paulson@15347
|
1 |
(* Author: Jia Meng, Cambridge University Computer Laboratory
|
paulson@15347
|
2 |
ID: $Id$
|
paulson@15347
|
3 |
Copyright 2004 University of Cambridge
|
paulson@15347
|
4 |
|
paulson@15347
|
5 |
Transformation of axiom rules (elim/intro/etc) into CNF forms.
|
paulson@15347
|
6 |
*)
|
paulson@15347
|
7 |
|
paulson@15997
|
8 |
signature RES_AXIOMS =
|
paulson@15997
|
9 |
sig
|
paulson@15997
|
10 |
exception ELIMR2FOL of string
|
paulson@17404
|
11 |
val tagging_enabled : bool
|
paulson@15997
|
12 |
val elimRule_tac : thm -> Tactical.tactic
|
paulson@16012
|
13 |
val elimR2Fol : thm -> term
|
paulson@15997
|
14 |
val transform_elim : thm -> thm
|
quigley@16039
|
15 |
val clausify_axiom_pairs : (string*thm) -> (ResClause.clause*thm) list
|
mengj@18000
|
16 |
val clausify_axiom_pairsH : (string*thm) -> (ResHolClause.clause*thm) list
|
paulson@15997
|
17 |
val cnf_axiom : (string * thm) -> thm list
|
paulson@15997
|
18 |
val meta_cnf_axiom : thm -> thm list
|
paulson@15997
|
19 |
val claset_rules_of_thy : theory -> (string * thm) list
|
paulson@15997
|
20 |
val simpset_rules_of_thy : theory -> (string * thm) list
|
paulson@17484
|
21 |
val claset_rules_of_ctxt: Proof.context -> (string * thm) list
|
paulson@17484
|
22 |
val simpset_rules_of_ctxt : Proof.context -> (string * thm) list
|
paulson@17829
|
23 |
val clausify_rules_pairs : (string*thm) list -> (ResClause.clause*thm) list list
|
mengj@18000
|
24 |
val clausify_rules_pairsH : (string*thm) list -> (ResHolClause.clause*thm) list list
|
paulson@16563
|
25 |
val clause_setup : (theory -> theory) list
|
paulson@16563
|
26 |
val meson_method_setup : (theory -> theory) list
|
mengj@17905
|
27 |
val pairname : thm -> (string * thm)
|
mengj@18198
|
28 |
val cnf_axiom_aux : thm -> thm list
|
mengj@18274
|
29 |
val cnf_rules1 : (string * thm) list -> string list -> (string * thm list) list * string list
|
mengj@18274
|
30 |
val cnf_rules2 : (string * thm) list -> string list -> (string * term list) list * string list
|
paulson@15997
|
31 |
end;
|
paulson@15347
|
32 |
|
mengj@18198
|
33 |
structure ResAxioms : RES_AXIOMS =
|
paulson@15997
|
34 |
|
paulson@15997
|
35 |
struct
|
paulson@15347
|
36 |
|
mengj@18000
|
37 |
|
paulson@17404
|
38 |
val tagging_enabled = false (*compile_time option*)
|
paulson@17404
|
39 |
|
paulson@15997
|
40 |
(**** Transformation of Elimination Rules into First-Order Formulas****)
|
paulson@15347
|
41 |
|
paulson@15390
|
42 |
(* a tactic used to prove an elim-rule. *)
|
paulson@16009
|
43 |
fun elimRule_tac th =
|
paulson@16009
|
44 |
((rtac impI 1) ORELSE (rtac notI 1)) THEN (etac th 1) THEN
|
paulson@16588
|
45 |
REPEAT(fast_tac HOL_cs 1);
|
paulson@15347
|
46 |
|
paulson@15347
|
47 |
exception ELIMR2FOL of string;
|
paulson@15347
|
48 |
|
paulson@15390
|
49 |
(* functions used to construct a formula *)
|
paulson@15390
|
50 |
|
paulson@15347
|
51 |
fun make_disjs [x] = x
|
paulson@15956
|
52 |
| make_disjs (x :: xs) = HOLogic.mk_disj(x, make_disjs xs)
|
paulson@15347
|
53 |
|
paulson@15347
|
54 |
fun make_conjs [x] = x
|
paulson@15956
|
55 |
| make_conjs (x :: xs) = HOLogic.mk_conj(x, make_conjs xs)
|
paulson@15956
|
56 |
|
paulson@15956
|
57 |
fun add_EX tm [] = tm
|
paulson@15956
|
58 |
| add_EX tm ((x,xtp)::xs) = add_EX (HOLogic.exists_const xtp $ Abs(x,xtp,tm)) xs;
|
paulson@15347
|
59 |
|
paulson@15956
|
60 |
fun is_neg (Const("Trueprop",_) $ (Const("Not",_) $ Free(p,_))) (Const("Trueprop",_) $ Free(q,_)) = (p = q)
|
paulson@15371
|
61 |
| is_neg _ _ = false;
|
paulson@15371
|
62 |
|
paulson@15347
|
63 |
|
paulson@15347
|
64 |
exception STRIP_CONCL;
|
paulson@15347
|
65 |
|
paulson@15347
|
66 |
|
paulson@15371
|
67 |
fun strip_concl' prems bvs (Const ("==>",_) $ P $ Q) =
|
paulson@15956
|
68 |
let val P' = HOLogic.dest_Trueprop P
|
paulson@15956
|
69 |
val prems' = P'::prems
|
paulson@15956
|
70 |
in
|
paulson@15371
|
71 |
strip_concl' prems' bvs Q
|
paulson@15956
|
72 |
end
|
paulson@15371
|
73 |
| strip_concl' prems bvs P =
|
paulson@15956
|
74 |
let val P' = HOLogic.Not $ (HOLogic.dest_Trueprop P)
|
paulson@15956
|
75 |
in
|
paulson@15371
|
76 |
add_EX (make_conjs (P'::prems)) bvs
|
paulson@15956
|
77 |
end;
|
paulson@15371
|
78 |
|
paulson@15371
|
79 |
|
paulson@18141
|
80 |
fun strip_concl prems bvs concl (Const ("all", _) $ Abs (x,xtp,body)) =
|
paulson@18141
|
81 |
strip_concl prems ((x,xtp)::bvs) concl body
|
paulson@15371
|
82 |
| strip_concl prems bvs concl (Const ("==>",_) $ P $ Q) =
|
paulson@18141
|
83 |
if (is_neg P concl) then (strip_concl' prems bvs Q)
|
paulson@18141
|
84 |
else strip_concl (HOLogic.dest_Trueprop P::prems) bvs concl Q
|
paulson@15371
|
85 |
| strip_concl prems bvs concl _ = add_EX (make_conjs prems) bvs;
|
paulson@15347
|
86 |
|
paulson@15347
|
87 |
|
paulson@15371
|
88 |
fun trans_elim (main,others,concl) =
|
paulson@15371
|
89 |
let val others' = map (strip_concl [] [] concl) others
|
paulson@15347
|
90 |
val disjs = make_disjs others'
|
paulson@15347
|
91 |
in
|
paulson@15956
|
92 |
HOLogic.mk_imp (HOLogic.dest_Trueprop main, disjs)
|
paulson@15347
|
93 |
end;
|
paulson@15347
|
94 |
|
paulson@15347
|
95 |
|
paulson@15390
|
96 |
(* aux function of elim2Fol, take away predicate variable. *)
|
paulson@15371
|
97 |
fun elimR2Fol_aux prems concl =
|
paulson@15347
|
98 |
let val nprems = length prems
|
paulson@15347
|
99 |
val main = hd prems
|
paulson@15347
|
100 |
in
|
paulson@15956
|
101 |
if (nprems = 1) then HOLogic.Not $ (HOLogic.dest_Trueprop main)
|
paulson@15371
|
102 |
else trans_elim (main, tl prems, concl)
|
paulson@15347
|
103 |
end;
|
paulson@15347
|
104 |
|
paulson@15956
|
105 |
|
paulson@16012
|
106 |
(* convert an elim rule into an equivalent formula, of type term. *)
|
paulson@15347
|
107 |
fun elimR2Fol elimR =
|
paulson@15347
|
108 |
let val elimR' = Drule.freeze_all elimR
|
paulson@15347
|
109 |
val (prems,concl) = (prems_of elimR', concl_of elimR')
|
paulson@15347
|
110 |
in
|
paulson@15347
|
111 |
case concl of Const("Trueprop",_) $ Free(_,Type("bool",[]))
|
paulson@15956
|
112 |
=> HOLogic.mk_Trueprop (elimR2Fol_aux prems concl)
|
paulson@15956
|
113 |
| Free(x,Type("prop",[])) => HOLogic.mk_Trueprop(elimR2Fol_aux prems concl)
|
paulson@15347
|
114 |
| _ => raise ELIMR2FOL("Not an elimination rule!")
|
paulson@15347
|
115 |
end;
|
paulson@15347
|
116 |
|
paulson@15347
|
117 |
|
paulson@15390
|
118 |
(* check if a rule is an elim rule *)
|
paulson@16009
|
119 |
fun is_elimR th =
|
paulson@16009
|
120 |
case (concl_of th) of (Const ("Trueprop", _) $ Var (idx,_)) => true
|
paulson@15347
|
121 |
| Var(indx,Type("prop",[])) => true
|
paulson@15347
|
122 |
| _ => false;
|
paulson@15347
|
123 |
|
paulson@15997
|
124 |
(* convert an elim-rule into an equivalent theorem that does not have the
|
paulson@15997
|
125 |
predicate variable. Leave other theorems unchanged.*)
|
paulson@16009
|
126 |
fun transform_elim th =
|
paulson@16009
|
127 |
if is_elimR th then
|
paulson@16009
|
128 |
let val tm = elimR2Fol th
|
paulson@16009
|
129 |
val ctm = cterm_of (sign_of_thm th) tm
|
paulson@18009
|
130 |
in Goal.prove_raw [] ctm (fn _ => elimRule_tac th) end
|
paulson@16563
|
131 |
else th;
|
paulson@15997
|
132 |
|
paulson@15997
|
133 |
|
paulson@15997
|
134 |
(**** Transformation of Clasets and Simpsets into First-Order Axioms ****)
|
paulson@15997
|
135 |
|
paulson@15347
|
136 |
|
paulson@16563
|
137 |
(*Transfer a theorem into theory Reconstruction.thy if it is not already
|
paulson@15359
|
138 |
inside that theory -- because it's needed for Skolemization *)
|
paulson@15359
|
139 |
|
paulson@16563
|
140 |
(*This will refer to the final version of theory Reconstruction.*)
|
paulson@16563
|
141 |
val recon_thy_ref = Theory.self_ref (the_context ());
|
paulson@15359
|
142 |
|
paulson@16563
|
143 |
(*If called while Reconstruction is being created, it will transfer to the
|
paulson@16563
|
144 |
current version. If called afterward, it will transfer to the final version.*)
|
paulson@16009
|
145 |
fun transfer_to_Reconstruction th =
|
paulson@16563
|
146 |
transfer (Theory.deref recon_thy_ref) th handle THM _ => th;
|
paulson@15347
|
147 |
|
paulson@15955
|
148 |
fun is_taut th =
|
paulson@15955
|
149 |
case (prop_of th) of
|
paulson@15955
|
150 |
(Const ("Trueprop", _) $ Const ("True", _)) => true
|
paulson@15955
|
151 |
| _ => false;
|
paulson@15955
|
152 |
|
paulson@15955
|
153 |
(* remove tautologous clauses *)
|
paulson@15955
|
154 |
val rm_redundant_cls = List.filter (not o is_taut);
|
paulson@18141
|
155 |
|
paulson@15997
|
156 |
|
paulson@16009
|
157 |
(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
|
paulson@16009
|
158 |
|
paulson@18141
|
159 |
(*Traverse a theorem, declaring Skolem function definitions. String s is the suggested
|
paulson@18141
|
160 |
prefix for the Skolem constant. Result is a new theory*)
|
paulson@18141
|
161 |
fun declare_skofuns s th thy =
|
paulson@17404
|
162 |
let fun dec_sko (Const ("Ex",_) $ (xtp as Abs(_,T,p))) (n, (thy, axs)) =
|
paulson@16009
|
163 |
(*Existential: declare a Skolem function, then insert into body and continue*)
|
paulson@16009
|
164 |
let val cname = s ^ "_" ^ Int.toString n
|
paulson@16012
|
165 |
val args = term_frees xtp (*get the formal parameter list*)
|
paulson@16009
|
166 |
val Ts = map type_of args
|
paulson@16009
|
167 |
val cT = Ts ---> T
|
paulson@18141
|
168 |
val c = Const (Sign.full_name thy cname, cT)
|
paulson@16009
|
169 |
val rhs = list_abs_free (map dest_Free args, HOLogic.choice_const T $ xtp)
|
paulson@16012
|
170 |
(*Forms a lambda-abstraction over the formal parameters*)
|
paulson@16009
|
171 |
val def = equals cT $ c $ rhs
|
paulson@16009
|
172 |
val thy' = Theory.add_consts_i [(cname, cT, NoSyn)] thy
|
paulson@16012
|
173 |
(*Theory is augmented with the constant, then its def*)
|
paulson@17404
|
174 |
val cdef = cname ^ "_def"
|
paulson@17404
|
175 |
val thy'' = Theory.add_defs_i false [(cdef, def)] thy'
|
paulson@17404
|
176 |
in dec_sko (subst_bound (list_comb(c,args), p))
|
paulson@17404
|
177 |
(n+1, (thy'', get_axiom thy'' cdef :: axs))
|
paulson@17404
|
178 |
end
|
paulson@17404
|
179 |
| dec_sko (Const ("All",_) $ (xtp as Abs(a,T,p))) (n, thx) =
|
paulson@16012
|
180 |
(*Universal quant: insert a free variable into body and continue*)
|
paulson@16009
|
181 |
let val fname = variant (add_term_names (p,[])) a
|
paulson@17404
|
182 |
in dec_sko (subst_bound (Free(fname,T), p)) (n, thx) end
|
paulson@18141
|
183 |
| dec_sko (Const ("op &", _) $ p $ q) nthy = dec_sko q (dec_sko p nthy)
|
paulson@18141
|
184 |
| dec_sko (Const ("op |", _) $ p $ q) nthy = dec_sko q (dec_sko p nthy)
|
paulson@18141
|
185 |
| dec_sko (Const ("HOL.tag", _) $ p) nthy = dec_sko p nthy
|
paulson@18141
|
186 |
| dec_sko (Const ("Trueprop", _) $ p) nthy = dec_sko p nthy
|
paulson@17404
|
187 |
| dec_sko t nthx = nthx (*Do nothing otherwise*)
|
paulson@18141
|
188 |
in #2 (dec_sko (#prop (rep_thm th)) (1, (thy,[]))) end;
|
paulson@18141
|
189 |
|
paulson@18141
|
190 |
(*Traverse a theorem, accumulating Skolem function definitions.*)
|
paulson@18141
|
191 |
fun assume_skofuns th =
|
paulson@18141
|
192 |
let fun dec_sko (Const ("Ex",_) $ (xtp as Abs(_,T,p))) defs =
|
paulson@18141
|
193 |
(*Existential: declare a Skolem function, then insert into body and continue*)
|
paulson@18141
|
194 |
let val name = variant (add_term_names (p,[])) (gensym "sko_")
|
paulson@18141
|
195 |
val skos = map (#1 o Logic.dest_equals) defs (*existing sko fns*)
|
paulson@18141
|
196 |
val args = term_frees xtp \\ skos (*the formal parameters*)
|
paulson@18141
|
197 |
val Ts = map type_of args
|
paulson@18141
|
198 |
val cT = Ts ---> T
|
paulson@18141
|
199 |
val c = Free (name, cT)
|
paulson@18141
|
200 |
val rhs = list_abs_free (map dest_Free args,
|
paulson@18141
|
201 |
HOLogic.choice_const T $ xtp)
|
paulson@18141
|
202 |
(*Forms a lambda-abstraction over the formal parameters*)
|
paulson@18141
|
203 |
val def = equals cT $ c $ rhs
|
paulson@18141
|
204 |
in dec_sko (subst_bound (list_comb(c,args), p))
|
paulson@18141
|
205 |
(def :: defs)
|
paulson@18141
|
206 |
end
|
paulson@18141
|
207 |
| dec_sko (Const ("All",_) $ (xtp as Abs(a,T,p))) defs =
|
paulson@18141
|
208 |
(*Universal quant: insert a free variable into body and continue*)
|
paulson@18141
|
209 |
let val fname = variant (add_term_names (p,[])) a
|
paulson@18141
|
210 |
in dec_sko (subst_bound (Free(fname,T), p)) defs end
|
paulson@18141
|
211 |
| dec_sko (Const ("op &", _) $ p $ q) defs = dec_sko q (dec_sko p defs)
|
paulson@18141
|
212 |
| dec_sko (Const ("op |", _) $ p $ q) defs = dec_sko q (dec_sko p defs)
|
paulson@18141
|
213 |
| dec_sko (Const ("HOL.tag", _) $ p) defs = dec_sko p defs
|
paulson@18141
|
214 |
| dec_sko (Const ("Trueprop", _) $ p) defs = dec_sko p defs
|
paulson@18141
|
215 |
| dec_sko t defs = defs (*Do nothing otherwise*)
|
paulson@18141
|
216 |
in dec_sko (#prop (rep_thm th)) [] end;
|
paulson@16009
|
217 |
|
paulson@16009
|
218 |
(*cterms are used throughout for efficiency*)
|
paulson@18141
|
219 |
val cTrueprop = Thm.cterm_of HOL.thy HOLogic.Trueprop;
|
paulson@16009
|
220 |
|
paulson@16009
|
221 |
(*cterm version of mk_cTrueprop*)
|
paulson@16009
|
222 |
fun c_mkTrueprop A = Thm.capply cTrueprop A;
|
paulson@16009
|
223 |
|
paulson@16009
|
224 |
(*Given an abstraction over n variables, replace the bound variables by free
|
paulson@16009
|
225 |
ones. Return the body, along with the list of free variables.*)
|
paulson@16009
|
226 |
fun c_variant_abs_multi (ct0, vars) =
|
paulson@16009
|
227 |
let val (cv,ct) = Thm.dest_abs NONE ct0
|
paulson@16009
|
228 |
in c_variant_abs_multi (ct, cv::vars) end
|
paulson@16009
|
229 |
handle CTERM _ => (ct0, rev vars);
|
paulson@16009
|
230 |
|
paulson@16009
|
231 |
(*Given the definition of a Skolem function, return a theorem to replace
|
paulson@18141
|
232 |
an existential formula by a use of that function.
|
paulson@18141
|
233 |
Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B" [.] *)
|
paulson@16588
|
234 |
fun skolem_of_def def =
|
paulson@16009
|
235 |
let val (c,rhs) = Drule.dest_equals (cprop_of (Drule.freeze_all def))
|
paulson@16009
|
236 |
val (ch, frees) = c_variant_abs_multi (rhs, [])
|
paulson@18141
|
237 |
val (chilbert,cabs) = Thm.dest_comb ch
|
paulson@18141
|
238 |
val {sign,t, ...} = rep_cterm chilbert
|
paulson@18141
|
239 |
val T = case t of Const ("Hilbert_Choice.Eps", Type("fun",[_,T])) => T
|
paulson@18141
|
240 |
| _ => raise THM ("skolem_of_def: expected Eps", 0, [def])
|
paulson@16009
|
241 |
val cex = Thm.cterm_of sign (HOLogic.exists_const T)
|
paulson@16009
|
242 |
val ex_tm = c_mkTrueprop (Thm.capply cex cabs)
|
paulson@16009
|
243 |
and conc = c_mkTrueprop (Drule.beta_conv cabs (Drule.list_comb(c,frees)));
|
paulson@18141
|
244 |
fun tacf [prem] = rewrite_goals_tac [def] THEN rtac (prem RS someI_ex) 1
|
paulson@18141
|
245 |
in Goal.prove_raw [ex_tm] conc tacf
|
paulson@18141
|
246 |
|> forall_intr_list frees
|
paulson@18141
|
247 |
|> forall_elim_vars 0 (*Introduce Vars, but don't discharge defs.*)
|
paulson@18141
|
248 |
|> Thm.varifyT
|
paulson@18141
|
249 |
end;
|
paulson@16009
|
250 |
|
mengj@18198
|
251 |
(*Converts an Isabelle theorem (intro, elim or simp format) into nnf.*)
|
mengj@18198
|
252 |
(*It now works for HOL too. *)
|
paulson@18141
|
253 |
fun to_nnf th =
|
paulson@18141
|
254 |
th |> transfer_to_Reconstruction
|
paulson@16588
|
255 |
|> transform_elim |> Drule.freeze_all
|
paulson@16588
|
256 |
|> ObjectLogic.atomize_thm |> make_nnf;
|
paulson@16009
|
257 |
|
paulson@16009
|
258 |
(*The cache prevents repeated clausification of a theorem,
|
wenzelm@16800
|
259 |
and also repeated declaration of Skolem functions*) (* FIXME better use Termtab!? *)
|
paulson@15955
|
260 |
val clause_cache = ref (Symtab.empty : (thm * thm list) Symtab.table)
|
paulson@15955
|
261 |
|
paulson@18141
|
262 |
|
paulson@18141
|
263 |
(*Generate Skolem functions for a theorem supplied in nnf*)
|
paulson@18141
|
264 |
fun skolem_of_nnf th =
|
paulson@18141
|
265 |
map (skolem_of_def o assume o (cterm_of (theory_of_thm th))) (assume_skofuns th);
|
paulson@18141
|
266 |
|
mengj@18198
|
267 |
(*Skolemize a named theorem, returning a modified theory.*)
|
mengj@18198
|
268 |
(*also works for HOL*)
|
paulson@18141
|
269 |
fun skolem_thm th =
|
paulson@18141
|
270 |
Option.map (fn nnfth => Meson.make_cnf (skolem_of_nnf nnfth) nnfth)
|
paulson@18141
|
271 |
(SOME (to_nnf th) handle THM _ => NONE);
|
paulson@18141
|
272 |
|
mengj@18198
|
273 |
|
paulson@16009
|
274 |
(*Declare Skolem functions for a theorem, supplied in nnf and with its name*)
|
mengj@18198
|
275 |
(*in case skolemization fails, the input theory is not changed*)
|
paulson@16009
|
276 |
fun skolem thy (name,th) =
|
paulson@16588
|
277 |
let val cname = (case name of "" => gensym "sko" | s => Sign.base_name s)
|
paulson@18141
|
278 |
in Option.map
|
paulson@18141
|
279 |
(fn nnfth =>
|
paulson@18141
|
280 |
let val (thy',defs) = declare_skofuns cname nnfth thy
|
paulson@18141
|
281 |
val skoths = map skolem_of_def defs
|
paulson@18141
|
282 |
in (thy', Meson.make_cnf skoths nnfth) end)
|
mengj@18198
|
283 |
(SOME (to_nnf th) handle THM _ => NONE)
|
paulson@18141
|
284 |
end;
|
paulson@16009
|
285 |
|
paulson@16009
|
286 |
(*Populate the clause cache using the supplied theorems*)
|
paulson@18404
|
287 |
fun skolem_cache ((name,th), thy) =
|
paulson@18144
|
288 |
case Symtab.lookup (!clause_cache) name of
|
paulson@18144
|
289 |
NONE =>
|
paulson@18144
|
290 |
(case skolem thy (name, Thm.transfer thy th) of
|
paulson@18144
|
291 |
NONE => thy
|
paulson@18144
|
292 |
| SOME (thy',cls) =>
|
paulson@18144
|
293 |
(change clause_cache (Symtab.update (name, (th, cls))); thy'))
|
paulson@18144
|
294 |
| SOME (th',cls) =>
|
paulson@18144
|
295 |
if eq_thm(th,th') then thy
|
paulson@18144
|
296 |
else (warning ("skolem_cache: Ignoring variant of theorem " ^ name);
|
paulson@18144
|
297 |
warning (string_of_thm th);
|
paulson@18144
|
298 |
warning (string_of_thm th');
|
paulson@18144
|
299 |
thy);
|
paulson@18141
|
300 |
|
paulson@16009
|
301 |
|
paulson@16009
|
302 |
(*Exported function to convert Isabelle theorems into axiom clauses*)
|
paulson@18141
|
303 |
fun cnf_axiom_g cnf (name,th) =
|
paulson@18144
|
304 |
case name of
|
paulson@18144
|
305 |
"" => cnf th (*no name, so can't cache*)
|
paulson@18144
|
306 |
| s => case Symtab.lookup (!clause_cache) s of
|
paulson@18144
|
307 |
NONE =>
|
paulson@18144
|
308 |
let val cls = cnf th
|
paulson@18144
|
309 |
in change clause_cache (Symtab.update (s, (th, cls))); cls end
|
paulson@18144
|
310 |
| SOME(th',cls) =>
|
paulson@18144
|
311 |
if eq_thm(th,th') then cls
|
paulson@18144
|
312 |
else (warning ("cnf_axiom: duplicate or variant of theorem " ^ name);
|
paulson@18144
|
313 |
warning (string_of_thm th);
|
paulson@18144
|
314 |
warning (string_of_thm th');
|
paulson@18144
|
315 |
cls);
|
paulson@15347
|
316 |
|
paulson@18141
|
317 |
fun pairname th = (Thm.name_of_thm th, th);
|
paulson@18141
|
318 |
|
paulson@18141
|
319 |
|
mengj@18198
|
320 |
(*no first-order check, so works for HOL too.*)
|
paulson@18141
|
321 |
fun cnf_axiom_aux th = Option.getOpt (skolem_thm th, []);
|
mengj@18000
|
322 |
|
mengj@18198
|
323 |
|
paulson@18141
|
324 |
|
mengj@18198
|
325 |
val cnf_axiom = cnf_axiom_g cnf_axiom_aux;
|
mengj@18000
|
326 |
|
mengj@18000
|
327 |
|
paulson@15956
|
328 |
fun meta_cnf_axiom th =
|
paulson@15956
|
329 |
map Meson.make_meta_clause (cnf_axiom (pairname th));
|
paulson@15499
|
330 |
|
paulson@15347
|
331 |
|
paulson@15347
|
332 |
|
paulson@15872
|
333 |
(**** Extract and Clausify theorems from a theory's claset and simpset ****)
|
paulson@15347
|
334 |
|
paulson@17404
|
335 |
(*Preserve the name of "th" after the transformation "f"*)
|
paulson@17404
|
336 |
fun preserve_name f th = Thm.name_thm (Thm.name_of_thm th, f th);
|
paulson@17404
|
337 |
|
paulson@17404
|
338 |
(*Tags identify the major premise or conclusion, as hints to resolution provers.
|
paulson@17404
|
339 |
However, they don't appear to help in recent tests, and they complicate the code.*)
|
paulson@17404
|
340 |
val tagI = thm "tagI";
|
paulson@17404
|
341 |
val tagD = thm "tagD";
|
paulson@17404
|
342 |
|
paulson@17404
|
343 |
val tag_intro = preserve_name (fn th => th RS tagI);
|
paulson@17404
|
344 |
val tag_elim = preserve_name (fn th => tagD RS th);
|
paulson@17404
|
345 |
|
paulson@17484
|
346 |
fun rules_of_claset cs =
|
paulson@17484
|
347 |
let val {safeIs,safeEs,hazIs,hazEs,...} = rep_cs cs
|
paulson@17484
|
348 |
val intros = safeIs @ hazIs
|
paulson@17484
|
349 |
val elims = safeEs @ hazEs
|
paulson@17404
|
350 |
in
|
paulson@17484
|
351 |
debug ("rules_of_claset intros: " ^ Int.toString(length intros) ^
|
paulson@17484
|
352 |
" elims: " ^ Int.toString(length elims));
|
paulson@17404
|
353 |
if tagging_enabled
|
paulson@17404
|
354 |
then map pairname (map tag_intro intros @ map tag_elim elims)
|
paulson@17484
|
355 |
else map pairname (intros @ elims)
|
paulson@17404
|
356 |
end;
|
paulson@15347
|
357 |
|
paulson@17484
|
358 |
fun rules_of_simpset ss =
|
paulson@17484
|
359 |
let val ({rules,...}, _) = rep_ss ss
|
paulson@17484
|
360 |
val simps = Net.entries rules
|
paulson@17484
|
361 |
in
|
paulson@17484
|
362 |
debug ("rules_of_simpset: " ^ Int.toString(length simps));
|
paulson@17484
|
363 |
map (fn r => (#name r, #thm r)) simps
|
paulson@17484
|
364 |
end;
|
paulson@17484
|
365 |
|
paulson@17484
|
366 |
fun claset_rules_of_thy thy = rules_of_claset (claset_of thy);
|
paulson@17484
|
367 |
fun simpset_rules_of_thy thy = rules_of_simpset (simpset_of thy);
|
paulson@17484
|
368 |
|
paulson@17484
|
369 |
fun claset_rules_of_ctxt ctxt = rules_of_claset (local_claset_of ctxt);
|
paulson@17484
|
370 |
fun simpset_rules_of_ctxt ctxt = rules_of_simpset (local_simpset_of ctxt);
|
paulson@15347
|
371 |
|
paulson@15347
|
372 |
|
paulson@15872
|
373 |
(**** Translate a set of classical/simplifier rules into CNF (still as type "thm") ****)
|
paulson@15347
|
374 |
|
paulson@15347
|
375 |
(* classical rules *)
|
mengj@18000
|
376 |
fun cnf_rules_g cnf_axiom [] err_list = ([],err_list)
|
mengj@18000
|
377 |
| cnf_rules_g cnf_axiom ((name,th) :: ths) err_list =
|
mengj@18000
|
378 |
let val (ts,es) = cnf_rules_g cnf_axiom ths err_list
|
paulson@17404
|
379 |
in (cnf_axiom (name,th) :: ts,es) handle _ => (ts, (th::es)) end;
|
paulson@15347
|
380 |
|
paulson@15347
|
381 |
|
mengj@18198
|
382 |
(*works for both FOL and HOL*)
|
mengj@18000
|
383 |
val cnf_rules = cnf_rules_g cnf_axiom;
|
mengj@18000
|
384 |
|
mengj@18274
|
385 |
fun cnf_rules1 [] err_list = ([],err_list)
|
mengj@18274
|
386 |
| cnf_rules1 ((name,th) :: ths) err_list =
|
mengj@18274
|
387 |
let val (ts,es) = cnf_rules1 ths err_list
|
mengj@18274
|
388 |
in
|
mengj@18274
|
389 |
((name,cnf_axiom (name,th)) :: ts,es) handle _ => (ts,(name::es)) end;
|
mengj@18274
|
390 |
|
mengj@18274
|
391 |
fun cnf_rules2 [] err_list = ([],err_list)
|
mengj@18274
|
392 |
| cnf_rules2 ((name,th) :: ths) err_list =
|
mengj@18274
|
393 |
let val (ts,es) = cnf_rules2 ths err_list
|
mengj@18274
|
394 |
in
|
mengj@18274
|
395 |
((name,map prop_of (cnf_axiom (name,th))) :: ts,es) handle _ => (ts,(name::es)) end;
|
mengj@18000
|
396 |
|
mengj@18198
|
397 |
(**** Convert all theorems of a claset/simpset into clauses (ResClause.clause, or ResHolClause.clause) ****)
|
paulson@15347
|
398 |
|
paulson@18141
|
399 |
fun make_axiom_clauses _ _ [] = []
|
paulson@18141
|
400 |
| make_axiom_clauses name i (cls::clss) =
|
paulson@18141
|
401 |
(ResClause.make_axiom_clause (prop_of cls) (name,i), cls) ::
|
paulson@18141
|
402 |
(make_axiom_clauses name (i+1) clss)
|
mengj@18000
|
403 |
|
paulson@17829
|
404 |
(* outputs a list of (clause,theorem) pairs *)
|
paulson@18141
|
405 |
fun clausify_axiom_pairs (name,th) =
|
paulson@18141
|
406 |
filter (fn (c,th) => not (ResClause.isTaut c))
|
paulson@18141
|
407 |
(make_axiom_clauses name 0 (cnf_axiom (name,th)));
|
mengj@18000
|
408 |
|
paulson@18141
|
409 |
fun make_axiom_clausesH _ _ [] = []
|
paulson@18141
|
410 |
| make_axiom_clausesH name i (cls::clss) =
|
paulson@18141
|
411 |
(ResHolClause.make_axiom_clause (prop_of cls) (name,i), cls) ::
|
paulson@18141
|
412 |
(make_axiom_clausesH name (i+1) clss)
|
mengj@18000
|
413 |
|
paulson@18141
|
414 |
fun clausify_axiom_pairsH (name,th) =
|
paulson@18141
|
415 |
filter (fn (c,th) => not (ResHolClause.isTaut c))
|
mengj@18198
|
416 |
(make_axiom_clausesH name 0 (cnf_axiom (name,th)));
|
mengj@18000
|
417 |
|
mengj@18000
|
418 |
|
paulson@17829
|
419 |
fun clausify_rules_pairs_aux result [] = result
|
paulson@17829
|
420 |
| clausify_rules_pairs_aux result ((name,th)::ths) =
|
paulson@17829
|
421 |
clausify_rules_pairs_aux (clausify_axiom_pairs (name,th) :: result) ths
|
paulson@17829
|
422 |
handle THM (msg,_,_) =>
|
paulson@17829
|
423 |
(debug ("Cannot clausify " ^ name ^ ": " ^ msg);
|
paulson@17829
|
424 |
clausify_rules_pairs_aux result ths)
|
paulson@17829
|
425 |
| ResClause.CLAUSE (msg,t) =>
|
paulson@17829
|
426 |
(debug ("Cannot clausify " ^ name ^ ": " ^ msg ^
|
paulson@17829
|
427 |
": " ^ TermLib.string_of_term t);
|
paulson@17829
|
428 |
clausify_rules_pairs_aux result ths)
|
paulson@17404
|
429 |
|
mengj@18000
|
430 |
|
mengj@18000
|
431 |
fun clausify_rules_pairs_auxH result [] = result
|
mengj@18000
|
432 |
| clausify_rules_pairs_auxH result ((name,th)::ths) =
|
mengj@18000
|
433 |
clausify_rules_pairs_auxH (clausify_axiom_pairsH (name,th) :: result) ths
|
mengj@18000
|
434 |
handle THM (msg,_,_) =>
|
mengj@18000
|
435 |
(debug ("Cannot clausify " ^ name ^ ": " ^ msg);
|
mengj@18000
|
436 |
clausify_rules_pairs_auxH result ths)
|
mengj@18000
|
437 |
| ResHolClause.LAM2COMB (t) =>
|
mengj@18000
|
438 |
(debug ("Cannot clausify " ^ TermLib.string_of_term t);
|
mengj@18000
|
439 |
clausify_rules_pairs_auxH result ths)
|
quigley@16039
|
440 |
|
paulson@15347
|
441 |
|
mengj@18000
|
442 |
|
mengj@18000
|
443 |
val clausify_rules_pairs = clausify_rules_pairs_aux [];
|
mengj@18000
|
444 |
|
mengj@18000
|
445 |
val clausify_rules_pairsH = clausify_rules_pairs_auxH [];
|
paulson@18141
|
446 |
|
paulson@16009
|
447 |
(*Setup function: takes a theory and installs ALL simprules and claset rules
|
paulson@16009
|
448 |
into the clause cache*)
|
paulson@16009
|
449 |
fun clause_cache_setup thy =
|
paulson@16009
|
450 |
let val simps = simpset_rules_of_thy thy
|
paulson@16009
|
451 |
and clas = claset_rules_of_thy thy
|
paulson@18141
|
452 |
in List.foldl skolem_cache (List.foldl skolem_cache thy clas) simps end;
|
paulson@18141
|
453 |
(*Could be duplicate theorem names, due to multiple attributes*)
|
paulson@16009
|
454 |
|
paulson@16563
|
455 |
val clause_setup = [clause_cache_setup];
|
paulson@16563
|
456 |
|
paulson@16563
|
457 |
|
paulson@16563
|
458 |
(*** meson proof methods ***)
|
paulson@16563
|
459 |
|
paulson@16563
|
460 |
fun cnf_rules_of_ths ths = List.concat (#1 (cnf_rules (map pairname ths) []));
|
paulson@16563
|
461 |
|
paulson@16563
|
462 |
fun meson_meth ths ctxt =
|
paulson@16563
|
463 |
Method.SIMPLE_METHOD' HEADGOAL
|
paulson@16563
|
464 |
(CHANGED_PROP o Meson.meson_claset_tac (cnf_rules_of_ths ths) (local_claset_of ctxt));
|
paulson@16563
|
465 |
|
paulson@16563
|
466 |
val meson_method_setup =
|
paulson@16563
|
467 |
[Method.add_methods
|
paulson@16563
|
468 |
[("meson", Method.thms_ctxt_args meson_meth,
|
paulson@16563
|
469 |
"The MESON resolution proof procedure")]];
|
paulson@15347
|
470 |
|
paulson@15347
|
471 |
end;
|