src/HOL/Nominal/nominal_atoms.ML
author webertj
Tue Jul 11 18:10:47 2006 +0200 (2006-07-11)
changeset 20097 be2d96bbf39c
parent 20046 9c8909fc5865
child 20179 a2f3f523c84b
permissions -rw-r--r--
replaced mk_listT by HOLogic.listT; trivial whitespace/comment changes
berghofe@19494
     1
(*  Title:      HOL/Nominal/nominal_atoms.ML
berghofe@19494
     2
    ID:         $Id$
berghofe@19494
     3
    Author:     Christian Urban and Stefan Berghofer, TU Muenchen
berghofe@19494
     4
berghofe@19494
     5
Declaration of atom types to be used in nominal datatypes.
berghofe@19494
     6
*)
berghofe@18068
     7
berghofe@18068
     8
signature NOMINAL_ATOMS =
berghofe@18068
     9
sig
berghofe@18068
    10
  val create_nom_typedecls : string list -> theory -> theory
berghofe@18068
    11
  val atoms_of : theory -> string list
berghofe@18068
    12
  val mk_permT : typ -> typ
urbanc@18746
    13
  val setup : theory -> theory
berghofe@18068
    14
end
berghofe@18068
    15
berghofe@18068
    16
structure NominalAtoms : NOMINAL_ATOMS =
berghofe@18068
    17
struct
berghofe@18068
    18
berghofe@18068
    19
(* data kind 'HOL/nominal' *)
berghofe@18068
    20
berghofe@18068
    21
structure NominalArgs =
berghofe@18068
    22
struct
berghofe@18068
    23
  val name = "HOL/nominal";
berghofe@18068
    24
  type T = unit Symtab.table;
berghofe@18068
    25
berghofe@18068
    26
  val empty = Symtab.empty;
berghofe@18068
    27
  val copy = I;
berghofe@18068
    28
  val extend = I;
berghofe@18068
    29
  fun merge _ x = Symtab.merge (K true) x;
berghofe@18068
    30
berghofe@18068
    31
  fun print sg tab = ();
berghofe@18068
    32
end;
berghofe@18068
    33
berghofe@18068
    34
structure NominalData = TheoryDataFun(NominalArgs);
berghofe@18068
    35
berghofe@18068
    36
fun atoms_of thy = map fst (Symtab.dest (NominalData.get thy));
berghofe@18068
    37
webertj@20097
    38
fun mk_permT T = HOLogic.listT (HOLogic.mk_prodT (T, T));
berghofe@18068
    39
berghofe@18068
    40
fun mk_Cons x xs =
berghofe@18068
    41
  let val T = fastype_of x
webertj@20097
    42
  in Const ("List.list.Cons", T --> HOLogic.listT T --> HOLogic.listT T) $ x $ xs end;
berghofe@18068
    43
berghofe@18068
    44
berghofe@18068
    45
(* this function sets up all matters related to atom-  *)
berghofe@18068
    46
(* kinds; the user specifies a list of atom-kind names *)
berghofe@18068
    47
(* atom_decl <ak1> ... <akn>                           *)
berghofe@18068
    48
fun create_nom_typedecls ak_names thy =
berghofe@18068
    49
  let
berghofe@18068
    50
    (* declares a type-decl for every atom-kind: *) 
berghofe@18068
    51
    (* that is typedecl <ak>                     *)
berghofe@18068
    52
    val thy1 = TypedefPackage.add_typedecls (map (fn x => (x,[],NoSyn)) ak_names) thy;
berghofe@18068
    53
    
berghofe@18068
    54
    (* produces a list consisting of pairs:         *)
berghofe@18068
    55
    (*  fst component is the atom-kind name         *)
berghofe@18068
    56
    (*  snd component is its type                   *)
berghofe@18068
    57
    val full_ak_names = map (Sign.intern_type (sign_of thy1)) ak_names;
berghofe@18068
    58
    val ak_names_types = ak_names ~~ map (Type o rpair []) full_ak_names;
berghofe@18068
    59
     
berghofe@18068
    60
    (* adds for every atom-kind an axiom             *)
berghofe@18068
    61
    (* <ak>_infinite: infinite (UNIV::<ak_type> set) *)
urbanc@18381
    62
    val (inf_axs,thy2) = PureThy.add_axioms_i (map (fn (ak_name, T) =>
berghofe@18068
    63
      let 
berghofe@18068
    64
	val name = ak_name ^ "_infinite"
berghofe@18068
    65
        val axiom = HOLogic.mk_Trueprop (HOLogic.mk_not
berghofe@18068
    66
                    (HOLogic.mk_mem (HOLogic.mk_UNIV T,
berghofe@18068
    67
                     Const ("Finite_Set.Finites", HOLogic.mk_setT (HOLogic.mk_setT T)))))
berghofe@18068
    68
      in
berghofe@18068
    69
	((name, axiom), []) 
berghofe@18068
    70
      end) ak_names_types) thy1;
berghofe@18068
    71
    
berghofe@18068
    72
    (* declares a swapping function for every atom-kind, it is         *)
berghofe@18068
    73
    (* const swap_<ak> :: <akT> * <akT> => <akT> => <akT>              *)
berghofe@18068
    74
    (* swap_<ak> (a,b) c = (if a=c then b (else if b=c then a else c)) *)
berghofe@18068
    75
    (* overloades then the general swap-function                       *) 
berghofe@18068
    76
    val (thy3, swap_eqs) = foldl_map (fn (thy, (ak_name, T)) =>
berghofe@18068
    77
      let
berghofe@18068
    78
        val swapT = HOLogic.mk_prodT (T, T) --> T --> T;
berghofe@18068
    79
        val swap_name = Sign.full_name (sign_of thy) ("swap_" ^ ak_name);
berghofe@18068
    80
        val a = Free ("a", T);
berghofe@18068
    81
        val b = Free ("b", T);
berghofe@18068
    82
        val c = Free ("c", T);
berghofe@18068
    83
        val ab = Free ("ab", HOLogic.mk_prodT (T, T))
berghofe@18068
    84
        val cif = Const ("HOL.If", HOLogic.boolT --> T --> T --> T);
berghofe@18068
    85
        val cswap_akname = Const (swap_name, swapT);
berghofe@19494
    86
        val cswap = Const ("Nominal.swap", swapT)
berghofe@18068
    87
berghofe@18068
    88
        val name = "swap_"^ak_name^"_def";
berghofe@18068
    89
        val def1 = HOLogic.mk_Trueprop (HOLogic.mk_eq
berghofe@18068
    90
		   (cswap_akname $ HOLogic.mk_prod (a,b) $ c,
berghofe@18068
    91
                    cif $ HOLogic.mk_eq (a,c) $ b $ (cif $ HOLogic.mk_eq (b,c) $ a $ c)))
berghofe@18068
    92
        val def2 = Logic.mk_equals (cswap $ ab $ c, cswap_akname $ ab $ c)
berghofe@18068
    93
      in
berghofe@18068
    94
        thy |> Theory.add_consts_i [("swap_" ^ ak_name, swapT, NoSyn)] 
wenzelm@19635
    95
            |> (#2 o PureThy.add_defs_unchecked_i true [((name, def2),[])])
wenzelm@19635
    96
            |> PrimrecPackage.add_primrec_unchecked_i "" [(("", def1),[])]            
berghofe@18068
    97
      end) (thy2, ak_names_types);
berghofe@18068
    98
    
berghofe@18068
    99
    (* declares a permutation function for every atom-kind acting  *)
berghofe@18068
   100
    (* on such atoms                                               *)
berghofe@18068
   101
    (* const <ak>_prm_<ak> :: (<akT> * <akT>)list => akT => akT    *)
berghofe@18068
   102
    (* <ak>_prm_<ak> []     a = a                                  *)
berghofe@18068
   103
    (* <ak>_prm_<ak> (x#xs) a = swap_<ak> x (perm xs a)            *)
berghofe@18068
   104
    val (thy4, prm_eqs) = foldl_map (fn (thy, (ak_name, T)) =>
berghofe@18068
   105
      let
berghofe@18068
   106
        val swapT = HOLogic.mk_prodT (T, T) --> T --> T;
berghofe@18068
   107
        val swap_name = Sign.full_name (sign_of thy) ("swap_" ^ ak_name)
berghofe@18068
   108
        val prmT = mk_permT T --> T --> T;
berghofe@18068
   109
        val prm_name = ak_name ^ "_prm_" ^ ak_name;
berghofe@18068
   110
        val qu_prm_name = Sign.full_name (sign_of thy) prm_name;
berghofe@18068
   111
        val x  = Free ("x", HOLogic.mk_prodT (T, T));
berghofe@18068
   112
        val xs = Free ("xs", mk_permT T);
berghofe@18068
   113
        val a  = Free ("a", T) ;
berghofe@18068
   114
berghofe@18068
   115
        val cnil  = Const ("List.list.Nil", mk_permT T);
berghofe@18068
   116
        
berghofe@18068
   117
        val def1 = HOLogic.mk_Trueprop (HOLogic.mk_eq (Const (qu_prm_name, prmT) $ cnil $ a, a));
berghofe@18068
   118
berghofe@18068
   119
        val def2 = HOLogic.mk_Trueprop (HOLogic.mk_eq
berghofe@18068
   120
                   (Const (qu_prm_name, prmT) $ mk_Cons x xs $ a,
berghofe@18068
   121
                    Const (swap_name, swapT) $ x $ (Const (qu_prm_name, prmT) $ xs $ a)));
berghofe@18068
   122
      in
berghofe@18068
   123
        thy |> Theory.add_consts_i [(prm_name, mk_permT T --> T --> T, NoSyn)] 
wenzelm@19635
   124
            |> PrimrecPackage.add_primrec_unchecked_i "" [(("", def1), []),(("", def2), [])]
berghofe@18068
   125
      end) (thy3, ak_names_types);
berghofe@18068
   126
    
berghofe@18068
   127
    (* defines permutation functions for all combinations of atom-kinds; *)
berghofe@18068
   128
    (* there are a trivial cases and non-trivial cases                   *)
berghofe@18068
   129
    (* non-trivial case:                                                 *)
berghofe@18068
   130
    (* <ak>_prm_<ak>_def:  perm pi a == <ak>_prm_<ak> pi a               *)
berghofe@18068
   131
    (* trivial case with <ak> != <ak'>                                   *)
berghofe@18068
   132
    (* <ak>_prm<ak'>_def[simp]:  perm pi a == a                          *)
berghofe@18068
   133
    (*                                                                   *)
berghofe@18068
   134
    (* the trivial cases are added to the simplifier, while the non-     *)
berghofe@18068
   135
    (* have their own rules proved below                                 *)  
berghofe@18366
   136
    val (perm_defs, thy5) = fold_map (fn (ak_name, T) => fn thy =>
berghofe@18366
   137
      fold_map (fn (ak_name', T') => fn thy' =>
berghofe@18068
   138
        let
berghofe@18068
   139
          val perm_def_name = ak_name ^ "_prm_" ^ ak_name';
berghofe@18068
   140
          val pi = Free ("pi", mk_permT T);
berghofe@18068
   141
          val a  = Free ("a", T');
berghofe@19494
   142
          val cperm = Const ("Nominal.perm", mk_permT T --> T' --> T');
berghofe@18068
   143
          val cperm_def = Const (Sign.full_name (sign_of thy') perm_def_name, mk_permT T --> T' --> T');
berghofe@18068
   144
berghofe@18068
   145
          val name = ak_name ^ "_prm_" ^ ak_name' ^ "_def";
berghofe@18068
   146
          val def = Logic.mk_equals
berghofe@18068
   147
                    (cperm $ pi $ a, if ak_name = ak_name' then cperm_def $ pi $ a else a)
berghofe@18068
   148
        in
wenzelm@19635
   149
          PureThy.add_defs_unchecked_i true [((name, def),[])] thy'
berghofe@18366
   150
        end) ak_names_types thy) ak_names_types thy4;
berghofe@18068
   151
    
berghofe@18068
   152
    (* proves that every atom-kind is an instance of at *)
berghofe@18068
   153
    (* lemma at_<ak>_inst:                              *)
berghofe@18068
   154
    (* at TYPE(<ak>)                                    *)
urbanc@18381
   155
    val (prm_cons_thms,thy6) = 
berghofe@18068
   156
      thy5 |> PureThy.add_thms (map (fn (ak_name, T) =>
berghofe@18068
   157
      let
berghofe@18068
   158
        val ak_name_qu = Sign.full_name (sign_of thy5) (ak_name);
berghofe@18068
   159
        val i_type = Type(ak_name_qu,[]);
berghofe@19494
   160
	val cat = Const ("Nominal.at",(Term.itselfT i_type)  --> HOLogic.boolT);
berghofe@18068
   161
        val at_type = Logic.mk_type i_type;
berghofe@18068
   162
        val simp_s = HOL_basic_ss addsimps PureThy.get_thmss thy5
berghofe@18068
   163
                                  [Name "at_def",
berghofe@18068
   164
                                   Name (ak_name ^ "_prm_" ^ ak_name ^ "_def"),
berghofe@18068
   165
                                   Name (ak_name ^ "_prm_" ^ ak_name ^ ".simps"),
berghofe@18068
   166
                                   Name ("swap_" ^ ak_name ^ "_def"),
berghofe@18068
   167
                                   Name ("swap_" ^ ak_name ^ ".simps"),
berghofe@18068
   168
                                   Name (ak_name ^ "_infinite")]
berghofe@18068
   169
	    
berghofe@18068
   170
	val name = "at_"^ak_name^ "_inst";
berghofe@18068
   171
        val statement = HOLogic.mk_Trueprop (cat $ at_type);
berghofe@18068
   172
berghofe@18068
   173
        val proof = fn _ => auto_tac (claset(),simp_s);
berghofe@18068
   174
berghofe@18068
   175
      in 
wenzelm@20046
   176
        ((name, Goal.prove_global thy5 [] [] statement proof), []) 
berghofe@18068
   177
      end) ak_names_types);
berghofe@18068
   178
berghofe@18068
   179
    (* declares a perm-axclass for every atom-kind               *)
berghofe@18068
   180
    (* axclass pt_<ak>                                           *)
berghofe@18068
   181
    (* pt_<ak>1[simp]: perm [] x = x                             *)
berghofe@18068
   182
    (* pt_<ak>2:       perm (pi1@pi2) x = perm pi1 (perm pi2 x)  *)
berghofe@18068
   183
    (* pt_<ak>3:       pi1 ~ pi2 ==> perm pi1 x = perm pi2 x     *)
urbanc@18438
   184
     val (pt_ax_classes,thy7) =  fold_map (fn (ak_name, T) => fn thy =>
berghofe@18068
   185
      let 
berghofe@18068
   186
	  val cl_name = "pt_"^ak_name;
berghofe@18068
   187
          val ty = TFree("'a",["HOL.type"]);
berghofe@18068
   188
          val x   = Free ("x", ty);
berghofe@18068
   189
          val pi1 = Free ("pi1", mk_permT T);
berghofe@18068
   190
          val pi2 = Free ("pi2", mk_permT T);
berghofe@19494
   191
          val cperm = Const ("Nominal.perm", mk_permT T --> ty --> ty);
berghofe@18068
   192
          val cnil  = Const ("List.list.Nil", mk_permT T);
berghofe@18068
   193
          val cappend = Const ("List.op @",mk_permT T --> mk_permT T --> mk_permT T);
berghofe@19494
   194
          val cprm_eq = Const ("Nominal.prm_eq",mk_permT T --> mk_permT T --> HOLogic.boolT);
berghofe@18068
   195
          (* nil axiom *)
berghofe@18068
   196
          val axiom1 = HOLogic.mk_Trueprop (HOLogic.mk_eq 
berghofe@18068
   197
                       (cperm $ cnil $ x, x));
berghofe@18068
   198
          (* append axiom *)
berghofe@18068
   199
          val axiom2 = HOLogic.mk_Trueprop (HOLogic.mk_eq
berghofe@18068
   200
                       (cperm $ (cappend $ pi1 $ pi2) $ x, cperm $ pi1 $ (cperm $ pi2 $ x)));
berghofe@18068
   201
          (* perm-eq axiom *)
berghofe@18068
   202
          val axiom3 = Logic.mk_implies
berghofe@18068
   203
                       (HOLogic.mk_Trueprop (cprm_eq $ pi1 $ pi2),
berghofe@18068
   204
                        HOLogic.mk_Trueprop (HOLogic.mk_eq (cperm $ pi1 $ x, cperm $ pi2 $ x)));
berghofe@18068
   205
      in
wenzelm@19509
   206
          AxClass.define_class_i (cl_name, ["HOL.type"]) []
berghofe@19488
   207
                [((cl_name ^ "1", [Simplifier.simp_add]), [axiom1]),
berghofe@19488
   208
                 ((cl_name ^ "2", []), [axiom2]),                           
berghofe@19488
   209
                 ((cl_name ^ "3", []), [axiom3])] thy                          
urbanc@18438
   210
      end) ak_names_types thy6;
berghofe@18068
   211
berghofe@18068
   212
    (* proves that every pt_<ak>-type together with <ak>-type *)
berghofe@18068
   213
    (* instance of pt                                         *)
berghofe@18068
   214
    (* lemma pt_<ak>_inst:                                    *)
berghofe@18068
   215
    (* pt TYPE('x::pt_<ak>) TYPE(<ak>)                        *)
urbanc@18381
   216
    val (prm_inst_thms,thy8) = 
berghofe@18068
   217
      thy7 |> PureThy.add_thms (map (fn (ak_name, T) =>
berghofe@18068
   218
      let
berghofe@18068
   219
        val ak_name_qu = Sign.full_name (sign_of thy7) (ak_name);
berghofe@18068
   220
        val pt_name_qu = Sign.full_name (sign_of thy7) ("pt_"^ak_name);
berghofe@18068
   221
        val i_type1 = TFree("'x",[pt_name_qu]);
berghofe@18068
   222
        val i_type2 = Type(ak_name_qu,[]);
berghofe@19494
   223
	val cpt = Const ("Nominal.pt",(Term.itselfT i_type1)-->(Term.itselfT i_type2)-->HOLogic.boolT);
berghofe@18068
   224
        val pt_type = Logic.mk_type i_type1;
berghofe@18068
   225
        val at_type = Logic.mk_type i_type2;
berghofe@18068
   226
        val simp_s = HOL_basic_ss addsimps PureThy.get_thmss thy7
berghofe@18068
   227
                                  [Name "pt_def",
berghofe@18068
   228
                                   Name ("pt_" ^ ak_name ^ "1"),
berghofe@18068
   229
                                   Name ("pt_" ^ ak_name ^ "2"),
berghofe@18068
   230
                                   Name ("pt_" ^ ak_name ^ "3")];
berghofe@18068
   231
berghofe@18068
   232
	val name = "pt_"^ak_name^ "_inst";
berghofe@18068
   233
        val statement = HOLogic.mk_Trueprop (cpt $ pt_type $ at_type);
berghofe@18068
   234
berghofe@18068
   235
        val proof = fn _ => auto_tac (claset(),simp_s);
berghofe@18068
   236
      in 
wenzelm@20046
   237
        ((name, Goal.prove_global thy7 [] [] statement proof), []) 
berghofe@18068
   238
      end) ak_names_types);
berghofe@18068
   239
berghofe@18068
   240
     (* declares an fs-axclass for every atom-kind       *)
berghofe@18068
   241
     (* axclass fs_<ak>                                  *)
berghofe@18068
   242
     (* fs_<ak>1: finite ((supp x)::<ak> set)            *)
urbanc@18438
   243
     val (fs_ax_classes,thy11) =  fold_map (fn (ak_name, T) => fn thy =>
berghofe@18068
   244
       let 
berghofe@18068
   245
	  val cl_name = "fs_"^ak_name;
berghofe@18068
   246
	  val pt_name = Sign.full_name (sign_of thy) ("pt_"^ak_name);
berghofe@18068
   247
          val ty = TFree("'a",["HOL.type"]);
berghofe@18068
   248
          val x   = Free ("x", ty);
berghofe@19494
   249
          val csupp    = Const ("Nominal.supp", ty --> HOLogic.mk_setT T);
berghofe@18068
   250
          val cfinites = Const ("Finite_Set.Finites", HOLogic.mk_setT (HOLogic.mk_setT T))
berghofe@18068
   251
          
berghofe@18068
   252
          val axiom1   = HOLogic.mk_Trueprop (HOLogic.mk_mem (csupp $ x, cfinites));
berghofe@18068
   253
berghofe@18068
   254
       in  
wenzelm@19509
   255
        AxClass.define_class_i (cl_name, [pt_name]) [] [((cl_name ^ "1", []), [axiom1])] thy            
urbanc@18438
   256
       end) ak_names_types thy8; 
berghofe@18068
   257
berghofe@18068
   258
     (* proves that every fs_<ak>-type together with <ak>-type   *)
berghofe@18068
   259
     (* instance of fs-type                                      *)
berghofe@18068
   260
     (* lemma abst_<ak>_inst:                                    *)
berghofe@18068
   261
     (* fs TYPE('x::pt_<ak>) TYPE (<ak>)                         *)
urbanc@18381
   262
     val (fs_inst_thms,thy12) = 
berghofe@18068
   263
       thy11 |> PureThy.add_thms (map (fn (ak_name, T) =>
berghofe@18068
   264
       let
berghofe@18068
   265
         val ak_name_qu = Sign.full_name (sign_of thy11) (ak_name);
berghofe@18068
   266
         val fs_name_qu = Sign.full_name (sign_of thy11) ("fs_"^ak_name);
berghofe@18068
   267
         val i_type1 = TFree("'x",[fs_name_qu]);
berghofe@18068
   268
         val i_type2 = Type(ak_name_qu,[]);
berghofe@19494
   269
 	 val cfs = Const ("Nominal.fs", 
berghofe@18068
   270
                                 (Term.itselfT i_type1)-->(Term.itselfT i_type2)-->HOLogic.boolT);
berghofe@18068
   271
         val fs_type = Logic.mk_type i_type1;
berghofe@18068
   272
         val at_type = Logic.mk_type i_type2;
berghofe@18068
   273
	 val simp_s = HOL_basic_ss addsimps PureThy.get_thmss thy11
berghofe@18068
   274
                                   [Name "fs_def",
berghofe@18068
   275
                                    Name ("fs_" ^ ak_name ^ "1")];
berghofe@18068
   276
    
berghofe@18068
   277
	 val name = "fs_"^ak_name^ "_inst";
berghofe@18068
   278
         val statement = HOLogic.mk_Trueprop (cfs $ fs_type $ at_type);
berghofe@18068
   279
berghofe@18068
   280
         val proof = fn _ => auto_tac (claset(),simp_s);
berghofe@18068
   281
       in 
wenzelm@20046
   282
         ((name, Goal.prove_global thy11 [] [] statement proof), []) 
berghofe@18068
   283
       end) ak_names_types);
berghofe@18068
   284
berghofe@18068
   285
       (* declares for every atom-kind combination an axclass            *)
berghofe@18068
   286
       (* cp_<ak1>_<ak2> giving a composition property                   *)
berghofe@18068
   287
       (* cp_<ak1>_<ak2>1: pi1 o pi2 o x = (pi1 o pi2) o (pi1 o x)       *)
urbanc@18438
   288
        val (_,thy12b) = fold_map (fn (ak_name, T) => fn thy =>
urbanc@18438
   289
	 fold_map (fn (ak_name', T') => fn thy' =>
berghofe@18068
   290
	     let
berghofe@18068
   291
	       val cl_name = "cp_"^ak_name^"_"^ak_name';
berghofe@18068
   292
	       val ty = TFree("'a",["HOL.type"]);
berghofe@18068
   293
               val x   = Free ("x", ty);
berghofe@18068
   294
               val pi1 = Free ("pi1", mk_permT T);
berghofe@18068
   295
	       val pi2 = Free ("pi2", mk_permT T');                  
berghofe@19494
   296
	       val cperm1 = Const ("Nominal.perm", mk_permT T  --> ty --> ty);
berghofe@19494
   297
               val cperm2 = Const ("Nominal.perm", mk_permT T' --> ty --> ty);
berghofe@19494
   298
               val cperm3 = Const ("Nominal.perm", mk_permT T  --> mk_permT T' --> mk_permT T');
berghofe@18068
   299
berghofe@18068
   300
               val ax1   = HOLogic.mk_Trueprop 
berghofe@18068
   301
			   (HOLogic.mk_eq (cperm1 $ pi1 $ (cperm2 $ pi2 $ x), 
berghofe@18068
   302
                                           cperm2 $ (cperm3 $ pi1 $ pi2) $ (cperm1 $ pi1 $ x)));
berghofe@18068
   303
	       in  
wenzelm@19509
   304
		 AxClass.define_class_i (cl_name, ["HOL.type"]) [] [((cl_name ^ "1", []), [ax1])] thy'  
urbanc@18438
   305
	       end) ak_names_types thy) ak_names_types thy12;
berghofe@18068
   306
berghofe@18068
   307
        (* proves for every <ak>-combination a cp_<ak1>_<ak2>_inst theorem;     *)
berghofe@18068
   308
        (* lemma cp_<ak1>_<ak2>_inst:                                           *)
berghofe@18068
   309
        (* cp TYPE('a::cp_<ak1>_<ak2>) TYPE(<ak1>) TYPE(<ak2>)                  *)
urbanc@18381
   310
        val (cp_thms,thy12c) = fold_map (fn (ak_name, T) => fn thy =>
urbanc@18381
   311
	 fold_map (fn (ak_name', T') => fn thy' =>
berghofe@18068
   312
           let
berghofe@18068
   313
             val ak_name_qu  = Sign.full_name (sign_of thy') (ak_name);
berghofe@18068
   314
	     val ak_name_qu' = Sign.full_name (sign_of thy') (ak_name');
berghofe@18068
   315
             val cp_name_qu  = Sign.full_name (sign_of thy') ("cp_"^ak_name^"_"^ak_name');
berghofe@18068
   316
             val i_type0 = TFree("'a",[cp_name_qu]);
berghofe@18068
   317
             val i_type1 = Type(ak_name_qu,[]);
berghofe@18068
   318
             val i_type2 = Type(ak_name_qu',[]);
berghofe@19494
   319
	     val ccp = Const ("Nominal.cp",
berghofe@18068
   320
                             (Term.itselfT i_type0)-->(Term.itselfT i_type1)-->
berghofe@18068
   321
                                                      (Term.itselfT i_type2)-->HOLogic.boolT);
berghofe@18068
   322
             val at_type  = Logic.mk_type i_type1;
berghofe@18068
   323
             val at_type' = Logic.mk_type i_type2;
berghofe@18068
   324
	     val cp_type  = Logic.mk_type i_type0;
berghofe@18068
   325
             val simp_s   = HOL_basic_ss addsimps PureThy.get_thmss thy' [(Name "cp_def")];
berghofe@18068
   326
	     val cp1      = PureThy.get_thm thy' (Name ("cp_"^ak_name^"_"^ak_name'^"1"));
berghofe@18068
   327
berghofe@18068
   328
	     val name = "cp_"^ak_name^ "_"^ak_name'^"_inst";
berghofe@18068
   329
             val statement = HOLogic.mk_Trueprop (ccp $ cp_type $ at_type $ at_type');
berghofe@18068
   330
berghofe@18068
   331
             val proof = fn _ => EVERY [auto_tac (claset(),simp_s), rtac cp1 1];
berghofe@18068
   332
	   in
wenzelm@20046
   333
	     PureThy.add_thms [((name, Goal.prove_global thy' [] [] statement proof), [])] thy'
berghofe@18068
   334
	   end) 
urbanc@18381
   335
           ak_names_types thy) ak_names_types thy12b;
berghofe@18068
   336
       
berghofe@18068
   337
        (* proves for every non-trivial <ak>-combination a disjointness   *)
berghofe@18068
   338
        (* theorem; i.e. <ak1> != <ak2>                                   *)
berghofe@18068
   339
        (* lemma ds_<ak1>_<ak2>:                                          *)
berghofe@18068
   340
        (* dj TYPE(<ak1>) TYPE(<ak2>)                                     *)
urbanc@18381
   341
        val (dj_thms, thy12d) = fold_map (fn (ak_name,T) => fn thy =>
urbanc@18381
   342
	  fold_map (fn (ak_name',T') => fn thy' =>
berghofe@18068
   343
          (if not (ak_name = ak_name') 
berghofe@18068
   344
           then 
berghofe@18068
   345
	       let
berghofe@18068
   346
		 val ak_name_qu  = Sign.full_name (sign_of thy') (ak_name);
berghofe@18068
   347
	         val ak_name_qu' = Sign.full_name (sign_of thy') (ak_name');
berghofe@18068
   348
                 val i_type1 = Type(ak_name_qu,[]);
berghofe@18068
   349
                 val i_type2 = Type(ak_name_qu',[]);
berghofe@19494
   350
	         val cdj = Const ("Nominal.disjoint",
berghofe@18068
   351
                           (Term.itselfT i_type1)-->(Term.itselfT i_type2)-->HOLogic.boolT);
berghofe@18068
   352
                 val at_type  = Logic.mk_type i_type1;
berghofe@18068
   353
                 val at_type' = Logic.mk_type i_type2;
berghofe@18068
   354
                 val simp_s = HOL_basic_ss addsimps PureThy.get_thmss thy' 
berghofe@18068
   355
					   [Name "disjoint_def",
berghofe@18068
   356
                                            Name (ak_name^"_prm_"^ak_name'^"_def"),
berghofe@18068
   357
                                            Name (ak_name'^"_prm_"^ak_name^"_def")];
berghofe@18068
   358
berghofe@18068
   359
	         val name = "dj_"^ak_name^"_"^ak_name';
berghofe@18068
   360
                 val statement = HOLogic.mk_Trueprop (cdj $ at_type $ at_type');
berghofe@18068
   361
berghofe@18068
   362
                 val proof = fn _ => auto_tac (claset(),simp_s);
berghofe@18068
   363
	       in
wenzelm@20046
   364
		PureThy.add_thms [((name, Goal.prove_global thy' [] [] statement proof), [])] thy'
berghofe@18068
   365
	       end
berghofe@18068
   366
           else 
urbanc@18381
   367
            ([],thy')))  (* do nothing branch, if ak_name = ak_name' *) 
urbanc@18381
   368
	    ak_names_types thy) ak_names_types thy12c;
berghofe@18068
   369
webertj@20097
   370
     (********  pt_<ak> class instances  ********)
berghofe@18068
   371
     (*=========================================*)
urbanc@18279
   372
     (* some abbreviations for theorems *)
urbanc@18279
   373
      val pt1           = thm "pt1";
urbanc@18279
   374
      val pt2           = thm "pt2";
urbanc@18279
   375
      val pt3           = thm "pt3";
urbanc@18279
   376
      val at_pt_inst    = thm "at_pt_inst";
urbanc@18279
   377
      val pt_set_inst   = thm "pt_set_inst"; 
urbanc@18279
   378
      val pt_unit_inst  = thm "pt_unit_inst";
urbanc@18279
   379
      val pt_prod_inst  = thm "pt_prod_inst"; 
urbanc@18600
   380
      val pt_nprod_inst = thm "pt_nprod_inst"; 
urbanc@18279
   381
      val pt_list_inst  = thm "pt_list_inst";   
urbanc@18279
   382
      val pt_optn_inst  = thm "pt_option_inst";   
urbanc@18279
   383
      val pt_noptn_inst = thm "pt_noption_inst";   
urbanc@18279
   384
      val pt_fun_inst   = thm "pt_fun_inst";     
berghofe@18068
   385
urbanc@18435
   386
     (* for all atom-kind combinations <ak>/<ak'> show that        *)
urbanc@18435
   387
     (* every <ak> is an instance of pt_<ak'>; the proof for       *)
urbanc@18435
   388
     (* ak!=ak' is by definition; the case ak=ak' uses at_pt_inst. *)
urbanc@18431
   389
     val thy13 = fold (fn ak_name => fn thy =>
urbanc@18431
   390
	fold (fn ak_name' => fn thy' =>
urbanc@18431
   391
         let
urbanc@18431
   392
           val qu_name =  Sign.full_name (sign_of thy') ak_name';
urbanc@18431
   393
           val cls_name = Sign.full_name (sign_of thy') ("pt_"^ak_name);
urbanc@18431
   394
           val at_inst  = PureThy.get_thm thy' (Name ("at_"^ak_name'^"_inst")); 
urbanc@18431
   395
berghofe@19133
   396
           val proof1 = EVERY [ClassPackage.intro_classes_tac [],
berghofe@18068
   397
                                 rtac ((at_inst RS at_pt_inst) RS pt1) 1,
berghofe@18068
   398
                                 rtac ((at_inst RS at_pt_inst) RS pt2) 1,
berghofe@18068
   399
                                 rtac ((at_inst RS at_pt_inst) RS pt3) 1,
berghofe@18068
   400
                                 atac 1];
urbanc@18431
   401
           val simp_s = HOL_basic_ss addsimps 
urbanc@18431
   402
                        PureThy.get_thmss thy' [Name (ak_name^"_prm_"^ak_name'^"_def")];  
berghofe@19133
   403
           val proof2 = EVERY [ClassPackage.intro_classes_tac [], REPEAT (asm_simp_tac simp_s 1)];
urbanc@18431
   404
urbanc@18431
   405
         in
urbanc@18431
   406
           thy'
berghofe@19275
   407
           |> AxClass.prove_arity (qu_name,[],[cls_name])
urbanc@18431
   408
              (if ak_name = ak_name' then proof1 else proof2)
urbanc@18431
   409
         end) ak_names thy) ak_names thy12c;
berghofe@18068
   410
urbanc@18430
   411
     (* show that                       *)
urbanc@18430
   412
     (*      fun(pt_<ak>,pt_<ak>)       *)
urbanc@18579
   413
     (*      noption(pt_<ak>)           *)
urbanc@18430
   414
     (*      option(pt_<ak>)            *)
urbanc@18430
   415
     (*      list(pt_<ak>)              *)
urbanc@18430
   416
     (*      *(pt_<ak>,pt_<ak>)         *)
urbanc@18600
   417
     (*      nprod(pt_<ak>,pt_<ak>)     *)
urbanc@18430
   418
     (*      unit                       *)
urbanc@18430
   419
     (*      set(pt_<ak>)               *)
urbanc@18430
   420
     (* are instances of pt_<ak>        *)
urbanc@18431
   421
     val thy18 = fold (fn ak_name => fn thy =>
berghofe@18068
   422
       let
urbanc@18430
   423
          val cls_name = Sign.full_name (sign_of thy) ("pt_"^ak_name);
berghofe@18068
   424
          val at_thm   = PureThy.get_thm thy (Name ("at_"^ak_name^"_inst"));
berghofe@18068
   425
          val pt_inst  = PureThy.get_thm thy (Name ("pt_"^ak_name^"_inst"));
webertj@20097
   426
urbanc@18430
   427
          fun pt_proof thm = 
webertj@20097
   428
              EVERY [ClassPackage.intro_classes_tac [],
urbanc@18430
   429
                     rtac (thm RS pt1) 1, rtac (thm RS pt2) 1, rtac (thm RS pt3) 1, atac 1];
urbanc@18430
   430
urbanc@18430
   431
          val pt_thm_fun   = at_thm RS (pt_inst RS (pt_inst RS pt_fun_inst));
urbanc@18430
   432
          val pt_thm_noptn = pt_inst RS pt_noptn_inst; 
urbanc@18430
   433
          val pt_thm_optn  = pt_inst RS pt_optn_inst; 
urbanc@18430
   434
          val pt_thm_list  = pt_inst RS pt_list_inst;
urbanc@18430
   435
          val pt_thm_prod  = pt_inst RS (pt_inst RS pt_prod_inst);
urbanc@18600
   436
          val pt_thm_nprod = pt_inst RS (pt_inst RS pt_nprod_inst);
urbanc@18430
   437
          val pt_thm_unit  = pt_unit_inst;
urbanc@18430
   438
          val pt_thm_set   = pt_inst RS pt_set_inst
webertj@20097
   439
       in
webertj@20097
   440
        thy
webertj@20097
   441
        |> AxClass.prove_arity ("fun",[[cls_name],[cls_name]],[cls_name]) (pt_proof pt_thm_fun)
berghofe@19494
   442
        |> AxClass.prove_arity ("Nominal.noption",[[cls_name]],[cls_name]) (pt_proof pt_thm_noptn) 
berghofe@19275
   443
        |> AxClass.prove_arity ("Datatype.option",[[cls_name]],[cls_name]) (pt_proof pt_thm_optn)
berghofe@19275
   444
        |> AxClass.prove_arity ("List.list",[[cls_name]],[cls_name]) (pt_proof pt_thm_list)
berghofe@19275
   445
        |> AxClass.prove_arity ("*",[[cls_name],[cls_name]],[cls_name]) (pt_proof pt_thm_prod)
berghofe@19494
   446
        |> AxClass.prove_arity ("Nominal.nprod",[[cls_name],[cls_name]],[cls_name]) 
urbanc@18600
   447
                                    (pt_proof pt_thm_nprod)
berghofe@19275
   448
        |> AxClass.prove_arity ("Product_Type.unit",[],[cls_name]) (pt_proof pt_thm_unit)
berghofe@19275
   449
        |> AxClass.prove_arity ("set",[[cls_name]],[cls_name]) (pt_proof pt_thm_set)
urbanc@18430
   450
     end) ak_names thy13; 
berghofe@18068
   451
webertj@20097
   452
       (********  fs_<ak> class instances  ********)
berghofe@18068
   453
       (*=========================================*)
urbanc@18279
   454
       (* abbreviations for some lemmas *)
urbanc@18431
   455
       val fs1            = thm "fs1";
urbanc@18431
   456
       val fs_at_inst     = thm "fs_at_inst";
urbanc@18431
   457
       val fs_unit_inst   = thm "fs_unit_inst";
urbanc@18431
   458
       val fs_prod_inst   = thm "fs_prod_inst";
urbanc@18600
   459
       val fs_nprod_inst  = thm "fs_nprod_inst";
urbanc@18431
   460
       val fs_list_inst   = thm "fs_list_inst";
urbanc@18431
   461
       val fs_option_inst = thm "fs_option_inst";
urbanc@18437
   462
       val dj_supp        = thm "dj_supp"
berghofe@18068
   463
berghofe@18068
   464
       (* shows that <ak> is an instance of fs_<ak>     *)
berghofe@18068
   465
       (* uses the theorem at_<ak>_inst                 *)
urbanc@18431
   466
       val thy20 = fold (fn ak_name => fn thy =>
webertj@20097
   467
        fold (fn ak_name' => fn thy' =>
urbanc@18437
   468
        let
urbanc@18437
   469
           val qu_name =  Sign.full_name (sign_of thy') ak_name';
urbanc@18437
   470
           val qu_class = Sign.full_name (sign_of thy') ("fs_"^ak_name);
webertj@20097
   471
           val proof =
webertj@20097
   472
               (if ak_name = ak_name'
webertj@20097
   473
                then
webertj@20097
   474
                  let val at_thm = PureThy.get_thm thy' (Name ("at_"^ak_name^"_inst"));
berghofe@19133
   475
                  in  EVERY [ClassPackage.intro_classes_tac [],
urbanc@18437
   476
                             rtac ((at_thm RS fs_at_inst) RS fs1) 1] end
urbanc@18437
   477
                else
webertj@20097
   478
                  let val dj_inst = PureThy.get_thm thy' (Name ("dj_"^ak_name'^"_"^ak_name));
webertj@20097
   479
                      val simp_s = HOL_basic_ss addsimps [dj_inst RS dj_supp, Finites.emptyI];
webertj@20097
   480
                  in EVERY [ClassPackage.intro_classes_tac [], asm_simp_tac simp_s 1] end)
webertj@20097
   481
        in
webertj@20097
   482
         AxClass.prove_arity (qu_name,[],[qu_class]) proof thy'
urbanc@18437
   483
        end) ak_names thy) ak_names thy18;
berghofe@18068
   484
urbanc@18431
   485
       (* shows that                  *)
urbanc@18431
   486
       (*    unit                     *)
urbanc@18431
   487
       (*    *(fs_<ak>,fs_<ak>)       *)
urbanc@18600
   488
       (*    nprod(fs_<ak>,fs_<ak>)   *)
urbanc@18431
   489
       (*    list(fs_<ak>)            *)
urbanc@18431
   490
       (*    option(fs_<ak>)          *) 
urbanc@18431
   491
       (* are instances of fs_<ak>    *)
berghofe@18068
   492
urbanc@18431
   493
       val thy24 = fold (fn ak_name => fn thy => 
urbanc@18431
   494
        let
urbanc@18431
   495
          val cls_name = Sign.full_name (sign_of thy) ("fs_"^ak_name);
berghofe@18068
   496
          val fs_inst  = PureThy.get_thm thy (Name ("fs_"^ak_name^"_inst"));
webertj@20097
   497
          fun fs_proof thm = EVERY [ClassPackage.intro_classes_tac [], rtac (thm RS fs1) 1];
berghofe@18068
   498
urbanc@18600
   499
          val fs_thm_unit  = fs_unit_inst;
urbanc@18600
   500
          val fs_thm_prod  = fs_inst RS (fs_inst RS fs_prod_inst);
urbanc@18600
   501
          val fs_thm_nprod = fs_inst RS (fs_inst RS fs_nprod_inst);
urbanc@18600
   502
          val fs_thm_list  = fs_inst RS fs_list_inst;
urbanc@18600
   503
          val fs_thm_optn  = fs_inst RS fs_option_inst;
urbanc@18431
   504
        in 
webertj@20097
   505
         thy
berghofe@19275
   506
         |> AxClass.prove_arity ("Product_Type.unit",[],[cls_name]) (fs_proof fs_thm_unit) 
berghofe@19275
   507
         |> AxClass.prove_arity ("*",[[cls_name],[cls_name]],[cls_name]) (fs_proof fs_thm_prod) 
berghofe@19494
   508
         |> AxClass.prove_arity ("Nominal.nprod",[[cls_name],[cls_name]],[cls_name]) 
urbanc@18600
   509
                                     (fs_proof fs_thm_nprod) 
berghofe@19275
   510
         |> AxClass.prove_arity ("List.list",[[cls_name]],[cls_name]) (fs_proof fs_thm_list)
berghofe@19275
   511
         |> AxClass.prove_arity ("Datatype.option",[[cls_name]],[cls_name]) (fs_proof fs_thm_optn)
webertj@20097
   512
        end) ak_names thy20;
urbanc@18431
   513
webertj@20097
   514
       (********  cp_<ak>_<ai> class instances  ********)
berghofe@18068
   515
       (*==============================================*)
urbanc@18279
   516
       (* abbreviations for some lemmas *)
urbanc@18279
   517
       val cp1             = thm "cp1";
urbanc@18279
   518
       val cp_unit_inst    = thm "cp_unit_inst";
urbanc@18279
   519
       val cp_bool_inst    = thm "cp_bool_inst";
urbanc@18279
   520
       val cp_prod_inst    = thm "cp_prod_inst";
urbanc@18279
   521
       val cp_list_inst    = thm "cp_list_inst";
urbanc@18279
   522
       val cp_fun_inst     = thm "cp_fun_inst";
urbanc@18279
   523
       val cp_option_inst  = thm "cp_option_inst";
urbanc@18279
   524
       val cp_noption_inst = thm "cp_noption_inst";
urbanc@18279
   525
       val pt_perm_compose = thm "pt_perm_compose";
webertj@20097
   526
urbanc@18279
   527
       val dj_pp_forget    = thm "dj_perm_perm_forget";
berghofe@18068
   528
berghofe@18068
   529
       (* shows that <aj> is an instance of cp_<ak>_<ai>  *)
urbanc@18432
   530
       (* for every  <ak>/<ai>-combination                *)
webertj@20097
   531
       val thy25 = fold (fn ak_name => fn thy =>
webertj@20097
   532
         fold (fn ak_name' => fn thy' =>
webertj@20097
   533
          fold (fn ak_name'' => fn thy'' =>
berghofe@18068
   534
            let
urbanc@18432
   535
              val name =  Sign.full_name (sign_of thy'') ak_name;
urbanc@18432
   536
              val cls_name = Sign.full_name (sign_of thy'') ("cp_"^ak_name'^"_"^ak_name'');
berghofe@18068
   537
              val proof =
berghofe@18068
   538
                (if (ak_name'=ak_name'') then 
webertj@20097
   539
                  (let
berghofe@18068
   540
                    val pt_inst  = PureThy.get_thm thy'' (Name ("pt_"^ak_name''^"_inst"));
webertj@20097
   541
                    val at_inst  = PureThy.get_thm thy'' (Name ("at_"^ak_name''^"_inst"));
webertj@20097
   542
                  in
webertj@20097
   543
		   EVERY [ClassPackage.intro_classes_tac [],
berghofe@18068
   544
                          rtac (at_inst RS (pt_inst RS pt_perm_compose)) 1]
berghofe@18068
   545
                  end)
berghofe@18068
   546
		else
webertj@20097
   547
		  (let
berghofe@18068
   548
                     val dj_inst  = PureThy.get_thm thy'' (Name ("dj_"^ak_name''^"_"^ak_name'));
webertj@20097
   549
		     val simp_s = HOL_basic_ss addsimps
berghofe@18068
   550
                                        ((dj_inst RS dj_pp_forget)::
webertj@20097
   551
                                         (PureThy.get_thmss thy''
webertj@20097
   552
                                           [Name (ak_name' ^"_prm_"^ak_name^"_def"),
webertj@20097
   553
                                            Name (ak_name''^"_prm_"^ak_name^"_def")]));
webertj@20097
   554
                  in
berghofe@19133
   555
                    EVERY [ClassPackage.intro_classes_tac [], simp_tac simp_s 1]
berghofe@18068
   556
                  end))
webertj@20097
   557
              in
berghofe@19275
   558
                AxClass.prove_arity (name,[],[cls_name]) proof thy''
webertj@20097
   559
              end) ak_names thy') ak_names thy) ak_names thy24;
webertj@20097
   560
urbanc@18432
   561
       (* shows that                                                    *) 
urbanc@18432
   562
       (*      units                                                    *) 
urbanc@18432
   563
       (*      products                                                 *)
urbanc@18432
   564
       (*      lists                                                    *)
urbanc@18432
   565
       (*      functions                                                *)
urbanc@18432
   566
       (*      options                                                  *)
urbanc@18432
   567
       (*      noptions                                                 *)
urbanc@18432
   568
       (* are instances of cp_<ak>_<ai> for every <ak>/<ai>-combination *)
urbanc@18432
   569
       val thy26 = fold (fn ak_name => fn thy =>
urbanc@18432
   570
	fold (fn ak_name' => fn thy' =>
urbanc@18432
   571
        let
urbanc@18432
   572
            val cls_name = Sign.full_name (sign_of thy') ("cp_"^ak_name^"_"^ak_name');
berghofe@18068
   573
            val cp_inst  = PureThy.get_thm thy' (Name ("cp_"^ak_name^"_"^ak_name'^"_inst"));
berghofe@18068
   574
            val pt_inst  = PureThy.get_thm thy' (Name ("pt_"^ak_name^"_inst"));
berghofe@18068
   575
            val at_inst  = PureThy.get_thm thy' (Name ("at_"^ak_name^"_inst"));
urbanc@18432
   576
webertj@20097
   577
            fun cp_proof thm  = EVERY [ClassPackage.intro_classes_tac [],rtac (thm RS cp1) 1];
urbanc@18432
   578
	  
urbanc@18432
   579
            val cp_thm_unit = cp_unit_inst;
urbanc@18432
   580
            val cp_thm_prod = cp_inst RS (cp_inst RS cp_prod_inst);
urbanc@18432
   581
            val cp_thm_list = cp_inst RS cp_list_inst;
urbanc@18432
   582
            val cp_thm_fun  = at_inst RS (pt_inst RS (cp_inst RS (cp_inst RS cp_fun_inst)));
urbanc@18432
   583
            val cp_thm_optn = cp_inst RS cp_option_inst;
urbanc@18432
   584
            val cp_thm_noptn = cp_inst RS cp_noption_inst;
urbanc@18432
   585
        in
urbanc@18432
   586
         thy'
berghofe@19275
   587
         |> AxClass.prove_arity ("Product_Type.unit",[],[cls_name]) (cp_proof cp_thm_unit)
berghofe@19275
   588
	 |> AxClass.prove_arity ("*",[[cls_name],[cls_name]],[cls_name]) (cp_proof cp_thm_prod)
berghofe@19275
   589
         |> AxClass.prove_arity ("List.list",[[cls_name]],[cls_name]) (cp_proof cp_thm_list)
berghofe@19275
   590
         |> AxClass.prove_arity ("fun",[[cls_name],[cls_name]],[cls_name]) (cp_proof cp_thm_fun)
berghofe@19275
   591
         |> AxClass.prove_arity ("Datatype.option",[[cls_name]],[cls_name]) (cp_proof cp_thm_optn)
berghofe@19494
   592
         |> AxClass.prove_arity ("Nominal.noption",[[cls_name]],[cls_name]) (cp_proof cp_thm_noptn)
urbanc@18432
   593
        end) ak_names thy) ak_names thy25;
webertj@20097
   594
webertj@20097
   595
     (* show that discrete nominal types are permutation types, finitely     *)
urbanc@18432
   596
     (* supported and have the commutation property                          *)
urbanc@18432
   597
     (* discrete types have a permutation operation defined as pi o x = x;   *)
webertj@20097
   598
     (* which renders the proofs to be simple "simp_all"-proofs.             *)
urbanc@18432
   599
     val thy32 =
webertj@20097
   600
        let
webertj@20097
   601
	  fun discrete_pt_inst discrete_ty defn =
urbanc@18432
   602
	     fold (fn ak_name => fn thy =>
urbanc@18432
   603
	     let
urbanc@18432
   604
	       val qu_class = Sign.full_name (sign_of thy) ("pt_"^ak_name);
urbanc@18432
   605
	       val simp_s = HOL_basic_ss addsimps [defn];
webertj@20097
   606
               val proof = EVERY [ClassPackage.intro_classes_tac [], REPEAT (asm_simp_tac simp_s 1)];
webertj@20097
   607
             in 
berghofe@19275
   608
	       AxClass.prove_arity (discrete_ty,[],[qu_class]) proof thy
urbanc@18432
   609
             end) ak_names;
berghofe@18068
   610
urbanc@18432
   611
          fun discrete_fs_inst discrete_ty defn = 
urbanc@18432
   612
	     fold (fn ak_name => fn thy =>
urbanc@18432
   613
	     let
urbanc@18432
   614
	       val qu_class = Sign.full_name (sign_of thy) ("fs_"^ak_name);
berghofe@19494
   615
	       val supp_def = thm "Nominal.supp_def";
urbanc@18432
   616
               val simp_s = HOL_ss addsimps [supp_def,Collect_const,Finites.emptyI,defn];
webertj@20097
   617
               val proof = EVERY [ClassPackage.intro_classes_tac [], asm_simp_tac simp_s 1];
webertj@20097
   618
             in 
berghofe@19275
   619
	       AxClass.prove_arity (discrete_ty,[],[qu_class]) proof thy
webertj@20097
   620
             end) ak_names;
berghofe@18068
   621
urbanc@18432
   622
          fun discrete_cp_inst discrete_ty defn = 
urbanc@18432
   623
	     fold (fn ak_name' => (fold (fn ak_name => fn thy =>
urbanc@18432
   624
	     let
urbanc@18432
   625
	       val qu_class = Sign.full_name (sign_of thy) ("cp_"^ak_name^"_"^ak_name');
berghofe@19494
   626
	       val supp_def = thm "Nominal.supp_def";
urbanc@18432
   627
               val simp_s = HOL_ss addsimps [defn];
webertj@20097
   628
               val proof = EVERY [ClassPackage.intro_classes_tac [], asm_simp_tac simp_s 1];
webertj@20097
   629
             in
berghofe@19275
   630
	       AxClass.prove_arity (discrete_ty,[],[qu_class]) proof thy
webertj@20097
   631
             end) ak_names)) ak_names;
webertj@20097
   632
urbanc@18432
   633
        in
urbanc@18432
   634
         thy26
urbanc@18432
   635
         |> discrete_pt_inst "nat"  (thm "perm_nat_def")
urbanc@18432
   636
         |> discrete_fs_inst "nat"  (thm "perm_nat_def") 
urbanc@18432
   637
         |> discrete_cp_inst "nat"  (thm "perm_nat_def") 
urbanc@18432
   638
         |> discrete_pt_inst "bool" (thm "perm_bool")
urbanc@18432
   639
         |> discrete_fs_inst "bool" (thm "perm_bool")
urbanc@18432
   640
         |> discrete_cp_inst "bool" (thm "perm_bool")
urbanc@18432
   641
         |> discrete_pt_inst "IntDef.int" (thm "perm_int_def")
urbanc@18432
   642
         |> discrete_fs_inst "IntDef.int" (thm "perm_int_def") 
urbanc@18432
   643
         |> discrete_cp_inst "IntDef.int" (thm "perm_int_def") 
urbanc@18432
   644
         |> discrete_pt_inst "List.char" (thm "perm_char_def")
urbanc@18432
   645
         |> discrete_fs_inst "List.char" (thm "perm_char_def")
urbanc@18432
   646
         |> discrete_cp_inst "List.char" (thm "perm_char_def")
urbanc@18432
   647
        end;
urbanc@18432
   648
webertj@20097
   649
urbanc@18262
   650
       (* abbreviations for some lemmas *)
urbanc@18262
   651
       (*===============================*)
berghofe@19494
   652
       val abs_fun_pi          = thm "Nominal.abs_fun_pi";
berghofe@19494
   653
       val abs_fun_pi_ineq     = thm "Nominal.abs_fun_pi_ineq";
berghofe@19494
   654
       val abs_fun_eq          = thm "Nominal.abs_fun_eq";
urbanc@19562
   655
       val abs_fun_eq'         = thm "Nominal.abs_fun_eq'";
berghofe@19494
   656
       val dj_perm_forget      = thm "Nominal.dj_perm_forget";
berghofe@19494
   657
       val dj_pp_forget        = thm "Nominal.dj_perm_perm_forget";
berghofe@19494
   658
       val fresh_iff           = thm "Nominal.fresh_abs_fun_iff";
berghofe@19494
   659
       val fresh_iff_ineq      = thm "Nominal.fresh_abs_fun_iff_ineq";
berghofe@19494
   660
       val abs_fun_supp        = thm "Nominal.abs_fun_supp";
berghofe@19494
   661
       val abs_fun_supp_ineq   = thm "Nominal.abs_fun_supp_ineq";
berghofe@19494
   662
       val pt_swap_bij         = thm "Nominal.pt_swap_bij";
berghofe@19494
   663
       val pt_fresh_fresh      = thm "Nominal.pt_fresh_fresh";
berghofe@19494
   664
       val pt_bij              = thm "Nominal.pt_bij";
berghofe@19494
   665
       val pt_perm_compose     = thm "Nominal.pt_perm_compose";
berghofe@19494
   666
       val pt_perm_compose'    = thm "Nominal.pt_perm_compose'";
berghofe@19494
   667
       val perm_app            = thm "Nominal.pt_fun_app_eq";
berghofe@19494
   668
       val at_fresh            = thm "Nominal.at_fresh";
urbanc@19972
   669
       val at_fresh_ineq       = thm "Nominal.at_fresh_ineq";
berghofe@19494
   670
       val at_calc             = thms "Nominal.at_calc";
berghofe@19494
   671
       val at_supp             = thm "Nominal.at_supp";
berghofe@19494
   672
       val dj_supp             = thm "Nominal.dj_supp";
berghofe@19494
   673
       val fresh_left_ineq     = thm "Nominal.pt_fresh_left_ineq";
berghofe@19494
   674
       val fresh_left          = thm "Nominal.pt_fresh_left";
urbanc@19548
   675
       val fresh_right_ineq    = thm "Nominal.pt_fresh_right_ineq";
urbanc@19548
   676
       val fresh_right         = thm "Nominal.pt_fresh_right";
berghofe@19494
   677
       val fresh_bij_ineq      = thm "Nominal.pt_fresh_bij_ineq";
berghofe@19494
   678
       val fresh_bij           = thm "Nominal.pt_fresh_bij";
urbanc@19638
   679
       val fresh_aux_ineq      = thm "Nominal.pt_fresh_aux_ineq";
urbanc@19638
   680
       val fresh_aux           = thm "Nominal.pt_fresh_aux";
urbanc@19972
   681
       val fresh_eqvt          = thm "Nominal.pt_fresh_eqvt";
urbanc@19972
   682
       val all_eqvt            = thm "Nominal.pt_all_eqvt";
berghofe@19494
   683
       val pt_pi_rev           = thm "Nominal.pt_pi_rev";
berghofe@19494
   684
       val pt_rev_pi           = thm "Nominal.pt_rev_pi";
urbanc@19972
   685
       val at_exists_fresh     = thm "Nominal.at_exists_fresh";
webertj@20097
   686
berghofe@18068
   687
urbanc@18262
   688
       (* Now we collect and instantiate some lemmas w.r.t. all atom      *)
urbanc@18262
   689
       (* types; this allows for example to use abs_perm (which is a      *)
urbanc@18262
   690
       (* collection of theorems) instead of thm abs_fun_pi with explicit *)
urbanc@18262
   691
       (* instantiations.                                                 *)
webertj@20097
   692
       val (_, thy33) =
webertj@20097
   693
         let
urbanc@18651
   694
urbanc@18279
   695
             (* takes a theorem thm and a list of theorems [t1,..,tn]            *)
urbanc@18279
   696
             (* produces a list of theorems of the form [t1 RS thm,..,tn RS thm] *) 
urbanc@18262
   697
             fun instR thm thms = map (fn ti => ti RS thm) thms;
berghofe@18068
   698
urbanc@18262
   699
             (* takes two theorem lists (hopefully of the same length ;o)                *)
urbanc@18262
   700
             (* produces a list of theorems of the form                                  *)
urbanc@18262
   701
             (* [t1 RS m1,..,tn RS mn] where [t1,..,tn] is thms1 and [m1,..,mn] is thms2 *) 
urbanc@18279
   702
             fun inst_zip thms1 thms2 = map (fn (t1,t2) => t1 RS t2) (thms1 ~~ thms2);
berghofe@18068
   703
urbanc@18262
   704
             (* takes a theorem list of the form [l1,...,ln]              *)
urbanc@18262
   705
             (* and a list of theorem lists of the form                   *)
urbanc@18262
   706
             (* [[h11,...,h1m],....,[hk1,....,hkm]                        *)
urbanc@18262
   707
             (* produces the list of theorem lists                        *)
urbanc@18262
   708
             (* [[l1 RS h11,...,l1 RS h1m],...,[ln RS hk1,...,ln RS hkm]] *)
urbanc@18279
   709
             fun inst_mult thms thmss = map (fn (t,ts) => instR t ts) (thms ~~ thmss);
urbanc@18279
   710
urbanc@18279
   711
             (* FIXME: these lists do not need to be created dynamically again *)
urbanc@18262
   712
berghofe@18068
   713
             (* list of all at_inst-theorems *)
urbanc@18262
   714
             val ats = map (fn ak => PureThy.get_thm thy32 (Name ("at_"^ak^"_inst"))) ak_names
berghofe@18068
   715
             (* list of all pt_inst-theorems *)
urbanc@18262
   716
             val pts = map (fn ak => PureThy.get_thm thy32 (Name ("pt_"^ak^"_inst"))) ak_names
urbanc@18262
   717
             (* list of all cp_inst-theorems as a collection of lists*)
berghofe@18068
   718
             val cps = 
urbanc@18262
   719
		 let fun cps_fun ak1 ak2 = PureThy.get_thm thy32 (Name ("cp_"^ak1^"_"^ak2^"_inst"))
urbanc@18262
   720
		 in map (fn aki => (map (cps_fun aki) ak_names)) ak_names end; 
urbanc@18262
   721
             (* list of all cp_inst-theorems that have different atom types *)
urbanc@18262
   722
             val cps' = 
urbanc@18262
   723
		let fun cps'_fun ak1 ak2 = 
urbanc@18262
   724
		if ak1=ak2 then NONE else SOME(PureThy.get_thm thy32 (Name ("cp_"^ak1^"_"^ak2^"_inst")))
urbanc@18262
   725
		in map (fn aki => (List.mapPartial I (map (cps'_fun aki) ak_names))) ak_names end;
berghofe@18068
   726
             (* list of all dj_inst-theorems *)
berghofe@18068
   727
             val djs = 
berghofe@18068
   728
	       let fun djs_fun (ak1,ak2) = 
urbanc@18262
   729
		     if ak1=ak2 then NONE else SOME(PureThy.get_thm thy32 (Name ("dj_"^ak2^"_"^ak1)))
urbanc@18262
   730
	       in List.mapPartial I (map djs_fun (Library.product ak_names ak_names)) end;
urbanc@18262
   731
             (* list of all fs_inst-theorems *)
urbanc@18262
   732
             val fss = map (fn ak => PureThy.get_thm thy32 (Name ("fs_"^ak^"_inst"))) ak_names
webertj@20097
   733
webertj@20097
   734
             fun inst_pt thms = Library.flat (map (fn ti => instR ti pts) thms);
webertj@20097
   735
             fun inst_at thms = Library.flat (map (fn ti => instR ti ats) thms);
urbanc@18262
   736
             fun inst_fs thms = Library.flat (map (fn ti => instR ti fss) thms);
webertj@20097
   737
             fun inst_cp thms cps = Library.flat (inst_mult thms cps);
webertj@20097
   738
	     fun inst_pt_at thms = inst_zip ats (inst_pt thms);
webertj@20097
   739
             fun inst_dj thms = Library.flat (map (fn ti => instR ti djs) thms);
urbanc@18436
   740
	     fun inst_pt_pt_at_cp thms = inst_cp (inst_zip ats (inst_zip pts (inst_pt thms))) cps;
urbanc@18262
   741
             fun inst_pt_at_fs thms = inst_zip (inst_fs [fs1]) (inst_zip ats (inst_pt thms));
webertj@20097
   742
	     fun inst_pt_pt_at_cp thms =
urbanc@18279
   743
		 let val i_pt_pt_at = inst_zip ats (inst_zip pts (inst_pt thms));
urbanc@18436
   744
                     val i_pt_pt_at_cp = inst_cp i_pt_pt_at cps';
urbanc@18396
   745
		 in i_pt_pt_at_cp end;
urbanc@18396
   746
             fun inst_pt_pt_at_cp_dj thms = inst_zip djs (inst_pt_pt_at_cp thms);
berghofe@18068
   747
           in
urbanc@18262
   748
            thy32 
urbanc@18652
   749
	    |>   PureThy.add_thmss [(("alpha", inst_pt_at [abs_fun_eq]),[])]
urbanc@19562
   750
            ||>> PureThy.add_thmss [(("alpha'", inst_pt_at [abs_fun_eq']),[])]
urbanc@18381
   751
            ||>> PureThy.add_thmss [(("perm_swap", inst_pt_at [pt_swap_bij]),[])]
urbanc@19139
   752
            ||>> PureThy.add_thmss 
urbanc@19139
   753
	      let val thms1 = inst_pt_at [pt_pi_rev];
urbanc@19139
   754
		  val thms2 = inst_pt_at [pt_rev_pi];
urbanc@19139
   755
              in [(("perm_pi_simp",thms1 @ thms2),[])] end
urbanc@18381
   756
            ||>> PureThy.add_thmss [(("perm_fresh_fresh", inst_pt_at [pt_fresh_fresh]),[])]
urbanc@18381
   757
            ||>> PureThy.add_thmss [(("perm_bij", inst_pt_at [pt_bij]),[])]
urbanc@18436
   758
            ||>> PureThy.add_thmss 
urbanc@18436
   759
	      let val thms1 = inst_pt_at [pt_perm_compose];
urbanc@18436
   760
		  val thms2 = instR cp1 (Library.flat cps');
urbanc@18436
   761
              in [(("perm_compose",thms1 @ thms2),[])] end
urbanc@19139
   762
            ||>> PureThy.add_thmss [(("perm_compose'",inst_pt_at [pt_perm_compose']),[])] 
urbanc@19139
   763
            ||>> PureThy.add_thmss [(("perm_app", inst_pt_at [perm_app]),[])]
urbanc@18381
   764
            ||>> PureThy.add_thmss [(("supp_atm", (inst_at [at_supp]) @ (inst_dj [dj_supp])),[])]
urbanc@19972
   765
            ||>> PureThy.add_thmss [(("exists_fresh", inst_at [at_exists_fresh]),[])]
urbanc@19972
   766
            ||>> PureThy.add_thmss [(("all_eqvt", inst_pt_at [all_eqvt]),[])]
urbanc@19972
   767
            ||>> PureThy.add_thmss 
urbanc@19972
   768
	      let val thms1 = inst_at [at_fresh]
urbanc@19972
   769
		  val thms2 = inst_dj [at_fresh_ineq]
urbanc@19972
   770
	      in [(("fresh_atm", thms1 @ thms2),[])] end
urbanc@19992
   771
            ||>> PureThy.add_thmss
urbanc@19992
   772
	      let val thms1 = List.concat (List.concat perm_defs)
urbanc@19993
   773
              in [(("calc_atm", (inst_at at_calc) @ thms1),[])] end
urbanc@18381
   774
            ||>> PureThy.add_thmss
urbanc@18279
   775
	      let val thms1 = inst_pt_at [abs_fun_pi]
urbanc@18279
   776
		  and thms2 = inst_pt_pt_at_cp [abs_fun_pi_ineq]
urbanc@18279
   777
	      in [(("abs_perm", thms1 @ thms2),[])] end
urbanc@18381
   778
            ||>> PureThy.add_thmss
urbanc@18279
   779
	      let val thms1 = inst_dj [dj_perm_forget]
urbanc@18279
   780
		  and thms2 = inst_dj [dj_pp_forget]
urbanc@18279
   781
              in [(("perm_dj", thms1 @ thms2),[])] end
urbanc@18381
   782
            ||>> PureThy.add_thmss
urbanc@18279
   783
	      let val thms1 = inst_pt_at_fs [fresh_iff]
urbanc@18626
   784
                  and thms2 = inst_pt_at [fresh_iff]
urbanc@18626
   785
		  and thms3 = inst_pt_pt_at_cp_dj [fresh_iff_ineq]
urbanc@18626
   786
	    in [(("abs_fresh", thms1 @ thms2 @ thms3),[])] end
urbanc@18381
   787
	    ||>> PureThy.add_thmss
urbanc@18279
   788
	      let val thms1 = inst_pt_at [abs_fun_supp]
urbanc@18279
   789
		  and thms2 = inst_pt_at_fs [abs_fun_supp]
urbanc@18279
   790
		  and thms3 = inst_pt_pt_at_cp_dj [abs_fun_supp_ineq]
urbanc@18279
   791
	      in [(("abs_supp", thms1 @ thms2 @ thms3),[])] end
urbanc@18396
   792
            ||>> PureThy.add_thmss
urbanc@18396
   793
	      let val thms1 = inst_pt_at [fresh_left]
urbanc@18396
   794
		  and thms2 = inst_pt_pt_at_cp [fresh_left_ineq]
urbanc@18396
   795
	      in [(("fresh_left", thms1 @ thms2),[])] end
urbanc@18426
   796
            ||>> PureThy.add_thmss
urbanc@19548
   797
	      let val thms1 = inst_pt_at [fresh_right]
urbanc@19548
   798
		  and thms2 = inst_pt_pt_at_cp [fresh_right_ineq]
urbanc@19548
   799
	      in [(("fresh_right", thms1 @ thms2),[])] end
urbanc@19548
   800
            ||>> PureThy.add_thmss
urbanc@18426
   801
	      let val thms1 = inst_pt_at [fresh_bij]
urbanc@18426
   802
		  and thms2 = inst_pt_pt_at_cp [fresh_bij_ineq]
urbanc@19972
   803
	      in [(("fresh_bij", thms1 @ thms2),[])] end
urbanc@19972
   804
            ||>> PureThy.add_thmss
urbanc@19972
   805
	      let val thms1 = inst_pt_at [fresh_eqvt]
urbanc@19972
   806
	      in [(("fresh_eqvt", thms1),[])] end
urbanc@19638
   807
            ||>> PureThy.add_thmss
urbanc@19638
   808
	      let val thms1 = inst_pt_at [fresh_aux]
urbanc@19638
   809
		  and thms2 = inst_pt_pt_at_cp_dj [fresh_aux_ineq]
urbanc@19638
   810
	      in [(("fresh_aux", thms1 @ thms2),[])] end
berghofe@18068
   811
	   end;
berghofe@18068
   812
berghofe@18068
   813
    in NominalData.put (fold Symtab.update (map (rpair ()) full_ak_names)
urbanc@18262
   814
      (NominalData.get thy11)) thy33
berghofe@18068
   815
    end;
berghofe@18068
   816
berghofe@18068
   817
berghofe@18068
   818
(* syntax und parsing *)
berghofe@18068
   819
structure P = OuterParse and K = OuterKeyword;
berghofe@18068
   820
berghofe@18068
   821
val atom_declP =
berghofe@18068
   822
  OuterSyntax.command "atom_decl" "Declare new kinds of atoms" K.thy_decl
berghofe@18068
   823
    (Scan.repeat1 P.name >> (Toplevel.theory o create_nom_typedecls));
berghofe@18068
   824
berghofe@18068
   825
val _ = OuterSyntax.add_parsers [atom_declP];
berghofe@18068
   826
urbanc@18746
   827
val setup = NominalData.init;
berghofe@18068
   828
berghofe@18068
   829
end;