src/HOL/List.thy
author nipkow
Sat Nov 13 07:47:34 2004 +0100 (2004-11-13)
changeset 15281 bd4611956c7b
parent 15251 bb6f072c8d10
child 15302 a643fcbc3468
permissions -rw-r--r--
More lemmas
wenzelm@13462
     1
(*  Title:      HOL/List.thy
wenzelm@13462
     2
    ID:         $Id$
wenzelm@13462
     3
    Author:     Tobias Nipkow
clasohm@923
     4
*)
clasohm@923
     5
wenzelm@13114
     6
header {* The datatype of finite lists *}
wenzelm@13122
     7
nipkow@15131
     8
theory List
nipkow@15140
     9
imports PreList
nipkow@15131
    10
begin
clasohm@923
    11
wenzelm@13142
    12
datatype 'a list =
wenzelm@13366
    13
    Nil    ("[]")
wenzelm@13366
    14
  | Cons 'a  "'a list"    (infixr "#" 65)
clasohm@923
    15
clasohm@923
    16
consts
wenzelm@13366
    17
  "@" :: "'a list => 'a list => 'a list"    (infixr 65)
wenzelm@13366
    18
  filter:: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    19
  concat:: "'a list list => 'a list"
wenzelm@13366
    20
  foldl :: "('b => 'a => 'b) => 'b => 'a list => 'b"
wenzelm@13366
    21
  foldr :: "('a => 'b => 'b) => 'a list => 'b => 'b"
wenzelm@13366
    22
  hd:: "'a list => 'a"
wenzelm@13366
    23
  tl:: "'a list => 'a list"
wenzelm@13366
    24
  last:: "'a list => 'a"
wenzelm@13366
    25
  butlast :: "'a list => 'a list"
wenzelm@13366
    26
  set :: "'a list => 'a set"
wenzelm@13366
    27
  list_all:: "('a => bool) => ('a list => bool)"
wenzelm@13366
    28
  list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool"
wenzelm@13366
    29
  map :: "('a=>'b) => ('a list => 'b list)"
wenzelm@13366
    30
  mem :: "'a => 'a list => bool"    (infixl 55)
wenzelm@13366
    31
  nth :: "'a list => nat => 'a"    (infixl "!" 100)
wenzelm@13366
    32
  list_update :: "'a list => nat => 'a => 'a list"
wenzelm@13366
    33
  take:: "nat => 'a list => 'a list"
wenzelm@13366
    34
  drop:: "nat => 'a list => 'a list"
wenzelm@13366
    35
  takeWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    36
  dropWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    37
  rev :: "'a list => 'a list"
wenzelm@13366
    38
  zip :: "'a list => 'b list => ('a * 'b) list"
wenzelm@13366
    39
  upt :: "nat => nat => nat list" ("(1[_../_'(])")
wenzelm@13366
    40
  remdups :: "'a list => 'a list"
nipkow@15110
    41
  remove1 :: "'a => 'a list => 'a list"
wenzelm@13366
    42
  null:: "'a list => bool"
wenzelm@13366
    43
  "distinct":: "'a list => bool"
wenzelm@13366
    44
  replicate :: "nat => 'a => 'a list"
clasohm@923
    45
nipkow@13146
    46
nonterminals lupdbinds lupdbind
nipkow@5077
    47
clasohm@923
    48
syntax
wenzelm@13366
    49
  -- {* list Enumeration *}
wenzelm@13366
    50
  "@list" :: "args => 'a list"    ("[(_)]")
clasohm@923
    51
wenzelm@13366
    52
  -- {* Special syntax for filter *}
wenzelm@13366
    53
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_:_./ _])")
clasohm@923
    54
wenzelm@13366
    55
  -- {* list update *}
wenzelm@13366
    56
  "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
wenzelm@13366
    57
  "" :: "lupdbind => lupdbinds"    ("_")
wenzelm@13366
    58
  "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
wenzelm@13366
    59
  "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
nipkow@5077
    60
wenzelm@13366
    61
  upto:: "nat => nat => nat list"    ("(1[_../_])")
nipkow@5427
    62
clasohm@923
    63
translations
wenzelm@13366
    64
  "[x, xs]" == "x#[xs]"
wenzelm@13366
    65
  "[x]" == "x#[]"
wenzelm@13366
    66
  "[x:xs . P]"== "filter (%x. P) xs"
clasohm@923
    67
wenzelm@13366
    68
  "_LUpdate xs (_lupdbinds b bs)"== "_LUpdate (_LUpdate xs b) bs"
wenzelm@13366
    69
  "xs[i:=x]" == "list_update xs i x"
nipkow@5077
    70
wenzelm@13366
    71
  "[i..j]" == "[i..(Suc j)(]"
nipkow@5427
    72
nipkow@5427
    73
wenzelm@12114
    74
syntax (xsymbols)
wenzelm@13366
    75
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
kleing@14565
    76
syntax (HTML output)
kleing@14565
    77
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
paulson@3342
    78
paulson@3342
    79
wenzelm@13142
    80
text {*
wenzelm@14589
    81
  Function @{text size} is overloaded for all datatypes. Users may
wenzelm@13366
    82
  refer to the list version as @{text length}. *}
wenzelm@13142
    83
wenzelm@13142
    84
syntax length :: "'a list => nat"
wenzelm@13142
    85
translations "length" => "size :: _ list => nat"
wenzelm@13114
    86
wenzelm@13142
    87
typed_print_translation {*
wenzelm@13366
    88
  let
wenzelm@13366
    89
    fun size_tr' _ (Type ("fun", (Type ("list", _) :: _))) [t] =
wenzelm@13366
    90
          Syntax.const "length" $ t
wenzelm@13366
    91
      | size_tr' _ _ _ = raise Match;
wenzelm@13366
    92
  in [("size", size_tr')] end
wenzelm@13114
    93
*}
paulson@3437
    94
berghofe@5183
    95
primrec
nipkow@13145
    96
"hd(x#xs) = x"
berghofe@5183
    97
primrec
nipkow@13145
    98
"tl([]) = []"
nipkow@13145
    99
"tl(x#xs) = xs"
berghofe@5183
   100
primrec
nipkow@13145
   101
"null([]) = True"
nipkow@13145
   102
"null(x#xs) = False"
paulson@8972
   103
primrec
nipkow@13145
   104
"last(x#xs) = (if xs=[] then x else last xs)"
berghofe@5183
   105
primrec
nipkow@13145
   106
"butlast []= []"
nipkow@13145
   107
"butlast(x#xs) = (if xs=[] then [] else x#butlast xs)"
berghofe@5183
   108
primrec
nipkow@13145
   109
"x mem [] = False"
nipkow@13145
   110
"x mem (y#ys) = (if y=x then True else x mem ys)"
oheimb@5518
   111
primrec
nipkow@13145
   112
"set [] = {}"
nipkow@13145
   113
"set (x#xs) = insert x (set xs)"
berghofe@5183
   114
primrec
nipkow@13145
   115
list_all_Nil:"list_all P [] = True"
nipkow@13145
   116
list_all_Cons: "list_all P (x#xs) = (P(x) \<and> list_all P xs)"
oheimb@5518
   117
primrec
nipkow@13145
   118
"map f [] = []"
nipkow@13145
   119
"map f (x#xs) = f(x)#map f xs"
berghofe@5183
   120
primrec
nipkow@13145
   121
append_Nil:"[]@ys = ys"
nipkow@13145
   122
append_Cons: "(x#xs)@ys = x#(xs@ys)"
berghofe@5183
   123
primrec
nipkow@13145
   124
"rev([]) = []"
nipkow@13145
   125
"rev(x#xs) = rev(xs) @ [x]"
berghofe@5183
   126
primrec
nipkow@13145
   127
"filter P [] = []"
nipkow@13145
   128
"filter P (x#xs) = (if P x then x#filter P xs else filter P xs)"
berghofe@5183
   129
primrec
nipkow@13145
   130
foldl_Nil:"foldl f a [] = a"
nipkow@13145
   131
foldl_Cons: "foldl f a (x#xs) = foldl f (f a x) xs"
berghofe@5183
   132
primrec
nipkow@13145
   133
"foldr f [] a = a"
nipkow@13145
   134
"foldr f (x#xs) a = f x (foldr f xs a)"
paulson@8000
   135
primrec
nipkow@13145
   136
"concat([]) = []"
nipkow@13145
   137
"concat(x#xs) = x @ concat(xs)"
berghofe@5183
   138
primrec
nipkow@13145
   139
drop_Nil:"drop n [] = []"
nipkow@13145
   140
drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)"
nipkow@13145
   141
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   142
-- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
berghofe@5183
   143
primrec
nipkow@13145
   144
take_Nil:"take n [] = []"
nipkow@13145
   145
take_Cons: "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)"
nipkow@13145
   146
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   147
-- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
berghofe@5183
   148
primrec
nipkow@13145
   149
nth_Cons:"(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)"
nipkow@13145
   150
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   151
-- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
wenzelm@13142
   152
primrec
nipkow@13145
   153
"[][i:=v] = []"
nipkow@13145
   154
"(x#xs)[i:=v] =
nipkow@13145
   155
(case i of 0 => v # xs
nipkow@13145
   156
| Suc j => x # xs[j:=v])"
berghofe@5183
   157
primrec
nipkow@13145
   158
"takeWhile P [] = []"
nipkow@13145
   159
"takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])"
berghofe@5183
   160
primrec
nipkow@13145
   161
"dropWhile P [] = []"
nipkow@13145
   162
"dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)"
berghofe@5183
   163
primrec
nipkow@13145
   164
"zip xs [] = []"
nipkow@13145
   165
zip_Cons: "zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)"
nipkow@13145
   166
-- {* Warning: simpset does not contain this definition *}
nipkow@13145
   167
-- {* but separate theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
nipkow@5427
   168
primrec
nipkow@13145
   169
upt_0: "[i..0(] = []"
nipkow@13145
   170
upt_Suc: "[i..(Suc j)(] = (if i <= j then [i..j(] @ [j] else [])"
berghofe@5183
   171
primrec
nipkow@13145
   172
"distinct [] = True"
nipkow@13145
   173
"distinct (x#xs) = (x ~: set xs \<and> distinct xs)"
berghofe@5183
   174
primrec
nipkow@13145
   175
"remdups [] = []"
nipkow@13145
   176
"remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)"
berghofe@5183
   177
primrec
nipkow@15110
   178
"remove1 x [] = []"
nipkow@15110
   179
"remove1 x (y#xs) = (if x=y then xs else y # remove1 x xs)"
nipkow@15110
   180
primrec
nipkow@13147
   181
replicate_0: "replicate 0 x = []"
nipkow@13145
   182
replicate_Suc: "replicate (Suc n) x = x # replicate n x"
nipkow@8115
   183
defs
wenzelm@13114
   184
 list_all2_def:
wenzelm@13142
   185
 "list_all2 P xs ys == length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y)"
nipkow@8115
   186
paulson@3196
   187
wenzelm@13142
   188
subsection {* Lexicographic orderings on lists *}
nipkow@5281
   189
nipkow@5281
   190
consts
nipkow@13145
   191
lexn :: "('a * 'a)set => nat => ('a list * 'a list)set"
nipkow@5281
   192
primrec
nipkow@13145
   193
"lexn r 0 = {}"
nipkow@13145
   194
"lexn r (Suc n) =
nipkow@13145
   195
(prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int
nipkow@13145
   196
{(xs,ys). length xs = Suc n \<and> length ys = Suc n}"
nipkow@5281
   197
nipkow@5281
   198
constdefs
nipkow@13145
   199
lex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
nipkow@13145
   200
"lex r == \<Union>n. lexn r n"
nipkow@5281
   201
nipkow@13145
   202
lexico :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
nipkow@13145
   203
"lexico r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))"
paulson@9336
   204
nipkow@13145
   205
sublist :: "'a list => nat set => 'a list"
nipkow@13145
   206
"sublist xs A == map fst (filter (%p. snd p : A) (zip xs [0..size xs(]))"
nipkow@5281
   207
wenzelm@13114
   208
wenzelm@13142
   209
lemma not_Cons_self [simp]: "xs \<noteq> x # xs"
nipkow@13145
   210
by (induct xs) auto
wenzelm@13114
   211
wenzelm@13142
   212
lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric]
wenzelm@13114
   213
wenzelm@13142
   214
lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)"
nipkow@13145
   215
by (induct xs) auto
wenzelm@13114
   216
wenzelm@13142
   217
lemma length_induct:
nipkow@13145
   218
"(!!xs. \<forall>ys. length ys < length xs --> P ys ==> P xs) ==> P xs"
nipkow@13145
   219
by (rule measure_induct [of length]) rules
wenzelm@13114
   220
wenzelm@13114
   221
wenzelm@13142
   222
subsection {* @{text lists}: the list-forming operator over sets *}
wenzelm@13114
   223
wenzelm@13142
   224
consts lists :: "'a set => 'a list set"
wenzelm@13142
   225
inductive "lists A"
paulson@15168
   226
 intros
paulson@15168
   227
  Nil [intro!]: "[]: lists A"
paulson@15168
   228
  Cons [intro!]: "[| a: A;l: lists A|] ==> a#l : lists A"
wenzelm@13114
   229
wenzelm@13142
   230
inductive_cases listsE [elim!]: "x#l : lists A"
wenzelm@13114
   231
wenzelm@13366
   232
lemma lists_mono [mono]: "A \<subseteq> B ==> lists A \<subseteq> lists B"
nipkow@13145
   233
by (unfold lists.defs) (blast intro!: lfp_mono)
wenzelm@13114
   234
berghofe@13883
   235
lemma lists_IntI:
berghofe@13883
   236
  assumes l: "l: lists A" shows "l: lists B ==> l: lists (A Int B)" using l
berghofe@13883
   237
  by induct blast+
wenzelm@13142
   238
wenzelm@13142
   239
lemma lists_Int_eq [simp]: "lists (A \<inter> B) = lists A \<inter> lists B"
paulson@15113
   240
proof (rule mono_Int [THEN equalityI])
paulson@15113
   241
  show "mono lists" by (simp add: mono_def lists_mono)
paulson@15113
   242
  show "lists A \<inter> lists B \<subseteq> lists (A \<inter> B)" by (blast intro: lists_IntI)
paulson@15113
   243
qed
wenzelm@13114
   244
wenzelm@13142
   245
lemma append_in_lists_conv [iff]:
paulson@15113
   246
     "(xs @ ys : lists A) = (xs : lists A \<and> ys : lists A)"
nipkow@13145
   247
by (induct xs) auto
wenzelm@13142
   248
wenzelm@13142
   249
wenzelm@13142
   250
subsection {* @{text length} *}
wenzelm@13114
   251
wenzelm@13142
   252
text {*
nipkow@13145
   253
Needs to come before @{text "@"} because of theorem @{text
nipkow@13145
   254
append_eq_append_conv}.
wenzelm@13142
   255
*}
wenzelm@13114
   256
wenzelm@13142
   257
lemma length_append [simp]: "length (xs @ ys) = length xs + length ys"
nipkow@13145
   258
by (induct xs) auto
wenzelm@13114
   259
wenzelm@13142
   260
lemma length_map [simp]: "length (map f xs) = length xs"
nipkow@13145
   261
by (induct xs) auto
wenzelm@13114
   262
wenzelm@13142
   263
lemma length_rev [simp]: "length (rev xs) = length xs"
nipkow@13145
   264
by (induct xs) auto
wenzelm@13114
   265
wenzelm@13142
   266
lemma length_tl [simp]: "length (tl xs) = length xs - 1"
nipkow@13145
   267
by (cases xs) auto
wenzelm@13114
   268
wenzelm@13142
   269
lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])"
nipkow@13145
   270
by (induct xs) auto
wenzelm@13114
   271
wenzelm@13142
   272
lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])"
nipkow@13145
   273
by (induct xs) auto
wenzelm@13114
   274
wenzelm@13114
   275
lemma length_Suc_conv:
nipkow@13145
   276
"(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
nipkow@13145
   277
by (induct xs) auto
wenzelm@13142
   278
nipkow@14025
   279
lemma Suc_length_conv:
nipkow@14025
   280
"(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
paulson@14208
   281
apply (induct xs, simp, simp)
nipkow@14025
   282
apply blast
nipkow@14025
   283
done
nipkow@14025
   284
oheimb@14099
   285
lemma impossible_Cons [rule_format]: 
oheimb@14099
   286
  "length xs <= length ys --> xs = x # ys = False"
paulson@14208
   287
apply (induct xs, auto)
oheimb@14099
   288
done
oheimb@14099
   289
nipkow@14247
   290
lemma list_induct2[consumes 1]: "\<And>ys.
nipkow@14247
   291
 \<lbrakk> length xs = length ys;
nipkow@14247
   292
   P [] [];
nipkow@14247
   293
   \<And>x xs y ys. \<lbrakk> length xs = length ys; P xs ys \<rbrakk> \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
nipkow@14247
   294
 \<Longrightarrow> P xs ys"
nipkow@14247
   295
apply(induct xs)
nipkow@14247
   296
 apply simp
nipkow@14247
   297
apply(case_tac ys)
nipkow@14247
   298
 apply simp
nipkow@14247
   299
apply(simp)
nipkow@14247
   300
done
wenzelm@13114
   301
wenzelm@13142
   302
subsection {* @{text "@"} -- append *}
wenzelm@13114
   303
wenzelm@13142
   304
lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
nipkow@13145
   305
by (induct xs) auto
wenzelm@13114
   306
wenzelm@13142
   307
lemma append_Nil2 [simp]: "xs @ [] = xs"
nipkow@13145
   308
by (induct xs) auto
nipkow@3507
   309
wenzelm@13142
   310
lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])"
nipkow@13145
   311
by (induct xs) auto
wenzelm@13114
   312
wenzelm@13142
   313
lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])"
nipkow@13145
   314
by (induct xs) auto
wenzelm@13114
   315
wenzelm@13142
   316
lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])"
nipkow@13145
   317
by (induct xs) auto
wenzelm@13114
   318
wenzelm@13142
   319
lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])"
nipkow@13145
   320
by (induct xs) auto
wenzelm@13114
   321
berghofe@13883
   322
lemma append_eq_append_conv [simp]:
berghofe@13883
   323
 "!!ys. length xs = length ys \<or> length us = length vs
berghofe@13883
   324
 ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)"
berghofe@13883
   325
apply (induct xs)
paulson@14208
   326
 apply (case_tac ys, simp, force)
paulson@14208
   327
apply (case_tac ys, force, simp)
nipkow@13145
   328
done
wenzelm@13142
   329
nipkow@14495
   330
lemma append_eq_append_conv2: "!!ys zs ts.
nipkow@14495
   331
 (xs @ ys = zs @ ts) =
nipkow@14495
   332
 (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)"
nipkow@14495
   333
apply (induct xs)
nipkow@14495
   334
 apply fastsimp
nipkow@14495
   335
apply(case_tac zs)
nipkow@14495
   336
 apply simp
nipkow@14495
   337
apply fastsimp
nipkow@14495
   338
done
nipkow@14495
   339
wenzelm@13142
   340
lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)"
nipkow@13145
   341
by simp
wenzelm@13142
   342
wenzelm@13142
   343
lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)"
nipkow@13145
   344
by simp
wenzelm@13114
   345
wenzelm@13142
   346
lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)"
nipkow@13145
   347
by simp
wenzelm@13114
   348
wenzelm@13142
   349
lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])"
nipkow@13145
   350
using append_same_eq [of _ _ "[]"] by auto
nipkow@3507
   351
wenzelm@13142
   352
lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])"
nipkow@13145
   353
using append_same_eq [of "[]"] by auto
wenzelm@13114
   354
wenzelm@13142
   355
lemma hd_Cons_tl [simp]: "xs \<noteq> [] ==> hd xs # tl xs = xs"
nipkow@13145
   356
by (induct xs) auto
wenzelm@13114
   357
wenzelm@13142
   358
lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)"
nipkow@13145
   359
by (induct xs) auto
wenzelm@13114
   360
wenzelm@13142
   361
lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs"
nipkow@13145
   362
by (simp add: hd_append split: list.split)
wenzelm@13114
   363
wenzelm@13142
   364
lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)"
nipkow@13145
   365
by (simp split: list.split)
wenzelm@13114
   366
wenzelm@13142
   367
lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys"
nipkow@13145
   368
by (simp add: tl_append split: list.split)
wenzelm@13114
   369
wenzelm@13114
   370
nipkow@14300
   371
lemma Cons_eq_append_conv: "x#xs = ys@zs =
nipkow@14300
   372
 (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))"
nipkow@14300
   373
by(cases ys) auto
nipkow@14300
   374
nipkow@15281
   375
lemma append_eq_Cons_conv: "(ys@zs = x#xs) =
nipkow@15281
   376
 (ys = [] & zs = x#xs | (EX ys'. ys = x#ys' & ys'@zs = xs))"
nipkow@15281
   377
by(cases ys) auto
nipkow@15281
   378
nipkow@14300
   379
wenzelm@13142
   380
text {* Trivial rules for solving @{text "@"}-equations automatically. *}
wenzelm@13114
   381
wenzelm@13114
   382
lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys"
nipkow@13145
   383
by simp
wenzelm@13114
   384
wenzelm@13142
   385
lemma Cons_eq_appendI:
nipkow@13145
   386
"[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs"
nipkow@13145
   387
by (drule sym) simp
wenzelm@13114
   388
wenzelm@13142
   389
lemma append_eq_appendI:
nipkow@13145
   390
"[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us"
nipkow@13145
   391
by (drule sym) simp
wenzelm@13114
   392
wenzelm@13114
   393
wenzelm@13142
   394
text {*
nipkow@13145
   395
Simplification procedure for all list equalities.
nipkow@13145
   396
Currently only tries to rearrange @{text "@"} to see if
nipkow@13145
   397
- both lists end in a singleton list,
nipkow@13145
   398
- or both lists end in the same list.
wenzelm@13142
   399
*}
wenzelm@13142
   400
wenzelm@13142
   401
ML_setup {*
nipkow@3507
   402
local
nipkow@3507
   403
wenzelm@13122
   404
val append_assoc = thm "append_assoc";
wenzelm@13122
   405
val append_Nil = thm "append_Nil";
wenzelm@13122
   406
val append_Cons = thm "append_Cons";
wenzelm@13122
   407
val append1_eq_conv = thm "append1_eq_conv";
wenzelm@13122
   408
val append_same_eq = thm "append_same_eq";
wenzelm@13122
   409
wenzelm@13114
   410
fun last (cons as Const("List.list.Cons",_) $ _ $ xs) =
wenzelm@13462
   411
  (case xs of Const("List.list.Nil",_) => cons | _ => last xs)
wenzelm@13462
   412
  | last (Const("List.op @",_) $ _ $ ys) = last ys
wenzelm@13462
   413
  | last t = t;
wenzelm@13114
   414
wenzelm@13114
   415
fun list1 (Const("List.list.Cons",_) $ _ $ Const("List.list.Nil",_)) = true
wenzelm@13462
   416
  | list1 _ = false;
wenzelm@13114
   417
wenzelm@13114
   418
fun butlast ((cons as Const("List.list.Cons",_) $ x) $ xs) =
wenzelm@13462
   419
  (case xs of Const("List.list.Nil",_) => xs | _ => cons $ butlast xs)
wenzelm@13462
   420
  | butlast ((app as Const("List.op @",_) $ xs) $ ys) = app $ butlast ys
wenzelm@13462
   421
  | butlast xs = Const("List.list.Nil",fastype_of xs);
wenzelm@13114
   422
wenzelm@13114
   423
val rearr_tac =
wenzelm@13462
   424
  simp_tac (HOL_basic_ss addsimps [append_assoc, append_Nil, append_Cons]);
wenzelm@13114
   425
wenzelm@13114
   426
fun list_eq sg _ (F as (eq as Const(_,eqT)) $ lhs $ rhs) =
wenzelm@13462
   427
  let
wenzelm@13462
   428
    val lastl = last lhs and lastr = last rhs;
wenzelm@13462
   429
    fun rearr conv =
wenzelm@13462
   430
      let
wenzelm@13462
   431
        val lhs1 = butlast lhs and rhs1 = butlast rhs;
wenzelm@13462
   432
        val Type(_,listT::_) = eqT
wenzelm@13462
   433
        val appT = [listT,listT] ---> listT
wenzelm@13462
   434
        val app = Const("List.op @",appT)
wenzelm@13462
   435
        val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr)
wenzelm@13480
   436
        val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2));
wenzelm@13480
   437
        val thm = Tactic.prove sg [] [] eq (K (rearr_tac 1));
wenzelm@13462
   438
      in Some ((conv RS (thm RS trans)) RS eq_reflection) end;
wenzelm@13114
   439
wenzelm@13462
   440
  in
wenzelm@13462
   441
    if list1 lastl andalso list1 lastr then rearr append1_eq_conv
wenzelm@13462
   442
    else if lastl aconv lastr then rearr append_same_eq
wenzelm@13462
   443
    else None
wenzelm@13462
   444
  end;
wenzelm@13462
   445
wenzelm@13114
   446
in
wenzelm@13462
   447
wenzelm@13462
   448
val list_eq_simproc =
wenzelm@13462
   449
  Simplifier.simproc (Theory.sign_of (the_context ())) "list_eq" ["(xs::'a list) = ys"] list_eq;
wenzelm@13462
   450
wenzelm@13114
   451
end;
wenzelm@13114
   452
wenzelm@13114
   453
Addsimprocs [list_eq_simproc];
wenzelm@13114
   454
*}
wenzelm@13114
   455
wenzelm@13114
   456
wenzelm@13142
   457
subsection {* @{text map} *}
wenzelm@13114
   458
wenzelm@13142
   459
lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs"
nipkow@13145
   460
by (induct xs) simp_all
wenzelm@13114
   461
wenzelm@13142
   462
lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)"
nipkow@13145
   463
by (rule ext, induct_tac xs) auto
wenzelm@13114
   464
wenzelm@13142
   465
lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys"
nipkow@13145
   466
by (induct xs) auto
wenzelm@13114
   467
wenzelm@13142
   468
lemma map_compose: "map (f o g) xs = map f (map g xs)"
nipkow@13145
   469
by (induct xs) (auto simp add: o_def)
wenzelm@13114
   470
wenzelm@13142
   471
lemma rev_map: "rev (map f xs) = map f (rev xs)"
nipkow@13145
   472
by (induct xs) auto
wenzelm@13114
   473
nipkow@13737
   474
lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)"
nipkow@13737
   475
by (induct xs) auto
nipkow@13737
   476
wenzelm@13366
   477
lemma map_cong [recdef_cong]:
nipkow@13145
   478
"xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys"
nipkow@13145
   479
-- {* a congruence rule for @{text map} *}
nipkow@13737
   480
by simp
wenzelm@13114
   481
wenzelm@13142
   482
lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])"
nipkow@13145
   483
by (cases xs) auto
wenzelm@13114
   484
wenzelm@13142
   485
lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])"
nipkow@13145
   486
by (cases xs) auto
wenzelm@13114
   487
nipkow@14025
   488
lemma map_eq_Cons_conv[iff]:
nipkow@14025
   489
 "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)"
nipkow@13145
   490
by (cases xs) auto
wenzelm@13114
   491
nipkow@14025
   492
lemma Cons_eq_map_conv[iff]:
nipkow@14025
   493
 "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)"
nipkow@14025
   494
by (cases ys) auto
nipkow@14025
   495
nipkow@14111
   496
lemma ex_map_conv:
nipkow@14111
   497
  "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)"
nipkow@14111
   498
by(induct ys, auto)
nipkow@14111
   499
nipkow@15110
   500
lemma map_eq_imp_length_eq:
nipkow@15110
   501
  "!!xs. map f xs = map f ys ==> length xs = length ys"
nipkow@15110
   502
apply (induct ys)
nipkow@15110
   503
 apply simp
nipkow@15110
   504
apply(simp (no_asm_use))
nipkow@15110
   505
apply clarify
nipkow@15110
   506
apply(simp (no_asm_use))
nipkow@15110
   507
apply fast
nipkow@15110
   508
done
nipkow@15110
   509
nipkow@15110
   510
lemma map_inj_on:
nipkow@15110
   511
 "[| map f xs = map f ys; inj_on f (set xs Un set ys) |]
nipkow@15110
   512
  ==> xs = ys"
nipkow@15110
   513
apply(frule map_eq_imp_length_eq)
nipkow@15110
   514
apply(rotate_tac -1)
nipkow@15110
   515
apply(induct rule:list_induct2)
nipkow@15110
   516
 apply simp
nipkow@15110
   517
apply(simp)
nipkow@15110
   518
apply (blast intro:sym)
nipkow@15110
   519
done
nipkow@15110
   520
nipkow@15110
   521
lemma inj_on_map_eq_map:
nipkow@15110
   522
 "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
nipkow@15110
   523
by(blast dest:map_inj_on)
nipkow@15110
   524
wenzelm@13114
   525
lemma map_injective:
nipkow@14338
   526
 "!!xs. map f xs = map f ys ==> inj f ==> xs = ys"
nipkow@14338
   527
by (induct ys) (auto dest!:injD)
wenzelm@13114
   528
nipkow@14339
   529
lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
nipkow@14339
   530
by(blast dest:map_injective)
nipkow@14339
   531
wenzelm@13114
   532
lemma inj_mapI: "inj f ==> inj (map f)"
paulson@13585
   533
by (rules dest: map_injective injD intro: inj_onI)
wenzelm@13114
   534
wenzelm@13114
   535
lemma inj_mapD: "inj (map f) ==> inj f"
paulson@14208
   536
apply (unfold inj_on_def, clarify)
nipkow@13145
   537
apply (erule_tac x = "[x]" in ballE)
paulson@14208
   538
 apply (erule_tac x = "[y]" in ballE, simp, blast)
nipkow@13145
   539
apply blast
nipkow@13145
   540
done
wenzelm@13114
   541
nipkow@14339
   542
lemma inj_map[iff]: "inj (map f) = inj f"
nipkow@13145
   543
by (blast dest: inj_mapD intro: inj_mapI)
wenzelm@13114
   544
kleing@14343
   545
lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs"
kleing@14343
   546
by (induct xs, auto)
wenzelm@13114
   547
nipkow@14402
   548
lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs"
nipkow@14402
   549
by (induct xs) auto
nipkow@14402
   550
nipkow@15110
   551
lemma map_fst_zip[simp]:
nipkow@15110
   552
  "length xs = length ys \<Longrightarrow> map fst (zip xs ys) = xs"
nipkow@15110
   553
by (induct rule:list_induct2, simp_all)
nipkow@15110
   554
nipkow@15110
   555
lemma map_snd_zip[simp]:
nipkow@15110
   556
  "length xs = length ys \<Longrightarrow> map snd (zip xs ys) = ys"
nipkow@15110
   557
by (induct rule:list_induct2, simp_all)
nipkow@15110
   558
nipkow@15110
   559
wenzelm@13142
   560
subsection {* @{text rev} *}
wenzelm@13114
   561
wenzelm@13142
   562
lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs"
nipkow@13145
   563
by (induct xs) auto
wenzelm@13114
   564
wenzelm@13142
   565
lemma rev_rev_ident [simp]: "rev (rev xs) = xs"
nipkow@13145
   566
by (induct xs) auto
wenzelm@13114
   567
wenzelm@13142
   568
lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])"
nipkow@13145
   569
by (induct xs) auto
wenzelm@13114
   570
wenzelm@13142
   571
lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])"
nipkow@13145
   572
by (induct xs) auto
wenzelm@13114
   573
wenzelm@13142
   574
lemma rev_is_rev_conv [iff]: "!!ys. (rev xs = rev ys) = (xs = ys)"
paulson@14208
   575
apply (induct xs, force)
paulson@14208
   576
apply (case_tac ys, simp, force)
nipkow@13145
   577
done
wenzelm@13114
   578
wenzelm@13366
   579
lemma rev_induct [case_names Nil snoc]:
wenzelm@13366
   580
  "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs"
nipkow@13145
   581
apply(subst rev_rev_ident[symmetric])
nipkow@13145
   582
apply(rule_tac list = "rev xs" in list.induct, simp_all)
nipkow@13145
   583
done
wenzelm@13114
   584
nipkow@13145
   585
ML {* val rev_induct_tac = induct_thm_tac (thm "rev_induct") *}-- "compatibility"
wenzelm@13114
   586
wenzelm@13366
   587
lemma rev_exhaust [case_names Nil snoc]:
wenzelm@13366
   588
  "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P"
nipkow@13145
   589
by (induct xs rule: rev_induct) auto
wenzelm@13114
   590
wenzelm@13366
   591
lemmas rev_cases = rev_exhaust
wenzelm@13366
   592
wenzelm@13114
   593
wenzelm@13142
   594
subsection {* @{text set} *}
wenzelm@13114
   595
wenzelm@13142
   596
lemma finite_set [iff]: "finite (set xs)"
nipkow@13145
   597
by (induct xs) auto
wenzelm@13114
   598
wenzelm@13142
   599
lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)"
nipkow@13145
   600
by (induct xs) auto
wenzelm@13114
   601
oheimb@14099
   602
lemma hd_in_set: "l = x#xs \<Longrightarrow> x\<in>set l"
paulson@14208
   603
by (case_tac l, auto)
oheimb@14099
   604
wenzelm@13142
   605
lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)"
nipkow@13145
   606
by auto
wenzelm@13114
   607
oheimb@14099
   608
lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" 
oheimb@14099
   609
by auto
oheimb@14099
   610
wenzelm@13142
   611
lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
nipkow@13145
   612
by (induct xs) auto
wenzelm@13114
   613
nipkow@15245
   614
lemma set_empty2[iff]: "({} = set xs) = (xs = [])"
nipkow@15245
   615
by(induct xs) auto
nipkow@15245
   616
wenzelm@13142
   617
lemma set_rev [simp]: "set (rev xs) = set xs"
nipkow@13145
   618
by (induct xs) auto
wenzelm@13114
   619
wenzelm@13142
   620
lemma set_map [simp]: "set (map f xs) = f`(set xs)"
nipkow@13145
   621
by (induct xs) auto
wenzelm@13114
   622
wenzelm@13142
   623
lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
nipkow@13145
   624
by (induct xs) auto
wenzelm@13114
   625
wenzelm@13142
   626
lemma set_upt [simp]: "set[i..j(] = {k. i \<le> k \<and> k < j}"
paulson@14208
   627
apply (induct j, simp_all)
paulson@14208
   628
apply (erule ssubst, auto)
nipkow@13145
   629
done
wenzelm@13114
   630
wenzelm@13142
   631
lemma in_set_conv_decomp: "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs)"
paulson@15113
   632
proof (induct xs)
paulson@15113
   633
  case Nil show ?case by simp
paulson@15113
   634
  case (Cons a xs)
paulson@15113
   635
  show ?case
paulson@15113
   636
  proof 
paulson@15113
   637
    assume "x \<in> set (a # xs)"
paulson@15113
   638
    with prems show "\<exists>ys zs. a # xs = ys @ x # zs"
paulson@15113
   639
      by (simp, blast intro: Cons_eq_appendI)
paulson@15113
   640
  next
paulson@15113
   641
    assume "\<exists>ys zs. a # xs = ys @ x # zs"
paulson@15113
   642
    then obtain ys zs where eq: "a # xs = ys @ x # zs" by blast
paulson@15113
   643
    show "x \<in> set (a # xs)" 
paulson@15113
   644
      by (cases ys, auto simp add: eq)
paulson@15113
   645
  qed
paulson@15113
   646
qed
wenzelm@13142
   647
wenzelm@13142
   648
lemma in_lists_conv_set: "(xs : lists A) = (\<forall>x \<in> set xs. x : A)"
nipkow@13145
   649
-- {* eliminate @{text lists} in favour of @{text set} *}
nipkow@13145
   650
by (induct xs) auto
wenzelm@13142
   651
wenzelm@13142
   652
lemma in_listsD [dest!]: "xs \<in> lists A ==> \<forall>x\<in>set xs. x \<in> A"
nipkow@13145
   653
by (rule in_lists_conv_set [THEN iffD1])
wenzelm@13142
   654
wenzelm@13142
   655
lemma in_listsI [intro!]: "\<forall>x\<in>set xs. x \<in> A ==> xs \<in> lists A"
nipkow@13145
   656
by (rule in_lists_conv_set [THEN iffD2])
wenzelm@13114
   657
paulson@15168
   658
lemma lists_UNIV [simp]: "lists UNIV = UNIV"
paulson@15168
   659
by auto
paulson@15168
   660
paulson@13508
   661
lemma finite_list: "finite A ==> EX l. set l = A"
paulson@13508
   662
apply (erule finite_induct, auto)
paulson@13508
   663
apply (rule_tac x="x#l" in exI, auto)
paulson@13508
   664
done
paulson@13508
   665
kleing@14388
   666
lemma card_length: "card (set xs) \<le> length xs"
kleing@14388
   667
by (induct xs) (auto simp add: card_insert_if)
wenzelm@13114
   668
paulson@15168
   669
paulson@15168
   670
subsection{*Sets of Lists*}
paulson@15168
   671
paulson@15168
   672
text{*Resembles a Cartesian product: it denotes the set of lists with head
paulson@15168
   673
  drawn from @{term A} and tail drawn from @{term Xs}.*}
paulson@15168
   674
constdefs
paulson@15168
   675
  set_Cons :: "'a set \<Rightarrow> 'a list set \<Rightarrow> 'a list set"
paulson@15168
   676
   "set_Cons A XS == {z. \<exists>x xs. z = x#xs & x \<in> A & xs \<in> XS}"
paulson@15168
   677
paulson@15168
   678
lemma [simp]: "set_Cons A {[]} = (%x. [x])`A"
paulson@15168
   679
by (auto simp add: set_Cons_def)
paulson@15168
   680
paulson@15168
   681
text{*Yields the set of lists, all of the same length as the argument and
paulson@15168
   682
with elements drawn from the corresponding element of the argument.*}
paulson@15168
   683
consts  listset :: "'a set list \<Rightarrow> 'a list set"
paulson@15168
   684
primrec
paulson@15168
   685
   "listset []    = {[]}"
paulson@15168
   686
   "listset(A#As) = set_Cons A (listset As)"
paulson@15168
   687
paulson@15168
   688
paulson@15176
   689
subsection{*Lifting a Relation on List Elements to the Lists*}
paulson@15176
   690
consts  listrel :: "('a * 'a)set => ('a list * 'a list)set"
paulson@15176
   691
paulson@15176
   692
inductive "listrel(r)"
paulson@15176
   693
 intros
paulson@15176
   694
   Nil:  "([],[]) \<in> listrel r"
paulson@15176
   695
   Cons: "[| (x,y) \<in> r; (xs,ys) \<in> listrel r |] ==> (x#xs, y#ys) \<in> listrel r"
paulson@15176
   696
paulson@15176
   697
inductive_cases listrel_Nil1 [elim!]: "([],xs) \<in> listrel r"
paulson@15176
   698
inductive_cases listrel_Nil2 [elim!]: "(xs,[]) \<in> listrel r"
paulson@15176
   699
inductive_cases listrel_Cons1 [elim!]: "(y#ys,xs) \<in> listrel r"
paulson@15176
   700
inductive_cases listrel_Cons2 [elim!]: "(xs,y#ys) \<in> listrel r"
paulson@15176
   701
paulson@15176
   702
paulson@15176
   703
lemma listrel_mono: "r \<subseteq> s \<Longrightarrow> listrel r \<subseteq> listrel s"
paulson@15176
   704
apply clarify  
paulson@15176
   705
apply (erule listrel.induct)
paulson@15176
   706
apply (blast intro: listrel.intros)+
paulson@15176
   707
done
paulson@15176
   708
paulson@15176
   709
lemma listrel_subset: "r \<subseteq> A \<times> A \<Longrightarrow> listrel r \<subseteq> lists A \<times> lists A"
paulson@15176
   710
apply clarify 
paulson@15176
   711
apply (erule listrel.induct, auto) 
paulson@15176
   712
done
paulson@15176
   713
paulson@15176
   714
lemma listrel_refl: "refl A r \<Longrightarrow> refl (lists A) (listrel r)" 
paulson@15176
   715
apply (simp add: refl_def listrel_subset Ball_def)
paulson@15176
   716
apply (rule allI) 
paulson@15176
   717
apply (induct_tac x) 
paulson@15176
   718
apply (auto intro: listrel.intros)
paulson@15176
   719
done
paulson@15176
   720
paulson@15176
   721
lemma listrel_sym: "sym r \<Longrightarrow> sym (listrel r)" 
paulson@15176
   722
apply (auto simp add: sym_def)
paulson@15176
   723
apply (erule listrel.induct) 
paulson@15176
   724
apply (blast intro: listrel.intros)+
paulson@15176
   725
done
paulson@15176
   726
paulson@15176
   727
lemma listrel_trans: "trans r \<Longrightarrow> trans (listrel r)" 
paulson@15176
   728
apply (simp add: trans_def)
paulson@15176
   729
apply (intro allI) 
paulson@15176
   730
apply (rule impI) 
paulson@15176
   731
apply (erule listrel.induct) 
paulson@15176
   732
apply (blast intro: listrel.intros)+
paulson@15176
   733
done
paulson@15176
   734
paulson@15176
   735
theorem equiv_listrel: "equiv A r \<Longrightarrow> equiv (lists A) (listrel r)"
paulson@15176
   736
by (simp add: equiv_def listrel_refl listrel_sym listrel_trans) 
paulson@15176
   737
paulson@15176
   738
lemma listrel_Nil [simp]: "listrel r `` {[]} = {[]}"
paulson@15176
   739
by (blast intro: listrel.intros)
paulson@15176
   740
paulson@15176
   741
lemma listrel_Cons:
paulson@15176
   742
     "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})";
paulson@15176
   743
by (auto simp add: set_Cons_def intro: listrel.intros) 
paulson@15176
   744
paulson@15176
   745
wenzelm@13142
   746
subsection {* @{text mem} *}
wenzelm@13114
   747
wenzelm@13114
   748
lemma set_mem_eq: "(x mem xs) = (x : set xs)"
nipkow@13145
   749
by (induct xs) auto
wenzelm@13114
   750
wenzelm@13114
   751
wenzelm@13142
   752
subsection {* @{text list_all} *}
wenzelm@13114
   753
wenzelm@13142
   754
lemma list_all_conv: "list_all P xs = (\<forall>x \<in> set xs. P x)"
nipkow@13145
   755
by (induct xs) auto
wenzelm@13114
   756
wenzelm@13142
   757
lemma list_all_append [simp]:
nipkow@13145
   758
"list_all P (xs @ ys) = (list_all P xs \<and> list_all P ys)"
nipkow@13145
   759
by (induct xs) auto
wenzelm@13114
   760
wenzelm@13114
   761
wenzelm@13142
   762
subsection {* @{text filter} *}
wenzelm@13114
   763
wenzelm@13142
   764
lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys"
nipkow@13145
   765
by (induct xs) auto
wenzelm@13114
   766
wenzelm@13142
   767
lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs"
nipkow@13145
   768
by (induct xs) auto
wenzelm@13114
   769
wenzelm@13142
   770
lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs"
nipkow@13145
   771
by (induct xs) auto
wenzelm@13114
   772
wenzelm@13142
   773
lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []"
nipkow@13145
   774
by (induct xs) auto
wenzelm@13114
   775
nipkow@15246
   776
lemma length_filter_le [simp]: "length (filter P xs) \<le> length xs"
nipkow@13145
   777
by (induct xs) (auto simp add: le_SucI)
wenzelm@13114
   778
wenzelm@13142
   779
lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs"
nipkow@13145
   780
by auto
wenzelm@13114
   781
nipkow@15246
   782
lemma length_filter_less:
nipkow@15246
   783
  "\<lbrakk> x : set xs; ~ P x \<rbrakk> \<Longrightarrow> length(filter P xs) < length xs"
nipkow@15246
   784
proof (induct xs)
nipkow@15246
   785
  case Nil thus ?case by simp
nipkow@15246
   786
next
nipkow@15246
   787
  case (Cons x xs) thus ?case
nipkow@15246
   788
    apply (auto split:split_if_asm)
nipkow@15246
   789
    using length_filter_le[of P xs] apply arith
nipkow@15246
   790
  done
nipkow@15246
   791
qed
wenzelm@13114
   792
nipkow@15281
   793
lemma length_filter_conv_card:
nipkow@15281
   794
 "length(filter p xs) = card{i. i < length xs & p(xs!i)}"
nipkow@15281
   795
proof (induct xs)
nipkow@15281
   796
  case Nil thus ?case by simp
nipkow@15281
   797
next
nipkow@15281
   798
  case (Cons x xs)
nipkow@15281
   799
  let ?S = "{i. i < length xs & p(xs!i)}"
nipkow@15281
   800
  have fin: "finite ?S" by(fast intro: bounded_nat_set_is_finite)
nipkow@15281
   801
  show ?case (is "?l = card ?S'")
nipkow@15281
   802
  proof (cases)
nipkow@15281
   803
    assume "p x"
nipkow@15281
   804
    hence eq: "?S' = insert 0 (Suc ` ?S)"
nipkow@15281
   805
      by(auto simp add: nth_Cons image_def split:nat.split elim:lessE)
nipkow@15281
   806
    have "length (filter p (x # xs)) = Suc(card ?S)"
nipkow@15281
   807
      using Cons by simp
nipkow@15281
   808
    also have "\<dots> = Suc(card(Suc ` ?S))" using fin
nipkow@15281
   809
      by (simp add: card_image inj_Suc)
nipkow@15281
   810
    also have "\<dots> = card ?S'" using eq fin
nipkow@15281
   811
      by (simp add:card_insert_if) (simp add:image_def)
nipkow@15281
   812
    finally show ?thesis .
nipkow@15281
   813
  next
nipkow@15281
   814
    assume "\<not> p x"
nipkow@15281
   815
    hence eq: "?S' = Suc ` ?S"
nipkow@15281
   816
      by(auto simp add: nth_Cons image_def split:nat.split elim:lessE)
nipkow@15281
   817
    have "length (filter p (x # xs)) = card ?S"
nipkow@15281
   818
      using Cons by simp
nipkow@15281
   819
    also have "\<dots> = card(Suc ` ?S)" using fin
nipkow@15281
   820
      by (simp add: card_image inj_Suc)
nipkow@15281
   821
    also have "\<dots> = card ?S'" using eq fin
nipkow@15281
   822
      by (simp add:card_insert_if)
nipkow@15281
   823
    finally show ?thesis .
nipkow@15281
   824
  qed
nipkow@15281
   825
qed
nipkow@15281
   826
nipkow@15281
   827
wenzelm@13142
   828
subsection {* @{text concat} *}
wenzelm@13114
   829
wenzelm@13142
   830
lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys"
nipkow@13145
   831
by (induct xs) auto
wenzelm@13114
   832
wenzelm@13142
   833
lemma concat_eq_Nil_conv [iff]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   834
by (induct xss) auto
wenzelm@13114
   835
wenzelm@13142
   836
lemma Nil_eq_concat_conv [iff]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   837
by (induct xss) auto
wenzelm@13114
   838
wenzelm@13142
   839
lemma set_concat [simp]: "set (concat xs) = \<Union>(set ` set xs)"
nipkow@13145
   840
by (induct xs) auto
wenzelm@13114
   841
wenzelm@13142
   842
lemma map_concat: "map f (concat xs) = concat (map (map f) xs)"
nipkow@13145
   843
by (induct xs) auto
wenzelm@13114
   844
wenzelm@13142
   845
lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)"
nipkow@13145
   846
by (induct xs) auto
wenzelm@13114
   847
wenzelm@13142
   848
lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))"
nipkow@13145
   849
by (induct xs) auto
wenzelm@13114
   850
wenzelm@13114
   851
wenzelm@13142
   852
subsection {* @{text nth} *}
wenzelm@13114
   853
wenzelm@13142
   854
lemma nth_Cons_0 [simp]: "(x # xs)!0 = x"
nipkow@13145
   855
by auto
wenzelm@13114
   856
wenzelm@13142
   857
lemma nth_Cons_Suc [simp]: "(x # xs)!(Suc n) = xs!n"
nipkow@13145
   858
by auto
wenzelm@13114
   859
wenzelm@13142
   860
declare nth.simps [simp del]
wenzelm@13114
   861
wenzelm@13114
   862
lemma nth_append:
nipkow@13145
   863
"!!n. (xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))"
paulson@14208
   864
apply (induct "xs", simp)
paulson@14208
   865
apply (case_tac n, auto)
nipkow@13145
   866
done
wenzelm@13114
   867
nipkow@14402
   868
lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x"
nipkow@14402
   869
by (induct "xs") auto
nipkow@14402
   870
nipkow@14402
   871
lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n"
nipkow@14402
   872
by (induct "xs") auto
nipkow@14402
   873
wenzelm@13142
   874
lemma nth_map [simp]: "!!n. n < length xs ==> (map f xs)!n = f(xs!n)"
paulson@14208
   875
apply (induct xs, simp)
paulson@14208
   876
apply (case_tac n, auto)
nipkow@13145
   877
done
wenzelm@13114
   878
wenzelm@13142
   879
lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
paulson@15251
   880
apply (induct xs, simp, simp)
nipkow@13145
   881
apply safe
paulson@14208
   882
apply (rule_tac x = 0 in exI, simp)
paulson@14208
   883
 apply (rule_tac x = "Suc i" in exI, simp)
paulson@14208
   884
apply (case_tac i, simp)
nipkow@13145
   885
apply (rename_tac j)
paulson@14208
   886
apply (rule_tac x = j in exI, simp)
nipkow@13145
   887
done
wenzelm@13114
   888
nipkow@13145
   889
lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)"
nipkow@13145
   890
by (auto simp add: set_conv_nth)
wenzelm@13114
   891
wenzelm@13142
   892
lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs"
nipkow@13145
   893
by (auto simp add: set_conv_nth)
wenzelm@13114
   894
wenzelm@13114
   895
lemma all_nth_imp_all_set:
nipkow@13145
   896
"[| !i < length xs. P(xs!i); x : set xs|] ==> P x"
nipkow@13145
   897
by (auto simp add: set_conv_nth)
wenzelm@13114
   898
wenzelm@13114
   899
lemma all_set_conv_all_nth:
nipkow@13145
   900
"(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))"
nipkow@13145
   901
by (auto simp add: set_conv_nth)
wenzelm@13114
   902
wenzelm@13114
   903
wenzelm@13142
   904
subsection {* @{text list_update} *}
wenzelm@13114
   905
wenzelm@13142
   906
lemma length_list_update [simp]: "!!i. length(xs[i:=x]) = length xs"
nipkow@13145
   907
by (induct xs) (auto split: nat.split)
wenzelm@13114
   908
wenzelm@13114
   909
lemma nth_list_update:
nipkow@13145
   910
"!!i j. i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)"
nipkow@13145
   911
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
   912
wenzelm@13142
   913
lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x"
nipkow@13145
   914
by (simp add: nth_list_update)
wenzelm@13114
   915
wenzelm@13142
   916
lemma nth_list_update_neq [simp]: "!!i j. i \<noteq> j ==> xs[i:=x]!j = xs!j"
nipkow@13145
   917
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
   918
wenzelm@13142
   919
lemma list_update_overwrite [simp]:
nipkow@13145
   920
"!!i. i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]"
nipkow@13145
   921
by (induct xs) (auto split: nat.split)
wenzelm@13114
   922
nipkow@14402
   923
lemma list_update_id[simp]: "!!i. i < length xs ==> xs[i := xs!i] = xs"
paulson@14208
   924
apply (induct xs, simp)
nipkow@14187
   925
apply(simp split:nat.splits)
nipkow@14187
   926
done
nipkow@14187
   927
wenzelm@13114
   928
lemma list_update_same_conv:
nipkow@13145
   929
"!!i. i < length xs ==> (xs[i := x] = xs) = (xs!i = x)"
nipkow@13145
   930
by (induct xs) (auto split: nat.split)
wenzelm@13114
   931
nipkow@14187
   932
lemma list_update_append1:
nipkow@14187
   933
 "!!i. i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys"
paulson@14208
   934
apply (induct xs, simp)
nipkow@14187
   935
apply(simp split:nat.split)
nipkow@14187
   936
done
nipkow@14187
   937
nipkow@14402
   938
lemma list_update_length [simp]:
nipkow@14402
   939
 "(xs @ x # ys)[length xs := y] = (xs @ y # ys)"
nipkow@14402
   940
by (induct xs, auto)
nipkow@14402
   941
wenzelm@13114
   942
lemma update_zip:
nipkow@13145
   943
"!!i xy xs. length xs = length ys ==>
nipkow@13145
   944
(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])"
nipkow@13145
   945
by (induct ys) (auto, case_tac xs, auto split: nat.split)
wenzelm@13114
   946
wenzelm@13114
   947
lemma set_update_subset_insert: "!!i. set(xs[i:=x]) <= insert x (set xs)"
nipkow@13145
   948
by (induct xs) (auto split: nat.split)
wenzelm@13114
   949
wenzelm@13114
   950
lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A"
nipkow@13145
   951
by (blast dest!: set_update_subset_insert [THEN subsetD])
wenzelm@13114
   952
wenzelm@13114
   953
wenzelm@13142
   954
subsection {* @{text last} and @{text butlast} *}
wenzelm@13114
   955
wenzelm@13142
   956
lemma last_snoc [simp]: "last (xs @ [x]) = x"
nipkow@13145
   957
by (induct xs) auto
wenzelm@13114
   958
wenzelm@13142
   959
lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs"
nipkow@13145
   960
by (induct xs) auto
wenzelm@13114
   961
nipkow@14302
   962
lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x"
nipkow@14302
   963
by(simp add:last.simps)
nipkow@14302
   964
nipkow@14302
   965
lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs"
nipkow@14302
   966
by(simp add:last.simps)
nipkow@14302
   967
nipkow@14302
   968
lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)"
nipkow@14302
   969
by (induct xs) (auto)
nipkow@14302
   970
nipkow@14302
   971
lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs"
nipkow@14302
   972
by(simp add:last_append)
nipkow@14302
   973
nipkow@14302
   974
lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys"
nipkow@14302
   975
by(simp add:last_append)
nipkow@14302
   976
nipkow@14302
   977
wenzelm@13142
   978
lemma length_butlast [simp]: "length (butlast xs) = length xs - 1"
nipkow@13145
   979
by (induct xs rule: rev_induct) auto
wenzelm@13114
   980
wenzelm@13114
   981
lemma butlast_append:
nipkow@13145
   982
"!!ys. butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)"
nipkow@13145
   983
by (induct xs) auto
wenzelm@13114
   984
wenzelm@13142
   985
lemma append_butlast_last_id [simp]:
nipkow@13145
   986
"xs \<noteq> [] ==> butlast xs @ [last xs] = xs"
nipkow@13145
   987
by (induct xs) auto
wenzelm@13114
   988
wenzelm@13142
   989
lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs"
nipkow@13145
   990
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
   991
wenzelm@13114
   992
lemma in_set_butlast_appendI:
nipkow@13145
   993
"x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))"
nipkow@13145
   994
by (auto dest: in_set_butlastD simp add: butlast_append)
wenzelm@13114
   995
wenzelm@13142
   996
wenzelm@13142
   997
subsection {* @{text take} and @{text drop} *}
wenzelm@13114
   998
wenzelm@13142
   999
lemma take_0 [simp]: "take 0 xs = []"
nipkow@13145
  1000
by (induct xs) auto
wenzelm@13114
  1001
wenzelm@13142
  1002
lemma drop_0 [simp]: "drop 0 xs = xs"
nipkow@13145
  1003
by (induct xs) auto
wenzelm@13114
  1004
wenzelm@13142
  1005
lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs"
nipkow@13145
  1006
by simp
wenzelm@13114
  1007
wenzelm@13142
  1008
lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs"
nipkow@13145
  1009
by simp
wenzelm@13114
  1010
wenzelm@13142
  1011
declare take_Cons [simp del] and drop_Cons [simp del]
wenzelm@13114
  1012
nipkow@15110
  1013
lemma take_Suc: "xs ~= [] ==> take (Suc n) xs = hd xs # take n (tl xs)"
nipkow@15110
  1014
by(clarsimp simp add:neq_Nil_conv)
nipkow@15110
  1015
nipkow@14187
  1016
lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)"
nipkow@14187
  1017
by(cases xs, simp_all)
nipkow@14187
  1018
nipkow@14187
  1019
lemma drop_tl: "!!n. drop n (tl xs) = tl(drop n xs)"
nipkow@14187
  1020
by(induct xs, simp_all add:drop_Cons drop_Suc split:nat.split)
nipkow@14187
  1021
nipkow@14187
  1022
lemma nth_via_drop: "!!n. drop n xs = y#ys \<Longrightarrow> xs!n = y"
paulson@14208
  1023
apply (induct xs, simp)
nipkow@14187
  1024
apply(simp add:drop_Cons nth_Cons split:nat.splits)
nipkow@14187
  1025
done
nipkow@14187
  1026
nipkow@13913
  1027
lemma take_Suc_conv_app_nth:
nipkow@13913
  1028
 "!!i. i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]"
paulson@14208
  1029
apply (induct xs, simp)
paulson@14208
  1030
apply (case_tac i, auto)
nipkow@13913
  1031
done
nipkow@13913
  1032
mehta@14591
  1033
lemma drop_Suc_conv_tl:
mehta@14591
  1034
  "!!i. i < length xs \<Longrightarrow> (xs!i) # (drop (Suc i) xs) = drop i xs"
mehta@14591
  1035
apply (induct xs, simp)
mehta@14591
  1036
apply (case_tac i, auto)
mehta@14591
  1037
done
mehta@14591
  1038
wenzelm@13142
  1039
lemma length_take [simp]: "!!xs. length (take n xs) = min (length xs) n"
nipkow@13145
  1040
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1041
wenzelm@13142
  1042
lemma length_drop [simp]: "!!xs. length (drop n xs) = (length xs - n)"
nipkow@13145
  1043
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1044
wenzelm@13142
  1045
lemma take_all [simp]: "!!xs. length xs <= n ==> take n xs = xs"
nipkow@13145
  1046
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1047
wenzelm@13142
  1048
lemma drop_all [simp]: "!!xs. length xs <= n ==> drop n xs = []"
nipkow@13145
  1049
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1050
wenzelm@13142
  1051
lemma take_append [simp]:
nipkow@13145
  1052
"!!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)"
nipkow@13145
  1053
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1054
wenzelm@13142
  1055
lemma drop_append [simp]:
nipkow@13145
  1056
"!!xs. drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys"
nipkow@13145
  1057
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1058
wenzelm@13142
  1059
lemma take_take [simp]: "!!xs n. take n (take m xs) = take (min n m) xs"
paulson@14208
  1060
apply (induct m, auto)
paulson@14208
  1061
apply (case_tac xs, auto)
nipkow@15236
  1062
apply (case_tac n, auto)
nipkow@13145
  1063
done
wenzelm@13114
  1064
wenzelm@13142
  1065
lemma drop_drop [simp]: "!!xs. drop n (drop m xs) = drop (n + m) xs"
paulson@14208
  1066
apply (induct m, auto)
paulson@14208
  1067
apply (case_tac xs, auto)
nipkow@13145
  1068
done
wenzelm@13114
  1069
wenzelm@13114
  1070
lemma take_drop: "!!xs n. take n (drop m xs) = drop m (take (n + m) xs)"
paulson@14208
  1071
apply (induct m, auto)
paulson@14208
  1072
apply (case_tac xs, auto)
nipkow@13145
  1073
done
wenzelm@13114
  1074
nipkow@14802
  1075
lemma drop_take: "!!m n. drop n (take m xs) = take (m-n) (drop n xs)"
nipkow@14802
  1076
apply(induct xs)
nipkow@14802
  1077
 apply simp
nipkow@14802
  1078
apply(simp add: take_Cons drop_Cons split:nat.split)
nipkow@14802
  1079
done
nipkow@14802
  1080
wenzelm@13142
  1081
lemma append_take_drop_id [simp]: "!!xs. take n xs @ drop n xs = xs"
paulson@14208
  1082
apply (induct n, auto)
paulson@14208
  1083
apply (case_tac xs, auto)
nipkow@13145
  1084
done
wenzelm@13114
  1085
nipkow@15110
  1086
lemma take_eq_Nil[simp]: "!!n. (take n xs = []) = (n = 0 \<or> xs = [])"
nipkow@15110
  1087
apply(induct xs)
nipkow@15110
  1088
 apply simp
nipkow@15110
  1089
apply(simp add:take_Cons split:nat.split)
nipkow@15110
  1090
done
nipkow@15110
  1091
nipkow@15110
  1092
lemma drop_eq_Nil[simp]: "!!n. (drop n xs = []) = (length xs <= n)"
nipkow@15110
  1093
apply(induct xs)
nipkow@15110
  1094
apply simp
nipkow@15110
  1095
apply(simp add:drop_Cons split:nat.split)
nipkow@15110
  1096
done
nipkow@15110
  1097
wenzelm@13114
  1098
lemma take_map: "!!xs. take n (map f xs) = map f (take n xs)"
paulson@14208
  1099
apply (induct n, auto)
paulson@14208
  1100
apply (case_tac xs, auto)
nipkow@13145
  1101
done
wenzelm@13114
  1102
wenzelm@13142
  1103
lemma drop_map: "!!xs. drop n (map f xs) = map f (drop n xs)"
paulson@14208
  1104
apply (induct n, auto)
paulson@14208
  1105
apply (case_tac xs, auto)
nipkow@13145
  1106
done
wenzelm@13114
  1107
wenzelm@13114
  1108
lemma rev_take: "!!i. rev (take i xs) = drop (length xs - i) (rev xs)"
paulson@14208
  1109
apply (induct xs, auto)
paulson@14208
  1110
apply (case_tac i, auto)
nipkow@13145
  1111
done
wenzelm@13114
  1112
wenzelm@13114
  1113
lemma rev_drop: "!!i. rev (drop i xs) = take (length xs - i) (rev xs)"
paulson@14208
  1114
apply (induct xs, auto)
paulson@14208
  1115
apply (case_tac i, auto)
nipkow@13145
  1116
done
wenzelm@13114
  1117
wenzelm@13142
  1118
lemma nth_take [simp]: "!!n i. i < n ==> (take n xs)!i = xs!i"
paulson@14208
  1119
apply (induct xs, auto)
paulson@14208
  1120
apply (case_tac n, blast)
paulson@14208
  1121
apply (case_tac i, auto)
nipkow@13145
  1122
done
wenzelm@13114
  1123
wenzelm@13142
  1124
lemma nth_drop [simp]:
nipkow@13145
  1125
"!!xs i. n + i <= length xs ==> (drop n xs)!i = xs!(n + i)"
paulson@14208
  1126
apply (induct n, auto)
paulson@14208
  1127
apply (case_tac xs, auto)
nipkow@13145
  1128
done
nipkow@3507
  1129
nipkow@14025
  1130
lemma set_take_subset: "\<And>n. set(take n xs) \<subseteq> set xs"
nipkow@14025
  1131
by(induct xs)(auto simp:take_Cons split:nat.split)
nipkow@14025
  1132
nipkow@14025
  1133
lemma set_drop_subset: "\<And>n. set(drop n xs) \<subseteq> set xs"
nipkow@14025
  1134
by(induct xs)(auto simp:drop_Cons split:nat.split)
nipkow@14025
  1135
nipkow@14187
  1136
lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs"
nipkow@14187
  1137
using set_take_subset by fast
nipkow@14187
  1138
nipkow@14187
  1139
lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs"
nipkow@14187
  1140
using set_drop_subset by fast
nipkow@14187
  1141
wenzelm@13114
  1142
lemma append_eq_conv_conj:
nipkow@13145
  1143
"!!zs. (xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)"
paulson@14208
  1144
apply (induct xs, simp, clarsimp)
paulson@14208
  1145
apply (case_tac zs, auto)
nipkow@13145
  1146
done
wenzelm@13142
  1147
paulson@14050
  1148
lemma take_add [rule_format]: 
paulson@14050
  1149
    "\<forall>i. i+j \<le> length(xs) --> take (i+j) xs = take i xs @ take j (drop i xs)"
paulson@14050
  1150
apply (induct xs, auto) 
paulson@14050
  1151
apply (case_tac i, simp_all) 
paulson@14050
  1152
done
paulson@14050
  1153
nipkow@14300
  1154
lemma append_eq_append_conv_if:
nipkow@14300
  1155
 "!! ys\<^isub>1. (xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) =
nipkow@14300
  1156
  (if size xs\<^isub>1 \<le> size ys\<^isub>1
nipkow@14300
  1157
   then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2
nipkow@14300
  1158
   else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)"
nipkow@14300
  1159
apply(induct xs\<^isub>1)
nipkow@14300
  1160
 apply simp
nipkow@14300
  1161
apply(case_tac ys\<^isub>1)
nipkow@14300
  1162
apply simp_all
nipkow@14300
  1163
done
nipkow@14300
  1164
nipkow@15110
  1165
lemma take_hd_drop:
nipkow@15110
  1166
  "!!n. n < length xs \<Longrightarrow> take n xs @ [hd (drop n xs)] = take (n+1) xs"
nipkow@15110
  1167
apply(induct xs)
nipkow@15110
  1168
apply simp
nipkow@15110
  1169
apply(simp add:drop_Cons split:nat.split)
nipkow@15110
  1170
done
nipkow@15110
  1171
wenzelm@13114
  1172
wenzelm@13142
  1173
subsection {* @{text takeWhile} and @{text dropWhile} *}
wenzelm@13114
  1174
wenzelm@13142
  1175
lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs"
nipkow@13145
  1176
by (induct xs) auto
wenzelm@13114
  1177
wenzelm@13142
  1178
lemma takeWhile_append1 [simp]:
nipkow@13145
  1179
"[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs"
nipkow@13145
  1180
by (induct xs) auto
wenzelm@13114
  1181
wenzelm@13142
  1182
lemma takeWhile_append2 [simp]:
nipkow@13145
  1183
"(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys"
nipkow@13145
  1184
by (induct xs) auto
wenzelm@13114
  1185
wenzelm@13142
  1186
lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs"
nipkow@13145
  1187
by (induct xs) auto
wenzelm@13114
  1188
wenzelm@13142
  1189
lemma dropWhile_append1 [simp]:
nipkow@13145
  1190
"[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys"
nipkow@13145
  1191
by (induct xs) auto
wenzelm@13114
  1192
wenzelm@13142
  1193
lemma dropWhile_append2 [simp]:
nipkow@13145
  1194
"(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys"
nipkow@13145
  1195
by (induct xs) auto
wenzelm@13114
  1196
wenzelm@13142
  1197
lemma set_take_whileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x"
nipkow@13145
  1198
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
  1199
nipkow@13913
  1200
lemma takeWhile_eq_all_conv[simp]:
nipkow@13913
  1201
 "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
  1202
by(induct xs, auto)
nipkow@13913
  1203
nipkow@13913
  1204
lemma dropWhile_eq_Nil_conv[simp]:
nipkow@13913
  1205
 "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
  1206
by(induct xs, auto)
nipkow@13913
  1207
nipkow@13913
  1208
lemma dropWhile_eq_Cons_conv:
nipkow@13913
  1209
 "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)"
nipkow@13913
  1210
by(induct xs, auto)
nipkow@13913
  1211
wenzelm@13114
  1212
wenzelm@13142
  1213
subsection {* @{text zip} *}
wenzelm@13114
  1214
wenzelm@13142
  1215
lemma zip_Nil [simp]: "zip [] ys = []"
nipkow@13145
  1216
by (induct ys) auto
wenzelm@13114
  1217
wenzelm@13142
  1218
lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys"
nipkow@13145
  1219
by simp
wenzelm@13114
  1220
wenzelm@13142
  1221
declare zip_Cons [simp del]
wenzelm@13114
  1222
nipkow@15281
  1223
lemma zip_Cons1:
nipkow@15281
  1224
 "zip (x#xs) ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x,y)#zip xs ys)"
nipkow@15281
  1225
by(auto split:list.split)
nipkow@15281
  1226
wenzelm@13142
  1227
lemma length_zip [simp]:
nipkow@13145
  1228
"!!xs. length (zip xs ys) = min (length xs) (length ys)"
paulson@14208
  1229
apply (induct ys, simp)
paulson@14208
  1230
apply (case_tac xs, auto)
nipkow@13145
  1231
done
wenzelm@13114
  1232
wenzelm@13114
  1233
lemma zip_append1:
nipkow@13145
  1234
"!!xs. zip (xs @ ys) zs =
nipkow@13145
  1235
zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)"
paulson@14208
  1236
apply (induct zs, simp)
paulson@14208
  1237
apply (case_tac xs, simp_all)
nipkow@13145
  1238
done
wenzelm@13114
  1239
wenzelm@13114
  1240
lemma zip_append2:
nipkow@13145
  1241
"!!ys. zip xs (ys @ zs) =
nipkow@13145
  1242
zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs"
paulson@14208
  1243
apply (induct xs, simp)
paulson@14208
  1244
apply (case_tac ys, simp_all)
nipkow@13145
  1245
done
wenzelm@13114
  1246
wenzelm@13142
  1247
lemma zip_append [simp]:
wenzelm@13142
  1248
 "[| length xs = length us; length ys = length vs |] ==>
nipkow@13145
  1249
zip (xs@ys) (us@vs) = zip xs us @ zip ys vs"
nipkow@13145
  1250
by (simp add: zip_append1)
wenzelm@13114
  1251
wenzelm@13114
  1252
lemma zip_rev:
nipkow@14247
  1253
"length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)"
nipkow@14247
  1254
by (induct rule:list_induct2, simp_all)
wenzelm@13114
  1255
wenzelm@13142
  1256
lemma nth_zip [simp]:
nipkow@13145
  1257
"!!i xs. [| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)"
paulson@14208
  1258
apply (induct ys, simp)
nipkow@13145
  1259
apply (case_tac xs)
nipkow@13145
  1260
 apply (simp_all add: nth.simps split: nat.split)
nipkow@13145
  1261
done
wenzelm@13114
  1262
wenzelm@13114
  1263
lemma set_zip:
nipkow@13145
  1264
"set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
nipkow@13145
  1265
by (simp add: set_conv_nth cong: rev_conj_cong)
wenzelm@13114
  1266
wenzelm@13114
  1267
lemma zip_update:
nipkow@13145
  1268
"length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]"
nipkow@13145
  1269
by (rule sym, simp add: update_zip)
wenzelm@13114
  1270
wenzelm@13142
  1271
lemma zip_replicate [simp]:
nipkow@13145
  1272
"!!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)"
paulson@14208
  1273
apply (induct i, auto)
paulson@14208
  1274
apply (case_tac j, auto)
nipkow@13145
  1275
done
wenzelm@13114
  1276
wenzelm@13142
  1277
wenzelm@13142
  1278
subsection {* @{text list_all2} *}
wenzelm@13114
  1279
kleing@14316
  1280
lemma list_all2_lengthD [intro?]: 
kleing@14316
  1281
  "list_all2 P xs ys ==> length xs = length ys"
nipkow@13145
  1282
by (simp add: list_all2_def)
wenzelm@13114
  1283
wenzelm@13142
  1284
lemma list_all2_Nil [iff]: "list_all2 P [] ys = (ys = [])"
nipkow@13145
  1285
by (simp add: list_all2_def)
wenzelm@13114
  1286
wenzelm@13142
  1287
lemma list_all2_Nil2[iff]: "list_all2 P xs [] = (xs = [])"
nipkow@13145
  1288
by (simp add: list_all2_def)
wenzelm@13114
  1289
wenzelm@13142
  1290
lemma list_all2_Cons [iff]:
nipkow@13145
  1291
"list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)"
nipkow@13145
  1292
by (auto simp add: list_all2_def)
wenzelm@13114
  1293
wenzelm@13114
  1294
lemma list_all2_Cons1:
nipkow@13145
  1295
"list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)"
nipkow@13145
  1296
by (cases ys) auto
wenzelm@13114
  1297
wenzelm@13114
  1298
lemma list_all2_Cons2:
nipkow@13145
  1299
"list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)"
nipkow@13145
  1300
by (cases xs) auto
wenzelm@13114
  1301
wenzelm@13142
  1302
lemma list_all2_rev [iff]:
nipkow@13145
  1303
"list_all2 P (rev xs) (rev ys) = list_all2 P xs ys"
nipkow@13145
  1304
by (simp add: list_all2_def zip_rev cong: conj_cong)
wenzelm@13114
  1305
kleing@13863
  1306
lemma list_all2_rev1:
kleing@13863
  1307
"list_all2 P (rev xs) ys = list_all2 P xs (rev ys)"
kleing@13863
  1308
by (subst list_all2_rev [symmetric]) simp
kleing@13863
  1309
wenzelm@13114
  1310
lemma list_all2_append1:
nipkow@13145
  1311
"list_all2 P (xs @ ys) zs =
nipkow@13145
  1312
(EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and>
nipkow@13145
  1313
list_all2 P xs us \<and> list_all2 P ys vs)"
nipkow@13145
  1314
apply (simp add: list_all2_def zip_append1)
nipkow@13145
  1315
apply (rule iffI)
nipkow@13145
  1316
 apply (rule_tac x = "take (length xs) zs" in exI)
nipkow@13145
  1317
 apply (rule_tac x = "drop (length xs) zs" in exI)
paulson@14208
  1318
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1319
apply (simp add: ball_Un)
nipkow@13145
  1320
done
wenzelm@13114
  1321
wenzelm@13114
  1322
lemma list_all2_append2:
nipkow@13145
  1323
"list_all2 P xs (ys @ zs) =
nipkow@13145
  1324
(EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and>
nipkow@13145
  1325
list_all2 P us ys \<and> list_all2 P vs zs)"
nipkow@13145
  1326
apply (simp add: list_all2_def zip_append2)
nipkow@13145
  1327
apply (rule iffI)
nipkow@13145
  1328
 apply (rule_tac x = "take (length ys) xs" in exI)
nipkow@13145
  1329
 apply (rule_tac x = "drop (length ys) xs" in exI)
paulson@14208
  1330
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1331
apply (simp add: ball_Un)
nipkow@13145
  1332
done
wenzelm@13114
  1333
kleing@13863
  1334
lemma list_all2_append:
nipkow@14247
  1335
  "length xs = length ys \<Longrightarrow>
nipkow@14247
  1336
  list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)"
nipkow@14247
  1337
by (induct rule:list_induct2, simp_all)
kleing@13863
  1338
kleing@13863
  1339
lemma list_all2_appendI [intro?, trans]:
kleing@13863
  1340
  "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)"
kleing@13863
  1341
  by (simp add: list_all2_append list_all2_lengthD)
kleing@13863
  1342
wenzelm@13114
  1343
lemma list_all2_conv_all_nth:
nipkow@13145
  1344
"list_all2 P xs ys =
nipkow@13145
  1345
(length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))"
nipkow@13145
  1346
by (force simp add: list_all2_def set_zip)
wenzelm@13114
  1347
berghofe@13883
  1348
lemma list_all2_trans:
berghofe@13883
  1349
  assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c"
berghofe@13883
  1350
  shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs"
berghofe@13883
  1351
        (is "!!bs cs. PROP ?Q as bs cs")
berghofe@13883
  1352
proof (induct as)
berghofe@13883
  1353
  fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs"
berghofe@13883
  1354
  show "!!cs. PROP ?Q (x # xs) bs cs"
berghofe@13883
  1355
  proof (induct bs)
berghofe@13883
  1356
    fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs"
berghofe@13883
  1357
    show "PROP ?Q (x # xs) (y # ys) cs"
berghofe@13883
  1358
      by (induct cs) (auto intro: tr I1 I2)
berghofe@13883
  1359
  qed simp
berghofe@13883
  1360
qed simp
berghofe@13883
  1361
kleing@13863
  1362
lemma list_all2_all_nthI [intro?]:
kleing@13863
  1363
  "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b"
kleing@13863
  1364
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1365
paulson@14395
  1366
lemma list_all2I:
paulson@14395
  1367
  "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b"
paulson@14395
  1368
  by (simp add: list_all2_def)
paulson@14395
  1369
kleing@14328
  1370
lemma list_all2_nthD:
kleing@13863
  1371
  "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
kleing@13863
  1372
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1373
nipkow@14302
  1374
lemma list_all2_nthD2:
nipkow@14302
  1375
  "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
nipkow@14302
  1376
  by (frule list_all2_lengthD) (auto intro: list_all2_nthD)
nipkow@14302
  1377
kleing@13863
  1378
lemma list_all2_map1: 
kleing@13863
  1379
  "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs"
kleing@13863
  1380
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1381
kleing@13863
  1382
lemma list_all2_map2: 
kleing@13863
  1383
  "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs"
kleing@13863
  1384
  by (auto simp add: list_all2_conv_all_nth)
kleing@13863
  1385
kleing@14316
  1386
lemma list_all2_refl [intro?]:
kleing@13863
  1387
  "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs"
kleing@13863
  1388
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1389
kleing@13863
  1390
lemma list_all2_update_cong:
kleing@13863
  1391
  "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1392
  by (simp add: list_all2_conv_all_nth nth_list_update)
kleing@13863
  1393
kleing@13863
  1394
lemma list_all2_update_cong2:
kleing@13863
  1395
  "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1396
  by (simp add: list_all2_lengthD list_all2_update_cong)
kleing@13863
  1397
nipkow@14302
  1398
lemma list_all2_takeI [simp,intro?]:
nipkow@14302
  1399
  "\<And>n ys. list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)"
nipkow@14302
  1400
  apply (induct xs)
nipkow@14302
  1401
   apply simp
nipkow@14302
  1402
  apply (clarsimp simp add: list_all2_Cons1)
nipkow@14302
  1403
  apply (case_tac n)
nipkow@14302
  1404
  apply auto
nipkow@14302
  1405
  done
nipkow@14302
  1406
nipkow@14302
  1407
lemma list_all2_dropI [simp,intro?]:
kleing@13863
  1408
  "\<And>n bs. list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)"
paulson@14208
  1409
  apply (induct as, simp)
kleing@13863
  1410
  apply (clarsimp simp add: list_all2_Cons1)
paulson@14208
  1411
  apply (case_tac n, simp, simp)
kleing@13863
  1412
  done
kleing@13863
  1413
kleing@14327
  1414
lemma list_all2_mono [intro?]:
kleing@13863
  1415
  "\<And>y. list_all2 P x y \<Longrightarrow> (\<And>x y. P x y \<Longrightarrow> Q x y) \<Longrightarrow> list_all2 Q x y"
paulson@14208
  1416
  apply (induct x, simp)
paulson@14208
  1417
  apply (case_tac y, auto)
kleing@13863
  1418
  done
kleing@13863
  1419
wenzelm@13142
  1420
nipkow@14402
  1421
subsection {* @{text foldl} and @{text foldr} *}
wenzelm@13142
  1422
wenzelm@13142
  1423
lemma foldl_append [simp]:
nipkow@13145
  1424
"!!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys"
nipkow@13145
  1425
by (induct xs) auto
wenzelm@13142
  1426
nipkow@14402
  1427
lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)"
nipkow@14402
  1428
by (induct xs) auto
nipkow@14402
  1429
nipkow@14402
  1430
lemma foldr_foldl: "foldr f xs a = foldl (%x y. f y x) a (rev xs)"
nipkow@14402
  1431
by (induct xs) auto
nipkow@14402
  1432
nipkow@14402
  1433
lemma foldl_foldr: "foldl f a xs = foldr (%x y. f y x) (rev xs) a"
nipkow@14402
  1434
by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"])
nipkow@14402
  1435
wenzelm@13142
  1436
text {*
nipkow@13145
  1437
Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
nipkow@13145
  1438
difficult to use because it requires an additional transitivity step.
wenzelm@13142
  1439
*}
wenzelm@13142
  1440
wenzelm@13142
  1441
lemma start_le_sum: "!!n::nat. m <= n ==> m <= foldl (op +) n ns"
nipkow@13145
  1442
by (induct ns) auto
wenzelm@13142
  1443
wenzelm@13142
  1444
lemma elem_le_sum: "!!n::nat. n : set ns ==> n <= foldl (op +) 0 ns"
nipkow@13145
  1445
by (force intro: start_le_sum simp add: in_set_conv_decomp)
wenzelm@13142
  1446
wenzelm@13142
  1447
lemma sum_eq_0_conv [iff]:
nipkow@13145
  1448
"!!m::nat. (foldl (op +) m ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))"
nipkow@13145
  1449
by (induct ns) auto
wenzelm@13114
  1450
wenzelm@13114
  1451
wenzelm@13142
  1452
subsection {* @{text upto} *}
wenzelm@13114
  1453
wenzelm@13142
  1454
lemma upt_rec: "[i..j(] = (if i<j then i#[Suc i..j(] else [])"
nipkow@13145
  1455
-- {* Does not terminate! *}
nipkow@13145
  1456
by (induct j) auto
wenzelm@13142
  1457
wenzelm@13142
  1458
lemma upt_conv_Nil [simp]: "j <= i ==> [i..j(] = []"
nipkow@13145
  1459
by (subst upt_rec) simp
wenzelm@13114
  1460
nipkow@15281
  1461
lemma upt_eq_Nil_conv[simp]: "([i..j(] = []) = (j = 0 \<or> j <= i)"
nipkow@15281
  1462
by(induct j)simp_all
nipkow@15281
  1463
nipkow@15281
  1464
lemma upt_eq_Cons_conv:
nipkow@15281
  1465
 "!!x xs. ([i..j(] = x#xs) = (i < j & i = x & [i+1..j(] = xs)"
nipkow@15281
  1466
apply(induct j)
nipkow@15281
  1467
 apply simp
nipkow@15281
  1468
apply(clarsimp simp add: append_eq_Cons_conv)
nipkow@15281
  1469
apply arith
nipkow@15281
  1470
done
nipkow@15281
  1471
wenzelm@13142
  1472
lemma upt_Suc_append: "i <= j ==> [i..(Suc j)(] = [i..j(]@[j]"
nipkow@13145
  1473
-- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
nipkow@13145
  1474
by simp
wenzelm@13114
  1475
wenzelm@13142
  1476
lemma upt_conv_Cons: "i < j ==> [i..j(] = i # [Suc i..j(]"
nipkow@13145
  1477
apply(rule trans)
nipkow@13145
  1478
apply(subst upt_rec)
paulson@14208
  1479
 prefer 2 apply (rule refl, simp)
nipkow@13145
  1480
done
wenzelm@13114
  1481
wenzelm@13142
  1482
lemma upt_add_eq_append: "i<=j ==> [i..j+k(] = [i..j(]@[j..j+k(]"
nipkow@13145
  1483
-- {* LOOPS as a simprule, since @{text "j <= j"}. *}
nipkow@13145
  1484
by (induct k) auto
wenzelm@13114
  1485
wenzelm@13142
  1486
lemma length_upt [simp]: "length [i..j(] = j - i"
nipkow@13145
  1487
by (induct j) (auto simp add: Suc_diff_le)
wenzelm@13114
  1488
wenzelm@13142
  1489
lemma nth_upt [simp]: "i + k < j ==> [i..j(] ! k = i + k"
nipkow@13145
  1490
apply (induct j)
nipkow@13145
  1491
apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split)
nipkow@13145
  1492
done
wenzelm@13114
  1493
wenzelm@13142
  1494
lemma take_upt [simp]: "!!i. i+m <= n ==> take m [i..n(] = [i..i+m(]"
paulson@14208
  1495
apply (induct m, simp)
nipkow@13145
  1496
apply (subst upt_rec)
nipkow@13145
  1497
apply (rule sym)
nipkow@13145
  1498
apply (subst upt_rec)
nipkow@13145
  1499
apply (simp del: upt.simps)
nipkow@13145
  1500
done
nipkow@3507
  1501
wenzelm@13114
  1502
lemma map_Suc_upt: "map Suc [m..n(] = [Suc m..n]"
nipkow@13145
  1503
by (induct n) auto
wenzelm@13114
  1504
wenzelm@13114
  1505
lemma nth_map_upt: "!!i. i < n-m ==> (map f [m..n(]) ! i = f(m+i)"
nipkow@13145
  1506
apply (induct n m rule: diff_induct)
nipkow@13145
  1507
prefer 3 apply (subst map_Suc_upt[symmetric])
nipkow@13145
  1508
apply (auto simp add: less_diff_conv nth_upt)
nipkow@13145
  1509
done
wenzelm@13114
  1510
berghofe@13883
  1511
lemma nth_take_lemma:
berghofe@13883
  1512
  "!!xs ys. k <= length xs ==> k <= length ys ==>
berghofe@13883
  1513
     (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys"
berghofe@13883
  1514
apply (atomize, induct k)
paulson@14208
  1515
apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify)
nipkow@13145
  1516
txt {* Both lists must be non-empty *}
paulson@14208
  1517
apply (case_tac xs, simp)
paulson@14208
  1518
apply (case_tac ys, clarify)
nipkow@13145
  1519
 apply (simp (no_asm_use))
nipkow@13145
  1520
apply clarify
nipkow@13145
  1521
txt {* prenexing's needed, not miniscoping *}
nipkow@13145
  1522
apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps)
nipkow@13145
  1523
apply blast
nipkow@13145
  1524
done
wenzelm@13114
  1525
wenzelm@13114
  1526
lemma nth_equalityI:
wenzelm@13114
  1527
 "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys"
nipkow@13145
  1528
apply (frule nth_take_lemma [OF le_refl eq_imp_le])
nipkow@13145
  1529
apply (simp_all add: take_all)
nipkow@13145
  1530
done
wenzelm@13142
  1531
kleing@13863
  1532
(* needs nth_equalityI *)
kleing@13863
  1533
lemma list_all2_antisym:
kleing@13863
  1534
  "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> 
kleing@13863
  1535
  \<Longrightarrow> xs = ys"
kleing@13863
  1536
  apply (simp add: list_all2_conv_all_nth) 
paulson@14208
  1537
  apply (rule nth_equalityI, blast, simp)
kleing@13863
  1538
  done
kleing@13863
  1539
wenzelm@13142
  1540
lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys"
nipkow@13145
  1541
-- {* The famous take-lemma. *}
nipkow@13145
  1542
apply (drule_tac x = "max (length xs) (length ys)" in spec)
nipkow@13145
  1543
apply (simp add: le_max_iff_disj take_all)
nipkow@13145
  1544
done
wenzelm@13142
  1545
wenzelm@13142
  1546
wenzelm@13142
  1547
subsection {* @{text "distinct"} and @{text remdups} *}
wenzelm@13142
  1548
wenzelm@13142
  1549
lemma distinct_append [simp]:
nipkow@13145
  1550
"distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
nipkow@13145
  1551
by (induct xs) auto
wenzelm@13142
  1552
wenzelm@13142
  1553
lemma set_remdups [simp]: "set (remdups xs) = set xs"
nipkow@13145
  1554
by (induct xs) (auto simp add: insert_absorb)
wenzelm@13142
  1555
wenzelm@13142
  1556
lemma distinct_remdups [iff]: "distinct (remdups xs)"
nipkow@13145
  1557
by (induct xs) auto
wenzelm@13142
  1558
paulson@15072
  1559
lemma remdups_eq_nil_iff [simp]: "(remdups x = []) = (x = [])"
paulson@15251
  1560
  by (induct x, auto) 
paulson@15072
  1561
paulson@15072
  1562
lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])"
paulson@15251
  1563
  by (induct x, auto)
paulson@15072
  1564
nipkow@15245
  1565
lemma length_remdups_leq[iff]: "length(remdups xs) <= length xs"
nipkow@15245
  1566
by (induct xs) auto
nipkow@15245
  1567
nipkow@15245
  1568
lemma length_remdups_eq[iff]:
nipkow@15245
  1569
  "(length (remdups xs) = length xs) = (remdups xs = xs)"
nipkow@15245
  1570
apply(induct xs)
nipkow@15245
  1571
 apply auto
nipkow@15245
  1572
apply(subgoal_tac "length (remdups xs) <= length xs")
nipkow@15245
  1573
 apply arith
nipkow@15245
  1574
apply(rule length_remdups_leq)
nipkow@15245
  1575
done
nipkow@15245
  1576
wenzelm@13142
  1577
lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)"
nipkow@13145
  1578
by (induct xs) auto
wenzelm@13114
  1579
wenzelm@13142
  1580
text {*
nipkow@13145
  1581
It is best to avoid this indexed version of distinct, but sometimes
nipkow@13145
  1582
it is useful. *}
wenzelm@13142
  1583
lemma distinct_conv_nth:
nipkow@13145
  1584
"distinct xs = (\<forall>i j. i < size xs \<and> j < size xs \<and> i \<noteq> j --> xs!i \<noteq> xs!j)"
paulson@15251
  1585
apply (induct xs, simp, simp)
paulson@14208
  1586
apply (rule iffI, clarsimp)
nipkow@13145
  1587
 apply (case_tac i)
paulson@14208
  1588
apply (case_tac j, simp)
nipkow@13145
  1589
apply (simp add: set_conv_nth)
nipkow@13145
  1590
 apply (case_tac j)
paulson@14208
  1591
apply (clarsimp simp add: set_conv_nth, simp)
nipkow@13145
  1592
apply (rule conjI)
nipkow@13145
  1593
 apply (clarsimp simp add: set_conv_nth)
nipkow@13145
  1594
 apply (erule_tac x = 0 in allE)
paulson@14208
  1595
 apply (erule_tac x = "Suc i" in allE, simp, clarsimp)
nipkow@13145
  1596
apply (erule_tac x = "Suc i" in allE)
paulson@14208
  1597
apply (erule_tac x = "Suc j" in allE, simp)
nipkow@13145
  1598
done
wenzelm@13114
  1599
nipkow@15110
  1600
lemma distinct_card: "distinct xs ==> card (set xs) = size xs"
kleing@14388
  1601
  by (induct xs) auto
kleing@14388
  1602
nipkow@15110
  1603
lemma card_distinct: "card (set xs) = size xs ==> distinct xs"
kleing@14388
  1604
proof (induct xs)
kleing@14388
  1605
  case Nil thus ?case by simp
kleing@14388
  1606
next
kleing@14388
  1607
  case (Cons x xs)
kleing@14388
  1608
  show ?case
kleing@14388
  1609
  proof (cases "x \<in> set xs")
kleing@14388
  1610
    case False with Cons show ?thesis by simp
kleing@14388
  1611
  next
kleing@14388
  1612
    case True with Cons.prems
kleing@14388
  1613
    have "card (set xs) = Suc (length xs)" 
kleing@14388
  1614
      by (simp add: card_insert_if split: split_if_asm)
kleing@14388
  1615
    moreover have "card (set xs) \<le> length xs" by (rule card_length)
kleing@14388
  1616
    ultimately have False by simp
kleing@14388
  1617
    thus ?thesis ..
kleing@14388
  1618
  qed
kleing@14388
  1619
qed
kleing@14388
  1620
nipkow@15110
  1621
lemma inj_on_setI: "distinct(map f xs) ==> inj_on f (set xs)"
nipkow@15110
  1622
apply(induct xs)
nipkow@15110
  1623
 apply simp
nipkow@15110
  1624
apply fastsimp
nipkow@15110
  1625
done
nipkow@15110
  1626
nipkow@15110
  1627
lemma inj_on_set_conv:
nipkow@15110
  1628
 "distinct xs \<Longrightarrow> inj_on f (set xs) = distinct(map f xs)"
nipkow@15110
  1629
apply(induct xs)
nipkow@15110
  1630
 apply simp
nipkow@15110
  1631
apply fastsimp
nipkow@15110
  1632
done
nipkow@15110
  1633
nipkow@15110
  1634
nipkow@15110
  1635
subsection {* @{text remove1} *}
nipkow@15110
  1636
nipkow@15110
  1637
lemma set_remove1_subset: "set(remove1 x xs) <= set xs"
nipkow@15110
  1638
apply(induct xs)
nipkow@15110
  1639
 apply simp
nipkow@15110
  1640
apply simp
nipkow@15110
  1641
apply blast
nipkow@15110
  1642
done
nipkow@15110
  1643
nipkow@15110
  1644
lemma [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}"
nipkow@15110
  1645
apply(induct xs)
nipkow@15110
  1646
 apply simp
nipkow@15110
  1647
apply simp
nipkow@15110
  1648
apply blast
nipkow@15110
  1649
done
nipkow@15110
  1650
nipkow@15110
  1651
lemma notin_set_remove1[simp]: "x ~: set xs ==> x ~: set(remove1 y xs)"
nipkow@15110
  1652
apply(insert set_remove1_subset)
nipkow@15110
  1653
apply fast
nipkow@15110
  1654
done
nipkow@15110
  1655
nipkow@15110
  1656
lemma distinct_remove1[simp]: "distinct xs ==> distinct(remove1 x xs)"
nipkow@15110
  1657
by (induct xs) simp_all
nipkow@15110
  1658
wenzelm@13114
  1659
wenzelm@13142
  1660
subsection {* @{text replicate} *}
wenzelm@13114
  1661
wenzelm@13142
  1662
lemma length_replicate [simp]: "length (replicate n x) = n"
nipkow@13145
  1663
by (induct n) auto
nipkow@13124
  1664
wenzelm@13142
  1665
lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)"
nipkow@13145
  1666
by (induct n) auto
wenzelm@13114
  1667
wenzelm@13114
  1668
lemma replicate_app_Cons_same:
nipkow@13145
  1669
"(replicate n x) @ (x # xs) = x # replicate n x @ xs"
nipkow@13145
  1670
by (induct n) auto
wenzelm@13114
  1671
wenzelm@13142
  1672
lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x"
paulson@14208
  1673
apply (induct n, simp)
nipkow@13145
  1674
apply (simp add: replicate_app_Cons_same)
nipkow@13145
  1675
done
wenzelm@13114
  1676
wenzelm@13142
  1677
lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x"
nipkow@13145
  1678
by (induct n) auto
wenzelm@13114
  1679
wenzelm@13142
  1680
lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x"
nipkow@13145
  1681
by (induct n) auto
wenzelm@13114
  1682
wenzelm@13142
  1683
lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x"
nipkow@13145
  1684
by (induct n) auto
wenzelm@13114
  1685
wenzelm@13142
  1686
lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x"
nipkow@13145
  1687
by (atomize (full), induct n) auto
wenzelm@13114
  1688
wenzelm@13142
  1689
lemma nth_replicate[simp]: "!!i. i < n ==> (replicate n x)!i = x"
paulson@14208
  1690
apply (induct n, simp)
nipkow@13145
  1691
apply (simp add: nth_Cons split: nat.split)
nipkow@13145
  1692
done
wenzelm@13114
  1693
wenzelm@13142
  1694
lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
nipkow@13145
  1695
by (induct n) auto
wenzelm@13114
  1696
wenzelm@13142
  1697
lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
nipkow@13145
  1698
by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc)
wenzelm@13114
  1699
wenzelm@13142
  1700
lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
nipkow@13145
  1701
by auto
wenzelm@13114
  1702
wenzelm@13142
  1703
lemma in_set_replicateD: "x : set (replicate n y) ==> x = y"
nipkow@13145
  1704
by (simp add: set_replicate_conv_if split: split_if_asm)
wenzelm@13114
  1705
wenzelm@13114
  1706
oheimb@14099
  1707
subsection {* Lexicographic orderings on lists *}
nipkow@3507
  1708
wenzelm@13142
  1709
lemma wf_lexn: "wf r ==> wf (lexn r n)"
paulson@15251
  1710
apply (induct n, simp, simp)
nipkow@13145
  1711
apply(rule wf_subset)
nipkow@13145
  1712
 prefer 2 apply (rule Int_lower1)
nipkow@13145
  1713
apply(rule wf_prod_fun_image)
paulson@14208
  1714
 prefer 2 apply (rule inj_onI, auto)
nipkow@13145
  1715
done
wenzelm@13114
  1716
wenzelm@13114
  1717
lemma lexn_length:
paulson@15168
  1718
     "!!xs ys. (xs, ys) : lexn r n ==> length xs = n \<and> length ys = n"
nipkow@13145
  1719
by (induct n) auto
wenzelm@13114
  1720
wenzelm@13142
  1721
lemma wf_lex [intro!]: "wf r ==> wf (lex r)"
nipkow@13145
  1722
apply (unfold lex_def)
nipkow@13145
  1723
apply (rule wf_UN)
paulson@14208
  1724
apply (blast intro: wf_lexn, clarify)
nipkow@13145
  1725
apply (rename_tac m n)
nipkow@13145
  1726
apply (subgoal_tac "m \<noteq> n")
nipkow@13145
  1727
 prefer 2 apply blast
nipkow@13145
  1728
apply (blast dest: lexn_length not_sym)
nipkow@13145
  1729
done
wenzelm@13114
  1730
wenzelm@13114
  1731
lemma lexn_conv:
nipkow@13145
  1732
"lexn r n =
nipkow@13145
  1733
{(xs,ys). length xs = n \<and> length ys = n \<and>
nipkow@13145
  1734
(\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}"
paulson@15251
  1735
apply (induct n, simp, blast)
paulson@14208
  1736
apply (simp add: image_Collect lex_prod_def, safe, blast)
paulson@14208
  1737
 apply (rule_tac x = "ab # xys" in exI, simp)
paulson@14208
  1738
apply (case_tac xys, simp_all, blast)
nipkow@13145
  1739
done
wenzelm@13114
  1740
wenzelm@13114
  1741
lemma lex_conv:
nipkow@13145
  1742
"lex r =
nipkow@13145
  1743
{(xs,ys). length xs = length ys \<and>
nipkow@13145
  1744
(\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}"
nipkow@13145
  1745
by (force simp add: lex_def lexn_conv)
wenzelm@13114
  1746
wenzelm@13142
  1747
lemma wf_lexico [intro!]: "wf r ==> wf (lexico r)"
nipkow@13145
  1748
by (unfold lexico_def) blast
wenzelm@13114
  1749
wenzelm@13114
  1750
lemma lexico_conv:
nipkow@13145
  1751
"lexico r = {(xs,ys). length xs < length ys |
nipkow@13145
  1752
length xs = length ys \<and> (xs, ys) : lex r}"
nipkow@13145
  1753
by (simp add: lexico_def diag_def lex_prod_def measure_def inv_image_def)
wenzelm@13114
  1754
wenzelm@13142
  1755
lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r"
nipkow@13145
  1756
by (simp add: lex_conv)
wenzelm@13114
  1757
wenzelm@13142
  1758
lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r"
nipkow@13145
  1759
by (simp add:lex_conv)
wenzelm@13114
  1760
wenzelm@13142
  1761
lemma Cons_in_lex [iff]:
nipkow@13145
  1762
"((x # xs, y # ys) : lex r) =
nipkow@13145
  1763
((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)"
nipkow@13145
  1764
apply (simp add: lex_conv)
nipkow@13145
  1765
apply (rule iffI)
paulson@14208
  1766
 prefer 2 apply (blast intro: Cons_eq_appendI, clarify)
paulson@14208
  1767
apply (case_tac xys, simp, simp)
nipkow@13145
  1768
apply blast
nipkow@13145
  1769
done
wenzelm@13114
  1770
wenzelm@13114
  1771
wenzelm@13142
  1772
subsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
wenzelm@13114
  1773
wenzelm@13142
  1774
lemma sublist_empty [simp]: "sublist xs {} = []"
nipkow@13145
  1775
by (auto simp add: sublist_def)
wenzelm@13114
  1776
wenzelm@13142
  1777
lemma sublist_nil [simp]: "sublist [] A = []"
nipkow@13145
  1778
by (auto simp add: sublist_def)
wenzelm@13114
  1779
nipkow@15281
  1780
lemma length_sublist:
nipkow@15281
  1781
  "length(sublist xs I) = card{i. i < length xs \<and> i : I}"
nipkow@15281
  1782
by(simp add: sublist_def length_filter_conv_card cong:conj_cong)
nipkow@15281
  1783
nipkow@15281
  1784
lemma sublist_shift_lemma_Suc:
nipkow@15281
  1785
  "!!is. map fst (filter (%p. P(Suc(snd p))) (zip xs is)) =
nipkow@15281
  1786
         map fst (filter (%p. P(snd p)) (zip xs (map Suc is)))"
nipkow@15281
  1787
apply(induct xs)
nipkow@15281
  1788
 apply simp
nipkow@15281
  1789
apply (case_tac "is")
nipkow@15281
  1790
 apply simp
nipkow@15281
  1791
apply simp
nipkow@15281
  1792
done
nipkow@15281
  1793
wenzelm@13114
  1794
lemma sublist_shift_lemma:
paulson@15168
  1795
     "map fst [p:zip xs [i..i + length xs(] . snd p : A] =
paulson@15168
  1796
      map fst [p:zip xs [0..length xs(] . snd p + i : A]"
nipkow@13145
  1797
by (induct xs rule: rev_induct) (simp_all add: add_commute)
wenzelm@13114
  1798
wenzelm@13114
  1799
lemma sublist_append:
paulson@15168
  1800
     "sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
nipkow@13145
  1801
apply (unfold sublist_def)
paulson@14208
  1802
apply (induct l' rule: rev_induct, simp)
nipkow@13145
  1803
apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma)
nipkow@13145
  1804
apply (simp add: add_commute)
nipkow@13145
  1805
done
wenzelm@13114
  1806
wenzelm@13114
  1807
lemma sublist_Cons:
nipkow@13145
  1808
"sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
nipkow@13145
  1809
apply (induct l rule: rev_induct)
nipkow@13145
  1810
 apply (simp add: sublist_def)
nipkow@13145
  1811
apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append)
nipkow@13145
  1812
done
wenzelm@13114
  1813
nipkow@15281
  1814
lemma set_sublist: "!!I. set(sublist xs I) = {xs!i|i. i<size xs \<and> i \<in> I}"
nipkow@15281
  1815
apply(induct xs)
nipkow@15281
  1816
 apply simp
nipkow@15281
  1817
apply(auto simp add:sublist_Cons nth_Cons split:nat.split elim: lessE)
nipkow@15281
  1818
 apply(erule lessE)
nipkow@15281
  1819
  apply auto
nipkow@15281
  1820
apply(erule lessE)
nipkow@15281
  1821
apply auto
nipkow@15281
  1822
done
nipkow@15281
  1823
nipkow@15281
  1824
lemma set_sublist_subset: "set(sublist xs I) \<subseteq> set xs"
nipkow@15281
  1825
by(auto simp add:set_sublist)
nipkow@15281
  1826
nipkow@15281
  1827
lemma notin_set_sublistI[simp]: "x \<notin> set xs \<Longrightarrow> x \<notin> set(sublist xs I)"
nipkow@15281
  1828
by(auto simp add:set_sublist)
nipkow@15281
  1829
nipkow@15281
  1830
lemma in_set_sublistD: "x \<in> set(sublist xs I) \<Longrightarrow> x \<in> set xs"
nipkow@15281
  1831
by(auto simp add:set_sublist)
nipkow@15281
  1832
wenzelm@13142
  1833
lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])"
nipkow@13145
  1834
by (simp add: sublist_Cons)
wenzelm@13114
  1835
nipkow@15281
  1836
nipkow@15281
  1837
lemma distinct_sublistI[simp]: "!!I. distinct xs \<Longrightarrow> distinct(sublist xs I)"
nipkow@15281
  1838
apply(induct xs)
nipkow@15281
  1839
 apply simp
nipkow@15281
  1840
apply(auto simp add:sublist_Cons)
nipkow@15281
  1841
done
nipkow@15281
  1842
nipkow@15281
  1843
nipkow@15045
  1844
lemma sublist_upt_eq_take [simp]: "sublist l {..<n} = take n l"
paulson@14208
  1845
apply (induct l rule: rev_induct, simp)
nipkow@13145
  1846
apply (simp split: nat_diff_split add: sublist_append)
nipkow@13145
  1847
done
wenzelm@13114
  1848
wenzelm@13114
  1849
wenzelm@13142
  1850
lemma take_Cons':
paulson@15168
  1851
     "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)"
nipkow@13145
  1852
by (cases n) simp_all
wenzelm@13114
  1853
wenzelm@13142
  1854
lemma drop_Cons':
paulson@15168
  1855
     "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)"
nipkow@13145
  1856
by (cases n) simp_all
wenzelm@13114
  1857
wenzelm@13142
  1858
lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))"
nipkow@13145
  1859
by (cases n) simp_all
wenzelm@13142
  1860
nipkow@13145
  1861
lemmas [simp] = take_Cons'[of "number_of v",standard]
nipkow@13145
  1862
                drop_Cons'[of "number_of v",standard]
nipkow@13145
  1863
                nth_Cons'[of _ _ "number_of v",standard]
nipkow@3507
  1864
wenzelm@13462
  1865
kleing@14388
  1866
lemma "card (set xs) = size xs \<Longrightarrow> distinct xs"
kleing@14388
  1867
proof (induct xs)
kleing@14388
  1868
  case Nil thus ?case by simp
kleing@14388
  1869
next
kleing@14388
  1870
  case (Cons x xs)
kleing@14388
  1871
  show ?case
kleing@14388
  1872
  proof (cases "x \<in> set xs")
kleing@14388
  1873
    case False with Cons show ?thesis by simp
kleing@14388
  1874
  next
kleing@14388
  1875
    case True with Cons.prems
kleing@14388
  1876
    have "card (set xs) = Suc (length xs)" 
kleing@14388
  1877
      by (simp add: card_insert_if split: split_if_asm)
kleing@14388
  1878
    moreover have "card (set xs) \<le> length xs" by (rule card_length)
kleing@14388
  1879
    ultimately have False by simp
kleing@14388
  1880
    thus ?thesis ..
kleing@14388
  1881
  qed
kleing@14388
  1882
qed
kleing@14388
  1883
wenzelm@13366
  1884
subsection {* Characters and strings *}
wenzelm@13366
  1885
wenzelm@13366
  1886
datatype nibble =
wenzelm@13366
  1887
    Nibble0 | Nibble1 | Nibble2 | Nibble3 | Nibble4 | Nibble5 | Nibble6 | Nibble7
wenzelm@13366
  1888
  | Nibble8 | Nibble9 | NibbleA | NibbleB | NibbleC | NibbleD | NibbleE | NibbleF
wenzelm@13366
  1889
wenzelm@13366
  1890
datatype char = Char nibble nibble
wenzelm@13366
  1891
  -- "Note: canonical order of character encoding coincides with standard term ordering"
wenzelm@13366
  1892
wenzelm@13366
  1893
types string = "char list"
wenzelm@13366
  1894
wenzelm@13366
  1895
syntax
wenzelm@13366
  1896
  "_Char" :: "xstr => char"    ("CHR _")
wenzelm@13366
  1897
  "_String" :: "xstr => string"    ("_")
wenzelm@13366
  1898
wenzelm@13366
  1899
parse_ast_translation {*
wenzelm@13366
  1900
  let
wenzelm@13366
  1901
    val constants = Syntax.Appl o map Syntax.Constant;
wenzelm@13366
  1902
wenzelm@13366
  1903
    fun mk_nib n = "Nibble" ^ chr (n + (if n <= 9 then ord "0" else ord "A" - 10));
wenzelm@13366
  1904
    fun mk_char c =
wenzelm@13366
  1905
      if Symbol.is_ascii c andalso Symbol.is_printable c then
wenzelm@13366
  1906
        constants ["Char", mk_nib (ord c div 16), mk_nib (ord c mod 16)]
wenzelm@13366
  1907
      else error ("Printable ASCII character expected: " ^ quote c);
wenzelm@13366
  1908
wenzelm@13366
  1909
    fun mk_string [] = Syntax.Constant "Nil"
wenzelm@13366
  1910
      | mk_string (c :: cs) = Syntax.Appl [Syntax.Constant "Cons", mk_char c, mk_string cs];
wenzelm@13366
  1911
wenzelm@13366
  1912
    fun char_ast_tr [Syntax.Variable xstr] =
wenzelm@13366
  1913
        (case Syntax.explode_xstr xstr of
wenzelm@13366
  1914
          [c] => mk_char c
wenzelm@13366
  1915
        | _ => error ("Single character expected: " ^ xstr))
wenzelm@13366
  1916
      | char_ast_tr asts = raise AST ("char_ast_tr", asts);
wenzelm@13366
  1917
wenzelm@13366
  1918
    fun string_ast_tr [Syntax.Variable xstr] =
wenzelm@13366
  1919
        (case Syntax.explode_xstr xstr of
wenzelm@13366
  1920
          [] => constants [Syntax.constrainC, "Nil", "string"]
wenzelm@13366
  1921
        | cs => mk_string cs)
wenzelm@13366
  1922
      | string_ast_tr asts = raise AST ("string_tr", asts);
wenzelm@13366
  1923
  in [("_Char", char_ast_tr), ("_String", string_ast_tr)] end;
wenzelm@13366
  1924
*}
wenzelm@13366
  1925
berghofe@15064
  1926
ML {*
berghofe@15064
  1927
fun int_of_nibble h =
berghofe@15064
  1928
  if "0" <= h andalso h <= "9" then ord h - ord "0"
berghofe@15064
  1929
  else if "A" <= h andalso h <= "F" then ord h - ord "A" + 10
berghofe@15064
  1930
  else raise Match;
berghofe@15064
  1931
berghofe@15064
  1932
fun nibble_of_int i =
berghofe@15064
  1933
  if i <= 9 then chr (ord "0" + i) else chr (ord "A" + i - 10);
berghofe@15064
  1934
*}
berghofe@15064
  1935
wenzelm@13366
  1936
print_ast_translation {*
wenzelm@13366
  1937
  let
wenzelm@13366
  1938
    fun dest_nib (Syntax.Constant c) =
wenzelm@13366
  1939
        (case explode c of
berghofe@15064
  1940
          ["N", "i", "b", "b", "l", "e", h] => int_of_nibble h
wenzelm@13366
  1941
        | _ => raise Match)
wenzelm@13366
  1942
      | dest_nib _ = raise Match;
wenzelm@13366
  1943
wenzelm@13366
  1944
    fun dest_chr c1 c2 =
wenzelm@13366
  1945
      let val c = chr (dest_nib c1 * 16 + dest_nib c2)
wenzelm@13366
  1946
      in if Symbol.is_printable c then c else raise Match end;
wenzelm@13366
  1947
wenzelm@13366
  1948
    fun dest_char (Syntax.Appl [Syntax.Constant "Char", c1, c2]) = dest_chr c1 c2
wenzelm@13366
  1949
      | dest_char _ = raise Match;
wenzelm@13366
  1950
wenzelm@13366
  1951
    fun xstr cs = Syntax.Appl [Syntax.Constant "_xstr", Syntax.Variable (Syntax.implode_xstr cs)];
wenzelm@13366
  1952
wenzelm@13366
  1953
    fun char_ast_tr' [c1, c2] = Syntax.Appl [Syntax.Constant "_Char", xstr [dest_chr c1 c2]]
wenzelm@13366
  1954
      | char_ast_tr' _ = raise Match;
wenzelm@13366
  1955
wenzelm@13366
  1956
    fun list_ast_tr' [args] = Syntax.Appl [Syntax.Constant "_String",
wenzelm@13366
  1957
            xstr (map dest_char (Syntax.unfold_ast "_args" args))]
wenzelm@13366
  1958
      | list_ast_tr' ts = raise Match;
wenzelm@13366
  1959
  in [("Char", char_ast_tr'), ("@list", list_ast_tr')] end;
wenzelm@13366
  1960
*}
wenzelm@13366
  1961
berghofe@15064
  1962
subsection {* Code generator setup *}
berghofe@15064
  1963
berghofe@15064
  1964
ML {*
berghofe@15064
  1965
local
berghofe@15064
  1966
berghofe@15064
  1967
fun list_codegen thy gr dep b t =
berghofe@15064
  1968
  let val (gr', ps) = foldl_map (Codegen.invoke_codegen thy dep false)
berghofe@15064
  1969
    (gr, HOLogic.dest_list t)
berghofe@15064
  1970
  in Some (gr', Pretty.list "[" "]" ps) end handle TERM _ => None;
berghofe@15064
  1971
berghofe@15064
  1972
fun dest_nibble (Const (s, _)) = int_of_nibble (unprefix "List.nibble.Nibble" s)
berghofe@15064
  1973
  | dest_nibble _ = raise Match;
berghofe@15064
  1974
berghofe@15064
  1975
fun char_codegen thy gr dep b (Const ("List.char.Char", _) $ c1 $ c2) =
berghofe@15064
  1976
    (let val c = chr (dest_nibble c1 * 16 + dest_nibble c2)
berghofe@15064
  1977
     in if Symbol.is_printable c then Some (gr, Pretty.quote (Pretty.str c))
berghofe@15064
  1978
       else None
berghofe@15064
  1979
     end handle LIST _ => None | Match => None)
berghofe@15064
  1980
  | char_codegen thy gr dep b _ = None;
berghofe@15064
  1981
berghofe@15064
  1982
in
berghofe@15064
  1983
berghofe@15064
  1984
val list_codegen_setup =
berghofe@15064
  1985
  [Codegen.add_codegen "list_codegen" list_codegen,
berghofe@15064
  1986
   Codegen.add_codegen "char_codegen" char_codegen];
berghofe@15064
  1987
berghofe@15064
  1988
end;
berghofe@15064
  1989
berghofe@15064
  1990
val term_of_list = HOLogic.mk_list;
berghofe@15064
  1991
berghofe@15064
  1992
fun gen_list' aG i j = frequency
berghofe@15064
  1993
  [(i, fn () => aG j :: gen_list' aG (i-1) j), (1, fn () => [])] ()
berghofe@15064
  1994
and gen_list aG i = gen_list' aG i i;
berghofe@15064
  1995
berghofe@15064
  1996
val nibbleT = Type ("List.nibble", []);
berghofe@15064
  1997
berghofe@15064
  1998
fun term_of_char c =
berghofe@15064
  1999
  Const ("List.char.Char", nibbleT --> nibbleT --> Type ("List.char", [])) $
berghofe@15064
  2000
    Const ("List.nibble.Nibble" ^ nibble_of_int (ord c div 16), nibbleT) $
berghofe@15064
  2001
    Const ("List.nibble.Nibble" ^ nibble_of_int (ord c mod 16), nibbleT);
berghofe@15064
  2002
berghofe@15064
  2003
fun gen_char i = chr (random_range (ord "a") (Int.min (ord "a" + i, ord "z")));
berghofe@15064
  2004
*}
berghofe@15064
  2005
berghofe@15064
  2006
types_code
berghofe@15064
  2007
  "list" ("_ list")
berghofe@15064
  2008
  "char" ("string")
berghofe@15064
  2009
berghofe@15064
  2010
consts_code "Cons" ("(_ ::/ _)")
berghofe@15064
  2011
berghofe@15064
  2012
setup list_codegen_setup
berghofe@15064
  2013
wenzelm@13122
  2014
end