B"
wenzelm@14706
   114
  by (simp add: Pi_def restrict_def)
paulson@13586
   115
paulson@13586
   116
lemma restrict_apply [simp]:
wenzelm@14706
   117
    "(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else arbitrary)"
wenzelm@14706
   118
  by (simp add: restrict_def)
paulson@13586
   119
wenzelm@14706
   120
lemma restrict_ext:
paulson@13586
   121
    "(!!x. x \<in> A ==> f x = g x) ==> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)"
wenzelm@14706
   122
  by (simp add: expand_fun_eq Pi_def Pi_def restrict_def)
paulson@13586
   123
paulson@13586
   124
lemma inj_on_restrict_eq: "inj_on (restrict f A) A = inj_on f A"
wenzelm@14706
   125
  by (simp add: inj_on_def restrict_def)
paulson@13586
   126
paulson@13586
   127
lemma Id_compose:
wenzelm@14706
   128
    "[|f \<in> A -> B;  f \<in> extensional A|] ==> compose A (\<lambda>y\<in>B. y) f = f"
wenzelm@14706
   129
  by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)
paulson@13586
   130
paulson@13586
   131
lemma compose_Id:
wenzelm@14706
   132
    "[|g \<in> A -> B;  g \<in> extensional A|] ==> compose A g (\<lambda>x\<in>A. x) = g"
wenzelm@14706
   133
  by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)
paulson@13586
   134
paulson@13586
   135
paulson@13586
   136
subsection{*Extensionality*}
paulson@13586
   137
paulson@13586
   138
lemma extensional_arb: "[|f \<in> extensional A; x\<notin> A|] ==> f x = arbitrary"
wenzelm@14706
   139
  by (simp add: extensional_def)
paulson@13586
   140
paulson@13586
   141
lemma restrict_extensional [simp]: "restrict f A \<in> extensional A"
wenzelm@14706
   142
  by (simp add: restrict_def extensional_def)
paulson@13586
   143
paulson@13586
   144
lemma compose_extensional [simp]: "compose A f g \<in> extensional A"
wenzelm@14706
   145
  by (simp add: compose_def)
paulson@13586
   146
paulson@13586
   147
lemma extensionalityI:
wenzelm@14706
   148
    "[| f \<in> extensional A; g \<in> extensional A;
wenzelm@14706
   149
      !!x. x\<in>A ==> f x = g x |] ==> f = g"
wenzelm@14706
   150
  by (force simp add: expand_fun_eq extensional_def)
paulson@13586
   151
paulson@13586
   152
lemma Inv_funcset: "f ` A = B ==> (\<lambda>x\<in>B. Inv A f x) : B -> A"
wenzelm@14706
   153
  by (unfold Inv_def) (fast intro: restrict_in_funcset someI2)
paulson@13586
   154
paulson@13586
   155
lemma compose_Inv_id:
wenzelm@14706
   156
    "[| inj_on f A;  f ` A = B |]
paulson@13586
   157
      ==> compose A (\<lambda>y\<in>B. Inv A f y) f = (\<lambda>x\<in>A. x)"
wenzelm@14706
   158
  apply (simp add: compose_def)
wenzelm@14706
   159
  apply (rule restrict_ext, auto)
wenzelm@14706
   160
  apply (erule subst)
wenzelm@14706
   161
  apply (simp add: Inv_f_f)
wenzelm@14706
   162
  done
paulson@13586
   163
paulson@13586
   164
lemma compose_id_Inv:
wenzelm@14706
   165
    "f ` A = B ==> compose B f (\<lambda>y\<in>B. Inv A f y) = (\<lambda>x\<in>B. x)"
wenzelm@14706
   166
  apply (simp add: compose_def)
wenzelm@14706
   167
  apply (rule restrict_ext)
wenzelm@14706
   168
  apply (simp add: f_Inv_f)
wenzelm@14706
   169
  done
paulson@13586
   170
paulson@14745
   171
paulson@14762
   172
subsection{*Bijections Between Sets*}
paulson@14762
   173
paulson@14762
   174
text{*The basic definition could be moved to @{text "Fun.thy"}, but most of
paulson@14762
   175
the theorems belong here, or need at least @{term Hilbert_Choice}.*}
paulson@14762
   176
paulson@14762
   177
constdefs
paulson@14762
   178
  bij_betw :: "['a => 'b, 'a set, 'b set] => bool"         (*bijective*)
paulson@14762
   179
    "bij_betw f A B == inj_on f A & f ` A = B"
paulson@14762
   180
paulson@14762
   181
lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A"
paulson@14762
   182
by (simp add: bij_betw_def)
paulson@14762
   183
paulson@14762
   184
lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B"
paulson@14762
   185
by (auto simp add: bij_betw_def inj_on_Inv Pi_def)
paulson@14762
   186
paulson@14762
   187
lemma bij_betw_Inv: "bij_betw f A B \<Longrightarrow> bij_betw (Inv A f) B A"
paulson@14762
   188
apply (auto simp add: bij_betw_def inj_on_Inv Inv_mem) 
paulson@14762
   189
apply (simp add: image_compose [symmetric] o_def) 
paulson@14762
   190
apply (simp add: image_def Inv_f_f) 
paulson@14762
   191
done
paulson@14762
   192
paulson@14762
   193
lemma bij_betw_compose:
paulson@14762
   194
    "[| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C"
paulson@14762
   195
apply (simp add: bij_betw_def compose_eq inj_on_compose)
paulson@14762
   196
apply (auto simp add: compose_def image_def)
paulson@14762
   197
done
paulson@14762
   198
paulson@14762
   199
paulson@14745
   200
subsection{*Cardinality*}
paulson@14745
   201
paulson@14745
   202
lemma card_inj: "[|f \<in> A\<rightarrow>B; inj_on f A; finite B|] ==> card(A) \<le> card(B)"
paulson@14745
   203
apply (rule card_inj_on_le)
paulson@14745
   204
apply (auto simp add: Pi_def)
paulson@14745
   205
done
paulson@14745
   206
paulson@14745
   207
lemma card_bij:
paulson@14745
   208
     "[|f \<in> A\<rightarrow>B; inj_on f A;
paulson@14745
   209
        g \<in> B\<rightarrow>A; inj_on g B; finite A; finite B|] ==> card(A) = card(B)"
paulson@14745
   210
by (blast intro: card_inj order_antisym)
paulson@14745
   211
paulson@13586
   212
end