src/Pure/meta_simplifier.ML
author wenzelm
Thu Jan 04 21:18:05 2007 +0100 (2007-01-04)
changeset 22008 bfc462bfc574
parent 21962 279b129498b6
child 22221 8a8aa6114a89
permissions -rw-r--r--
added mk_simproc': tuned interface;
tuned runtime context: merge with dynamic one;
berghofe@10413
     1
(*  Title:      Pure/meta_simplifier.ML
berghofe@10413
     2
    ID:         $Id$
wenzelm@11672
     3
    Author:     Tobias Nipkow and Stefan Berghofer
berghofe@10413
     4
wenzelm@11672
     5
Meta-level Simplification.
berghofe@10413
     6
*)
berghofe@10413
     7
skalberg@15006
     8
infix 4
wenzelm@15023
     9
  addsimps delsimps addeqcongs deleqcongs addcongs delcongs addsimprocs delsimprocs
nipkow@15199
    10
  setmksimps setmkcong setmksym setmkeqTrue settermless setsubgoaler
wenzelm@17882
    11
  setloop' setloop addloop addloop' delloop setSSolver addSSolver setSolver addSolver;
skalberg@15006
    12
wenzelm@11672
    13
signature BASIC_META_SIMPLIFIER =
wenzelm@11672
    14
sig
wenzelm@15023
    15
  val debug_simp: bool ref
wenzelm@11672
    16
  val trace_simp: bool ref
nipkow@13828
    17
  val simp_depth_limit: int ref
nipkow@16042
    18
  val trace_simp_depth_limit: int ref
wenzelm@15023
    19
  type rrule
wenzelm@16807
    20
  val eq_rrule: rrule * rrule -> bool
wenzelm@15023
    21
  type cong
wenzelm@15023
    22
  type simpset
wenzelm@15023
    23
  type proc
wenzelm@17614
    24
  type solver
wenzelm@17614
    25
  val mk_solver': string -> (simpset -> int -> tactic) -> solver
wenzelm@17614
    26
  val mk_solver: string -> (thm list -> int -> tactic) -> solver
skalberg@15006
    27
  val rep_ss: simpset ->
wenzelm@15023
    28
   {rules: rrule Net.net,
wenzelm@15023
    29
    prems: thm list,
wenzelm@17882
    30
    bounds: int * ((string * typ) * string) list,
wenzelm@20289
    31
    context: Proof.context option} *
wenzelm@15023
    32
   {congs: (string * cong) list * string list,
wenzelm@15023
    33
    procs: proc Net.net,
wenzelm@15023
    34
    mk_rews:
wenzelm@15023
    35
     {mk: thm -> thm list,
wenzelm@15023
    36
      mk_cong: thm -> thm,
wenzelm@15023
    37
      mk_sym: thm -> thm option,
wenzelm@18208
    38
      mk_eq_True: thm -> thm option,
wenzelm@18208
    39
      reorient: theory -> term list -> term -> term -> bool},
wenzelm@15023
    40
    termless: term * term -> bool,
skalberg@15006
    41
    subgoal_tac: simpset -> int -> tactic,
wenzelm@17882
    42
    loop_tacs: (string * (simpset -> int -> tactic)) list,
wenzelm@15023
    43
    solvers: solver list * solver list}
skalberg@15006
    44
  val print_ss: simpset -> unit
wenzelm@15023
    45
  val empty_ss: simpset
wenzelm@15023
    46
  val merge_ss: simpset * simpset -> simpset
wenzelm@15023
    47
  type simproc
wenzelm@22008
    48
  val mk_simproc': string -> cterm list -> (simpset -> cterm -> thm option) -> simproc
wenzelm@22008
    49
  val mk_simproc: string -> cterm list -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@15023
    50
  val add_prems: thm list -> simpset -> simpset
wenzelm@15023
    51
  val prems_of_ss: simpset -> thm list
wenzelm@15023
    52
  val addsimps: simpset * thm list -> simpset
wenzelm@15023
    53
  val delsimps: simpset * thm list -> simpset
wenzelm@15023
    54
  val addeqcongs: simpset * thm list -> simpset
wenzelm@15023
    55
  val deleqcongs: simpset * thm list -> simpset
wenzelm@15023
    56
  val addcongs: simpset * thm list -> simpset
wenzelm@15023
    57
  val delcongs: simpset * thm list -> simpset
wenzelm@15023
    58
  val addsimprocs: simpset * simproc list -> simpset
wenzelm@15023
    59
  val delsimprocs: simpset * simproc list -> simpset
wenzelm@15023
    60
  val setmksimps: simpset * (thm -> thm list) -> simpset
wenzelm@15023
    61
  val setmkcong: simpset * (thm -> thm) -> simpset
wenzelm@15023
    62
  val setmksym: simpset * (thm -> thm option) -> simpset
wenzelm@15023
    63
  val setmkeqTrue: simpset * (thm -> thm option) -> simpset
wenzelm@15023
    64
  val settermless: simpset * (term * term -> bool) -> simpset
wenzelm@15023
    65
  val setsubgoaler: simpset * (simpset -> int -> tactic) -> simpset
wenzelm@17882
    66
  val setloop': simpset * (simpset -> int -> tactic) -> simpset
wenzelm@15023
    67
  val setloop: simpset * (int -> tactic) -> simpset
wenzelm@17882
    68
  val addloop': simpset * (string * (simpset -> int -> tactic)) -> simpset
wenzelm@15023
    69
  val addloop: simpset * (string * (int -> tactic)) -> simpset
wenzelm@15023
    70
  val delloop: simpset * string -> simpset
wenzelm@15023
    71
  val setSSolver: simpset * solver -> simpset
wenzelm@15023
    72
  val addSSolver: simpset * solver -> simpset
wenzelm@15023
    73
  val setSolver: simpset * solver -> simpset
wenzelm@15023
    74
  val addSolver: simpset * solver -> simpset
wenzelm@21708
    75
wenzelm@21708
    76
  val rewrite_rule: thm list -> thm -> thm
wenzelm@21708
    77
  val rewrite_goals_rule: thm list -> thm -> thm
wenzelm@21708
    78
  val rewrite_goals_tac: thm list -> tactic
wenzelm@21708
    79
  val rewrite_tac: thm list -> tactic
wenzelm@21708
    80
  val rewtac: thm -> tactic
wenzelm@21708
    81
  val prune_params_tac: tactic
wenzelm@21708
    82
  val fold_rule: thm list -> thm -> thm
wenzelm@21708
    83
  val fold_tac: thm list -> tactic
wenzelm@21708
    84
  val fold_goals_tac: thm list -> tactic
skalberg@15006
    85
end;
skalberg@15006
    86
berghofe@10413
    87
signature META_SIMPLIFIER =
berghofe@10413
    88
sig
wenzelm@11672
    89
  include BASIC_META_SIMPLIFIER
berghofe@10413
    90
  exception SIMPLIFIER of string * thm
wenzelm@17966
    91
  val solver: simpset -> solver -> int -> tactic
wenzelm@15023
    92
  val clear_ss: simpset -> simpset
wenzelm@15023
    93
  exception SIMPROC_FAIL of string * exn
wenzelm@16458
    94
  val simproc_i: theory -> string -> term list
wenzelm@16458
    95
    -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@16458
    96
  val simproc: theory -> string -> string list
wenzelm@16458
    97
    -> (theory -> simpset -> term -> thm option) -> simproc
wenzelm@17882
    98
  val inherit_context: simpset -> simpset -> simpset
wenzelm@20289
    99
  val the_context: simpset -> Proof.context
wenzelm@20289
   100
  val context: Proof.context -> simpset -> simpset
wenzelm@17897
   101
  val theory_context: theory  -> simpset -> simpset
wenzelm@17723
   102
  val debug_bounds: bool ref
wenzelm@18208
   103
  val set_reorient: (theory -> term list -> term -> term -> bool) -> simpset -> simpset
wenzelm@17966
   104
  val set_solvers: solver list -> simpset -> simpset
wenzelm@11672
   105
  val rewrite_cterm: bool * bool * bool ->
wenzelm@15023
   106
    (simpset -> thm -> thm option) -> simpset -> cterm -> thm
wenzelm@16458
   107
  val rewrite_term: theory -> thm list -> (term -> term option) list -> term -> term
wenzelm@15023
   108
  val rewrite_thm: bool * bool * bool ->
wenzelm@15023
   109
    (simpset -> thm -> thm option) -> simpset -> thm -> thm
wenzelm@15023
   110
  val rewrite_goal_rule: bool * bool * bool ->
wenzelm@15023
   111
    (simpset -> thm -> thm option) -> simpset -> int -> thm -> thm
wenzelm@21605
   112
  val norm_hhf: thm -> thm
wenzelm@21605
   113
  val norm_hhf_protect: thm -> thm
wenzelm@21708
   114
  val rewrite: bool -> thm list -> cterm -> thm
wenzelm@21708
   115
  val simplify: bool -> thm list -> thm -> thm
berghofe@10413
   116
end;
berghofe@10413
   117
wenzelm@15023
   118
structure MetaSimplifier: META_SIMPLIFIER =
berghofe@10413
   119
struct
berghofe@10413
   120
wenzelm@15023
   121
wenzelm@15023
   122
(** datatype simpset **)
wenzelm@15023
   123
wenzelm@15023
   124
(* rewrite rules *)
berghofe@10413
   125
wenzelm@20546
   126
type rrule =
wenzelm@20546
   127
 {thm: thm,         (*the rewrite rule*)
wenzelm@20546
   128
  name: string,     (*name of theorem from which rewrite rule was extracted*)
wenzelm@20546
   129
  lhs: term,        (*the left-hand side*)
wenzelm@20546
   130
  elhs: cterm,      (*the etac-contracted lhs*)
wenzelm@20546
   131
  extra: bool,      (*extra variables outside of elhs*)
wenzelm@20546
   132
  fo: bool,         (*use first-order matching*)
wenzelm@20546
   133
  perm: bool};      (*the rewrite rule is permutative*)
wenzelm@15023
   134
wenzelm@20546
   135
(*
wenzelm@12603
   136
Remarks:
berghofe@10413
   137
  - elhs is used for matching,
wenzelm@15023
   138
    lhs only for preservation of bound variable names;
berghofe@10413
   139
  - fo is set iff
berghofe@10413
   140
    either elhs is first-order (no Var is applied),
wenzelm@15023
   141
      in which case fo-matching is complete,
berghofe@10413
   142
    or elhs is not a pattern,
wenzelm@20546
   143
      in which case there is nothing better to do;
wenzelm@20546
   144
*)
berghofe@10413
   145
berghofe@10413
   146
fun eq_rrule ({thm = thm1, ...}: rrule, {thm = thm2, ...}: rrule) =
wenzelm@15023
   147
  Drule.eq_thm_prop (thm1, thm2);
wenzelm@15023
   148
wenzelm@15023
   149
wenzelm@15023
   150
(* congruences *)
wenzelm@15023
   151
wenzelm@15023
   152
type cong = {thm: thm, lhs: cterm};
berghofe@10413
   153
wenzelm@12603
   154
fun eq_cong ({thm = thm1, ...}: cong, {thm = thm2, ...}: cong) =
wenzelm@15023
   155
  Drule.eq_thm_prop (thm1, thm2);
berghofe@10413
   156
berghofe@10413
   157
wenzelm@17614
   158
(* simplification sets, procedures, and solvers *)
wenzelm@15023
   159
wenzelm@15023
   160
(*A simpset contains data required during conversion:
berghofe@10413
   161
    rules: discrimination net of rewrite rules;
wenzelm@15023
   162
    prems: current premises;
berghofe@15249
   163
    bounds: maximal index of bound variables already used
wenzelm@15023
   164
      (for generating new names when rewriting under lambda abstractions);
berghofe@10413
   165
    congs: association list of congruence rules and
berghofe@10413
   166
           a list of `weak' congruence constants.
berghofe@10413
   167
           A congruence is `weak' if it avoids normalization of some argument.
berghofe@10413
   168
    procs: discrimination net of simplification procedures
berghofe@10413
   169
      (functions that prove rewrite rules on the fly);
wenzelm@15023
   170
    mk_rews:
wenzelm@15023
   171
      mk: turn simplification thms into rewrite rules;
wenzelm@15023
   172
      mk_cong: prepare congruence rules;
wenzelm@15023
   173
      mk_sym: turn == around;
wenzelm@15023
   174
      mk_eq_True: turn P into P == True;
wenzelm@15023
   175
    termless: relation for ordered rewriting;*)
skalberg@15011
   176
wenzelm@15023
   177
type mk_rews =
wenzelm@15023
   178
 {mk: thm -> thm list,
wenzelm@15023
   179
  mk_cong: thm -> thm,
wenzelm@15023
   180
  mk_sym: thm -> thm option,
wenzelm@18208
   181
  mk_eq_True: thm -> thm option,
wenzelm@18208
   182
  reorient: theory -> term list -> term -> term -> bool};
wenzelm@15023
   183
wenzelm@15023
   184
datatype simpset =
wenzelm@15023
   185
  Simpset of
wenzelm@15023
   186
   {rules: rrule Net.net,
berghofe@10413
   187
    prems: thm list,
wenzelm@17882
   188
    bounds: int * ((string * typ) * string) list,
wenzelm@20289
   189
    context: Proof.context option} *
wenzelm@15023
   190
   {congs: (string * cong) list * string list,
wenzelm@15023
   191
    procs: proc Net.net,
wenzelm@15023
   192
    mk_rews: mk_rews,
nipkow@11504
   193
    termless: term * term -> bool,
skalberg@15011
   194
    subgoal_tac: simpset -> int -> tactic,
wenzelm@17882
   195
    loop_tacs: (string * (simpset -> int -> tactic)) list,
wenzelm@15023
   196
    solvers: solver list * solver list}
wenzelm@15023
   197
and proc =
wenzelm@15023
   198
  Proc of
wenzelm@15023
   199
   {name: string,
wenzelm@15023
   200
    lhs: cterm,
wenzelm@22008
   201
    proc: simpset -> cterm -> thm option,
wenzelm@17614
   202
    id: stamp}
wenzelm@17614
   203
and solver =
wenzelm@17614
   204
  Solver of
wenzelm@17614
   205
   {name: string,
wenzelm@17614
   206
    solver: simpset -> int -> tactic,
wenzelm@15023
   207
    id: stamp};
wenzelm@15023
   208
wenzelm@15023
   209
wenzelm@15023
   210
fun rep_ss (Simpset args) = args;
berghofe@10413
   211
wenzelm@17882
   212
fun make_ss1 (rules, prems, bounds, context) =
wenzelm@17882
   213
  {rules = rules, prems = prems, bounds = bounds, context = context};
wenzelm@15023
   214
wenzelm@17882
   215
fun map_ss1 f {rules, prems, bounds, context} =
wenzelm@17882
   216
  make_ss1 (f (rules, prems, bounds, context));
berghofe@10413
   217
wenzelm@15023
   218
fun make_ss2 (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =
wenzelm@15023
   219
  {congs = congs, procs = procs, mk_rews = mk_rews, termless = termless,
wenzelm@15023
   220
    subgoal_tac = subgoal_tac, loop_tacs = loop_tacs, solvers = solvers};
wenzelm@15023
   221
wenzelm@15023
   222
fun map_ss2 f {congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers} =
wenzelm@15023
   223
  make_ss2 (f (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
wenzelm@15023
   224
wenzelm@15023
   225
fun make_simpset (args1, args2) = Simpset (make_ss1 args1, make_ss2 args2);
berghofe@10413
   226
wenzelm@17882
   227
fun map_simpset f (Simpset ({rules, prems, bounds, context},
wenzelm@15023
   228
    {congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers})) =
wenzelm@17882
   229
  make_simpset (f ((rules, prems, bounds, context),
wenzelm@15023
   230
    (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers)));
berghofe@10413
   231
wenzelm@15023
   232
fun map_simpset1 f (Simpset (r1, r2)) = Simpset (map_ss1 f r1, r2);
wenzelm@15023
   233
fun map_simpset2 f (Simpset (r1, r2)) = Simpset (r1, map_ss2 f r2);
wenzelm@15023
   234
wenzelm@17614
   235
fun prems_of_ss (Simpset ({prems, ...}, _)) = prems;
wenzelm@17614
   236
wenzelm@17614
   237
wenzelm@17614
   238
fun eq_proc (Proc {id = id1, ...}, Proc {id = id2, ...}) = (id1 = id2);
wenzelm@17614
   239
wenzelm@17614
   240
fun mk_solver' name solver = Solver {name = name, solver = solver, id = stamp ()};
wenzelm@17614
   241
fun mk_solver name solver = mk_solver' name (solver o prems_of_ss);
wenzelm@17614
   242
wenzelm@17614
   243
fun solver_name (Solver {name, ...}) = name;
wenzelm@17966
   244
fun solver ss (Solver {solver = tac, ...}) = tac ss;
wenzelm@17614
   245
fun eq_solver (Solver {id = id1, ...}, Solver {id = id2, ...}) = (id1 = id2);
wenzelm@17614
   246
val merge_solvers = gen_merge_lists eq_solver;
wenzelm@17614
   247
wenzelm@15023
   248
wenzelm@16985
   249
(* diagnostics *)
wenzelm@16985
   250
wenzelm@16985
   251
exception SIMPLIFIER of string * thm;
wenzelm@16985
   252
wenzelm@16985
   253
val debug_simp = ref false;
wenzelm@16985
   254
val trace_simp = ref false;
wenzelm@16985
   255
val simp_depth = ref 0;
wenzelm@16985
   256
val simp_depth_limit = ref 100;
nipkow@18573
   257
val trace_simp_depth_limit = ref 1;
nipkow@18573
   258
val trace_simp_depth_limit_exceeded = ref false;
wenzelm@16985
   259
local
wenzelm@16985
   260
wenzelm@16985
   261
fun println a =
nipkow@18573
   262
  if ! simp_depth > ! trace_simp_depth_limit
nipkow@18573
   263
  then if !trace_simp_depth_limit_exceeded then ()
nipkow@18573
   264
       else (tracing "trace_simp_depth_limit exceeded!";
nipkow@18573
   265
             trace_simp_depth_limit_exceeded := true)
nipkow@18573
   266
  else (tracing (enclose "[" "]" (string_of_int (! simp_depth)) ^ a);
nipkow@18573
   267
        trace_simp_depth_limit_exceeded := false);
wenzelm@16985
   268
wenzelm@16985
   269
fun prnt warn a = if warn then warning a else println a;
wenzelm@16985
   270
wenzelm@16985
   271
fun show_bounds (Simpset ({bounds = (_, bs), ...}, _)) t =
wenzelm@16985
   272
  let
wenzelm@20146
   273
    val names = Term.declare_term_names t Name.context;
wenzelm@20146
   274
    val xs = rev (#1 (Name.variants (rev (map #2 bs)) names));
wenzelm@17614
   275
    fun subst (((b, T), _), x') = (Free (b, T), Syntax.mark_boundT (x', T));
wenzelm@16985
   276
  in Term.subst_atomic (ListPair.map subst (bs, xs)) t end;
wenzelm@16985
   277
wenzelm@17705
   278
in
wenzelm@17705
   279
wenzelm@17705
   280
fun print_term warn a ss thy t = prnt warn (a ^ "\n" ^
wenzelm@16985
   281
  Sign.string_of_term thy (if ! debug_simp then t else show_bounds ss t));
wenzelm@16985
   282
wenzelm@16985
   283
fun debug warn a = if ! debug_simp then prnt warn a else ();
wenzelm@16985
   284
fun trace warn a = if ! trace_simp then prnt warn a else ();
wenzelm@16985
   285
wenzelm@17705
   286
fun debug_term warn a ss thy t = if ! debug_simp then print_term warn a ss thy t else ();
wenzelm@17705
   287
fun trace_term warn a ss thy t = if ! trace_simp then print_term warn a ss thy t else ();
wenzelm@16985
   288
wenzelm@16985
   289
fun trace_cterm warn a ss ct =
wenzelm@17705
   290
  if ! trace_simp then print_term warn a ss (Thm.theory_of_cterm ct) (Thm.term_of ct) else ();
wenzelm@16985
   291
wenzelm@16985
   292
fun trace_thm a ss th =
wenzelm@17705
   293
  if ! trace_simp then print_term false a ss (Thm.theory_of_thm th) (Thm.full_prop_of th) else ();
wenzelm@16985
   294
wenzelm@16985
   295
fun trace_named_thm a ss (th, name) =
wenzelm@16985
   296
  if ! trace_simp then
wenzelm@17705
   297
    print_term false (if name = "" then a else a ^ " " ^ quote name ^ ":") ss
wenzelm@16985
   298
      (Thm.theory_of_thm th) (Thm.full_prop_of th)
wenzelm@16985
   299
  else ();
wenzelm@16985
   300
wenzelm@17705
   301
fun warn_thm a ss th = print_term true a ss (Thm.theory_of_thm th) (Thm.full_prop_of th);
wenzelm@16985
   302
wenzelm@20028
   303
fun cond_warn_thm a (ss as Simpset ({context, ...}, _)) th =
wenzelm@20546
   304
  if is_some context then () else warn_thm a ss th;
wenzelm@20028
   305
wenzelm@16985
   306
end;
wenzelm@16985
   307
wenzelm@16985
   308
wenzelm@15023
   309
(* print simpsets *)
berghofe@10413
   310
wenzelm@15023
   311
fun print_ss ss =
wenzelm@15023
   312
  let
wenzelm@15034
   313
    val pretty_thms = map Display.pretty_thm;
wenzelm@15023
   314
wenzelm@15034
   315
    fun pretty_cong (name, th) =
wenzelm@15034
   316
      Pretty.block [Pretty.str (name ^ ":"), Pretty.brk 1, Display.pretty_thm th];
wenzelm@15023
   317
    fun pretty_proc (name, lhss) =
wenzelm@15023
   318
      Pretty.big_list (name ^ ":") (map Display.pretty_cterm lhss);
wenzelm@15034
   319
wenzelm@15034
   320
    val Simpset ({rules, ...}, {congs, procs, loop_tacs, solvers, ...}) = ss;
wenzelm@16807
   321
    val smps = map #thm (Net.entries rules);
wenzelm@15034
   322
    val cngs = map (fn (name, {thm, ...}) => (name, thm)) (#1 congs);
wenzelm@16807
   323
    val prcs = Net.entries procs |>
wenzelm@16807
   324
      map (fn Proc {name, lhs, id, ...} => ((name, lhs), id))
haftmann@17496
   325
      |> partition_eq (eq_snd (op =))
wenzelm@17756
   326
      |> map (fn ps => (fst (fst (hd ps)), map (snd o fst) ps))
wenzelm@17756
   327
      |> Library.sort_wrt fst;
wenzelm@15023
   328
  in
wenzelm@15034
   329
    [Pretty.big_list "simplification rules:" (pretty_thms smps),
wenzelm@15034
   330
      Pretty.big_list "simplification procedures:" (map pretty_proc prcs),
wenzelm@15034
   331
      Pretty.big_list "congruences:" (map pretty_cong cngs),
haftmann@21286
   332
      Pretty.strs ("loopers:" :: map (quote o fst) loop_tacs),
wenzelm@15088
   333
      Pretty.strs ("unsafe solvers:" :: map (quote o solver_name) (#1 solvers)),
wenzelm@15088
   334
      Pretty.strs ("safe solvers:" :: map (quote o solver_name) (#2 solvers))]
wenzelm@15023
   335
    |> Pretty.chunks |> Pretty.writeln
nipkow@13828
   336
  end;
berghofe@10413
   337
wenzelm@15023
   338
berghofe@10413
   339
berghofe@10413
   340
(** simpset operations **)
berghofe@10413
   341
wenzelm@17882
   342
(* context *)
berghofe@10413
   343
wenzelm@17614
   344
fun eq_bound (x: string, (y, _)) = x = y;
wenzelm@17614
   345
wenzelm@17882
   346
fun add_bound bound = map_simpset1 (fn (rules, prems, (count, bounds), context) =>
wenzelm@17882
   347
  (rules, prems, (count + 1, bound :: bounds), context));
wenzelm@17882
   348
wenzelm@17882
   349
fun add_prems ths = map_simpset1 (fn (rules, prems, bounds, context) =>
wenzelm@17882
   350
  (rules, ths @ prems, bounds, context));
wenzelm@17882
   351
wenzelm@17882
   352
fun inherit_context (Simpset ({bounds, context, ...}, _)) =
wenzelm@17882
   353
  map_simpset1 (fn (rules, prems, _, _) => (rules, prems, bounds, context));
wenzelm@16985
   354
wenzelm@17882
   355
fun the_context (Simpset ({context = SOME ctxt, ...}, _)) = ctxt
wenzelm@17882
   356
  | the_context _ = raise Fail "Simplifier: no proof context in simpset";
berghofe@10413
   357
wenzelm@17897
   358
fun context ctxt =
wenzelm@17882
   359
  map_simpset1 (fn (rules, prems, bounds, _) => (rules, prems, bounds, SOME ctxt));
wenzelm@17882
   360
wenzelm@21516
   361
val theory_context = context o ProofContext.init;
wenzelm@17897
   362
wenzelm@22008
   363
fun activate_context thy (ss as Simpset ({context = SOME ctxt, ...}, _)) =
wenzelm@22008
   364
      context (Context.transfer_proof (Theory.merge (thy, ProofContext.theory_of ctxt)) ctxt) ss
wenzelm@22008
   365
  | activate_context thy ss =
wenzelm@17882
   366
     (warning "Simplifier: no proof context in simpset -- fallback to theory context!";
wenzelm@17897
   367
      theory_context thy ss);
wenzelm@17897
   368
wenzelm@17897
   369
wenzelm@20028
   370
(* maintain simp rules *)
berghofe@10413
   371
wenzelm@20546
   372
(* FIXME: it seems that the conditions on extra variables are too liberal if
wenzelm@20546
   373
prems are nonempty: does solving the prems really guarantee instantiation of
wenzelm@20546
   374
all its Vars? Better: a dynamic check each time a rule is applied.
wenzelm@20546
   375
*)
wenzelm@20546
   376
fun rewrite_rule_extra_vars prems elhs erhs =
wenzelm@20546
   377
  let
wenzelm@20546
   378
    val elhss = elhs :: prems;
wenzelm@20546
   379
    val tvars = fold Term.add_tvars elhss [];
wenzelm@20546
   380
    val vars = fold Term.add_vars elhss [];
wenzelm@20546
   381
  in
wenzelm@20546
   382
    erhs |> Term.exists_type (Term.exists_subtype
wenzelm@20546
   383
      (fn TVar v => not (member (op =) tvars v) | _ => false)) orelse
wenzelm@20546
   384
    erhs |> Term.exists_subterm
wenzelm@20546
   385
      (fn Var v => not (member (op =) vars v) | _ => false)
wenzelm@20546
   386
  end;
wenzelm@20546
   387
wenzelm@20546
   388
fun rrule_extra_vars elhs thm =
wenzelm@20546
   389
  rewrite_rule_extra_vars [] (term_of elhs) (Thm.full_prop_of thm);
wenzelm@20546
   390
wenzelm@15023
   391
fun mk_rrule2 {thm, name, lhs, elhs, perm} =
wenzelm@15023
   392
  let
wenzelm@20546
   393
    val t = term_of elhs;
wenzelm@20546
   394
    val fo = Pattern.first_order t orelse not (Pattern.pattern t);
wenzelm@20546
   395
    val extra = rrule_extra_vars elhs thm;
wenzelm@20546
   396
  in {thm = thm, name = name, lhs = lhs, elhs = elhs, extra = extra, fo = fo, perm = perm} end;
berghofe@10413
   397
wenzelm@20028
   398
fun del_rrule (rrule as {thm, elhs, ...}) ss =
wenzelm@20028
   399
  ss |> map_simpset1 (fn (rules, prems, bounds, context) =>
wenzelm@20028
   400
    (Net.delete_term eq_rrule (term_of elhs, rrule) rules, prems, bounds, context))
wenzelm@20028
   401
  handle Net.DELETE => (cond_warn_thm "Rewrite rule not in simpset:" ss thm; ss);
wenzelm@20028
   402
wenzelm@20546
   403
fun insert_rrule (rrule as {thm, name, elhs, ...}) ss =
wenzelm@16985
   404
 (trace_named_thm "Adding rewrite rule" ss (thm, name);
wenzelm@17882
   405
  ss |> map_simpset1 (fn (rules, prems, bounds, context) =>
wenzelm@15023
   406
    let
wenzelm@15023
   407
      val rrule2 as {elhs, ...} = mk_rrule2 rrule;
wenzelm@16807
   408
      val rules' = Net.insert_term eq_rrule (term_of elhs, rrule2) rules;
wenzelm@17882
   409
    in (rules', prems, bounds, context) end)
wenzelm@20028
   410
  handle Net.INSERT => (cond_warn_thm "Ignoring duplicate rewrite rule:" ss thm; ss));
berghofe@10413
   411
berghofe@10413
   412
fun vperm (Var _, Var _) = true
berghofe@10413
   413
  | vperm (Abs (_, _, s), Abs (_, _, t)) = vperm (s, t)
berghofe@10413
   414
  | vperm (t1 $ t2, u1 $ u2) = vperm (t1, u1) andalso vperm (t2, u2)
berghofe@10413
   415
  | vperm (t, u) = (t = u);
berghofe@10413
   416
berghofe@10413
   417
fun var_perm (t, u) =
wenzelm@20197
   418
  vperm (t, u) andalso gen_eq_set (op =) (Term.add_vars t [], Term.add_vars u []);
berghofe@10413
   419
wenzelm@15023
   420
(*simple test for looping rewrite rules and stupid orientations*)
wenzelm@18208
   421
fun default_reorient thy prems lhs rhs =
wenzelm@15023
   422
  rewrite_rule_extra_vars prems lhs rhs
wenzelm@15023
   423
    orelse
wenzelm@15023
   424
  is_Var (head_of lhs)
wenzelm@15023
   425
    orelse
nipkow@16305
   426
(* turns t = x around, which causes a headache if x is a local variable -
nipkow@16305
   427
   usually it is very useful :-(
nipkow@16305
   428
  is_Free rhs andalso not(is_Free lhs) andalso not(Logic.occs(rhs,lhs))
nipkow@16305
   429
  andalso not(exists_subterm is_Var lhs)
nipkow@16305
   430
    orelse
nipkow@16305
   431
*)
wenzelm@16842
   432
  exists (fn t => Logic.occs (lhs, t)) (rhs :: prems)
wenzelm@15023
   433
    orelse
wenzelm@17203
   434
  null prems andalso Pattern.matches thy (lhs, rhs)
berghofe@10413
   435
    (*the condition "null prems" is necessary because conditional rewrites
berghofe@10413
   436
      with extra variables in the conditions may terminate although
wenzelm@15023
   437
      the rhs is an instance of the lhs; example: ?m < ?n ==> f(?n) == f(?m)*)
wenzelm@15023
   438
    orelse
wenzelm@15023
   439
  is_Const lhs andalso not (is_Const rhs);
berghofe@10413
   440
berghofe@10413
   441
fun decomp_simp thm =
wenzelm@15023
   442
  let
wenzelm@16458
   443
    val {thy, prop, ...} = Thm.rep_thm thm;
wenzelm@15023
   444
    val prems = Logic.strip_imp_prems prop;
wenzelm@15023
   445
    val concl = Drule.strip_imp_concl (Thm.cprop_of thm);
wenzelm@15023
   446
    val (lhs, rhs) = Drule.dest_equals concl handle TERM _ =>
wenzelm@15023
   447
      raise SIMPLIFIER ("Rewrite rule not a meta-equality", thm);
wenzelm@20579
   448
    val elhs = Thm.dest_arg (Thm.cprop_of (Thm.eta_conversion lhs));
wenzelm@16665
   449
    val elhs = if term_of elhs aconv term_of lhs then lhs else elhs;  (*share identical copies*)
wenzelm@18929
   450
    val erhs = Envir.eta_contract (term_of rhs);
wenzelm@15023
   451
    val perm =
wenzelm@15023
   452
      var_perm (term_of elhs, erhs) andalso
wenzelm@15023
   453
      not (term_of elhs aconv erhs) andalso
wenzelm@15023
   454
      not (is_Var (term_of elhs));
wenzelm@16458
   455
  in (thy, prems, term_of lhs, elhs, term_of rhs, perm) end;
berghofe@10413
   456
wenzelm@12783
   457
fun decomp_simp' thm =
wenzelm@12979
   458
  let val (_, _, lhs, _, rhs, _) = decomp_simp thm in
wenzelm@12783
   459
    if Thm.nprems_of thm > 0 then raise SIMPLIFIER ("Bad conditional rewrite rule", thm)
wenzelm@12979
   460
    else (lhs, rhs)
wenzelm@12783
   461
  end;
wenzelm@12783
   462
wenzelm@15023
   463
fun mk_eq_True (Simpset (_, {mk_rews = {mk_eq_True, ...}, ...})) (thm, name) =
wenzelm@15023
   464
  (case mk_eq_True thm of
skalberg@15531
   465
    NONE => []
skalberg@15531
   466
  | SOME eq_True =>
wenzelm@20546
   467
      let
wenzelm@20546
   468
        val (_, _, lhs, elhs, _, _) = decomp_simp eq_True;
wenzelm@20546
   469
        val extra = rrule_extra_vars elhs eq_True;
wenzelm@15023
   470
      in [{thm = eq_True, name = name, lhs = lhs, elhs = elhs, perm = false}] end);
berghofe@10413
   471
wenzelm@15023
   472
(*create the rewrite rule and possibly also the eq_True variant,
wenzelm@15023
   473
  in case there are extra vars on the rhs*)
wenzelm@15023
   474
fun rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm2) =
wenzelm@15023
   475
  let val rrule = {thm = thm, name = name, lhs = lhs, elhs = elhs, perm = false} in
wenzelm@20546
   476
    if rewrite_rule_extra_vars [] lhs rhs then
wenzelm@20546
   477
      mk_eq_True ss (thm2, name) @ [rrule]
wenzelm@20546
   478
    else [rrule]
berghofe@10413
   479
  end;
berghofe@10413
   480
wenzelm@15023
   481
fun mk_rrule ss (thm, name) =
wenzelm@15023
   482
  let val (_, prems, lhs, elhs, rhs, perm) = decomp_simp thm in
wenzelm@15023
   483
    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
wenzelm@15023
   484
    else
wenzelm@15023
   485
      (*weak test for loops*)
wenzelm@15023
   486
      if rewrite_rule_extra_vars prems lhs rhs orelse is_Var (term_of elhs)
wenzelm@15023
   487
      then mk_eq_True ss (thm, name)
wenzelm@15023
   488
      else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
berghofe@10413
   489
  end;
berghofe@10413
   490
wenzelm@15023
   491
fun orient_rrule ss (thm, name) =
wenzelm@18208
   492
  let
wenzelm@18208
   493
    val (thy, prems, lhs, elhs, rhs, perm) = decomp_simp thm;
wenzelm@18208
   494
    val Simpset (_, {mk_rews = {reorient, mk_sym, ...}, ...}) = ss;
wenzelm@18208
   495
  in
wenzelm@15023
   496
    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
wenzelm@16458
   497
    else if reorient thy prems lhs rhs then
wenzelm@16458
   498
      if reorient thy prems rhs lhs
wenzelm@15023
   499
      then mk_eq_True ss (thm, name)
wenzelm@15023
   500
      else
wenzelm@18208
   501
        (case mk_sym thm of
wenzelm@18208
   502
          NONE => []
wenzelm@18208
   503
        | SOME thm' =>
wenzelm@18208
   504
            let val (_, _, lhs', elhs', rhs', _) = decomp_simp thm'
wenzelm@18208
   505
            in rrule_eq_True (thm', name, lhs', elhs', rhs', ss, thm) end)
wenzelm@15023
   506
    else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
berghofe@10413
   507
  end;
berghofe@10413
   508
nipkow@15199
   509
fun extract_rews (Simpset (_, {mk_rews = {mk, ...}, ...}), thms) =
wenzelm@21646
   510
  maps (fn thm => map (rpair (PureThy.get_name_hint thm)) (mk thm)) thms;
berghofe@10413
   511
wenzelm@15023
   512
fun extract_safe_rrules (ss, thm) =
wenzelm@19482
   513
  maps (orient_rrule ss) (extract_rews (ss, [thm]));
berghofe@10413
   514
berghofe@10413
   515
wenzelm@20028
   516
(* add/del rules explicitly *)
berghofe@10413
   517
wenzelm@20028
   518
fun comb_simps comb mk_rrule (ss, thms) =
wenzelm@20028
   519
  let
wenzelm@20028
   520
    val rews = extract_rews (ss, thms);
wenzelm@20028
   521
  in fold (fold comb o mk_rrule) rews ss end;
berghofe@10413
   522
wenzelm@20028
   523
fun ss addsimps thms =
wenzelm@20028
   524
  comb_simps insert_rrule (mk_rrule ss) (ss, thms);
berghofe@10413
   525
wenzelm@15023
   526
fun ss delsimps thms =
wenzelm@20028
   527
  comb_simps del_rrule (map mk_rrule2 o mk_rrule ss) (ss, thms);
wenzelm@15023
   528
wenzelm@15023
   529
wenzelm@15023
   530
(* congs *)
berghofe@10413
   531
skalberg@15531
   532
fun cong_name (Const (a, _)) = SOME a
skalberg@15531
   533
  | cong_name (Free (a, _)) = SOME ("Free: " ^ a)
skalberg@15531
   534
  | cong_name _ = NONE;
ballarin@13835
   535
wenzelm@15023
   536
local
wenzelm@15023
   537
wenzelm@15023
   538
fun is_full_cong_prems [] [] = true
wenzelm@15023
   539
  | is_full_cong_prems [] _ = false
wenzelm@15023
   540
  | is_full_cong_prems (p :: prems) varpairs =
wenzelm@15023
   541
      (case Logic.strip_assums_concl p of
wenzelm@15023
   542
        Const ("==", _) $ lhs $ rhs =>
wenzelm@15023
   543
          let val (x, xs) = strip_comb lhs and (y, ys) = strip_comb rhs in
wenzelm@15023
   544
            is_Var x andalso forall is_Bound xs andalso
haftmann@20972
   545
            not (has_duplicates (op =) xs) andalso xs = ys andalso
wenzelm@20671
   546
            member (op =) varpairs (x, y) andalso
wenzelm@19303
   547
            is_full_cong_prems prems (remove (op =) (x, y) varpairs)
wenzelm@15023
   548
          end
wenzelm@15023
   549
      | _ => false);
wenzelm@15023
   550
wenzelm@15023
   551
fun is_full_cong thm =
berghofe@10413
   552
  let
wenzelm@15023
   553
    val prems = prems_of thm and concl = concl_of thm;
wenzelm@15023
   554
    val (lhs, rhs) = Logic.dest_equals concl;
wenzelm@15023
   555
    val (f, xs) = strip_comb lhs and (g, ys) = strip_comb rhs;
berghofe@10413
   556
  in
haftmann@20972
   557
    f = g andalso not (has_duplicates (op =) (xs @ ys)) andalso length xs = length ys andalso
wenzelm@15023
   558
    is_full_cong_prems prems (xs ~~ ys)
berghofe@10413
   559
  end;
berghofe@10413
   560
wenzelm@15023
   561
fun add_cong (ss, thm) = ss |>
wenzelm@15023
   562
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   563
    let
wenzelm@15023
   564
      val (lhs, _) = Drule.dest_equals (Drule.strip_imp_concl (Thm.cprop_of thm))
wenzelm@15023
   565
        handle TERM _ => raise SIMPLIFIER ("Congruence not a meta-equality", thm);
wenzelm@18929
   566
    (*val lhs = Envir.eta_contract lhs;*)
wenzelm@20057
   567
      val a = the (cong_name (head_of (term_of lhs))) handle Option.Option =>
wenzelm@15023
   568
        raise SIMPLIFIER ("Congruence must start with a constant or free variable", thm);
wenzelm@15023
   569
      val (alist, weak) = congs;
wenzelm@15023
   570
      val alist2 = overwrite_warn (alist, (a, {lhs = lhs, thm = thm}))
wenzelm@15023
   571
        ("Overwriting congruence rule for " ^ quote a);
wenzelm@15023
   572
      val weak2 = if is_full_cong thm then weak else a :: weak;
wenzelm@15023
   573
    in ((alist2, weak2), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);
berghofe@10413
   574
wenzelm@15023
   575
fun del_cong (ss, thm) = ss |>
wenzelm@15023
   576
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   577
    let
wenzelm@15023
   578
      val (lhs, _) = Logic.dest_equals (Thm.concl_of thm) handle TERM _ =>
wenzelm@15023
   579
        raise SIMPLIFIER ("Congruence not a meta-equality", thm);
wenzelm@18929
   580
    (*val lhs = Envir.eta_contract lhs;*)
wenzelm@20057
   581
      val a = the (cong_name (head_of lhs)) handle Option.Option =>
wenzelm@15023
   582
        raise SIMPLIFIER ("Congruence must start with a constant", thm);
wenzelm@15023
   583
      val (alist, _) = congs;
skalberg@15570
   584
      val alist2 = List.filter (fn (x, _) => x <> a) alist;
wenzelm@19482
   585
      val weak2 = alist2 |> map_filter (fn (a, {thm, ...}: cong) =>
skalberg@15531
   586
        if is_full_cong thm then NONE else SOME a);
wenzelm@15023
   587
    in ((alist2, weak2), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);
berghofe@10413
   588
wenzelm@15023
   589
fun mk_cong (Simpset (_, {mk_rews = {mk_cong = f, ...}, ...})) = f;
wenzelm@15023
   590
wenzelm@15023
   591
in
wenzelm@15023
   592
skalberg@15570
   593
val (op addeqcongs) = Library.foldl add_cong;
skalberg@15570
   594
val (op deleqcongs) = Library.foldl del_cong;
wenzelm@15023
   595
wenzelm@15023
   596
fun ss addcongs congs = ss addeqcongs map (mk_cong ss) congs;
wenzelm@15023
   597
fun ss delcongs congs = ss deleqcongs map (mk_cong ss) congs;
wenzelm@15023
   598
wenzelm@15023
   599
end;
berghofe@10413
   600
berghofe@10413
   601
wenzelm@15023
   602
(* simprocs *)
wenzelm@15023
   603
wenzelm@22008
   604
exception SIMPROC_FAIL of string * exn;
wenzelm@22008
   605
wenzelm@22008
   606
datatype simproc = Simproc of proc list;
wenzelm@22008
   607
wenzelm@22008
   608
fun mk_simproc' name lhss proc =
wenzelm@22008
   609
  let val id = stamp ()
wenzelm@22008
   610
  in Simproc (lhss |> map (fn lhs => Proc {name = name, lhs = lhs, proc = proc, id = id})) end;
wenzelm@22008
   611
wenzelm@22008
   612
fun mk_simproc name lhss proc =
wenzelm@22008
   613
  mk_simproc' name lhss (fn ss => fn ct =>
wenzelm@22008
   614
    proc (ProofContext.theory_of (the_context ss)) ss (Thm.term_of ct));
wenzelm@22008
   615
wenzelm@22008
   616
(* FIXME avoid global thy and Logic.varify *)
wenzelm@22008
   617
fun simproc_i thy name = mk_simproc name o map (Thm.cterm_of thy o Logic.varify);
wenzelm@22008
   618
fun simproc thy name = simproc_i thy name o map (Sign.read_term thy);
wenzelm@22008
   619
wenzelm@22008
   620
wenzelm@15023
   621
local
berghofe@10413
   622
wenzelm@16985
   623
fun add_proc (proc as Proc {name, lhs, ...}) ss =
wenzelm@16985
   624
 (trace_cterm false ("Adding simplification procedure " ^ quote name ^ " for") ss lhs;
wenzelm@15023
   625
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@16807
   626
    (congs, Net.insert_term eq_proc (term_of lhs, proc) procs,
wenzelm@15023
   627
      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
wenzelm@15023
   628
  handle Net.INSERT =>
wenzelm@15023
   629
    (warning ("Ignoring duplicate simplification procedure " ^ quote name); ss));
berghofe@10413
   630
wenzelm@16985
   631
fun del_proc (proc as Proc {name, lhs, ...}) ss =
wenzelm@15023
   632
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@16807
   633
    (congs, Net.delete_term eq_proc (term_of lhs, proc) procs,
wenzelm@15023
   634
      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
wenzelm@15023
   635
  handle Net.DELETE =>
wenzelm@15023
   636
    (warning ("Simplification procedure " ^ quote name ^ " not in simpset"); ss);
berghofe@10413
   637
wenzelm@15023
   638
in
berghofe@10413
   639
wenzelm@16985
   640
fun ss addsimprocs ps = fold (fn Simproc procs => fold add_proc procs) ps ss;
wenzelm@16985
   641
fun ss delsimprocs ps = fold (fn Simproc procs => fold del_proc procs) ps ss;
berghofe@10413
   642
wenzelm@15023
   643
end;
berghofe@10413
   644
berghofe@10413
   645
berghofe@10413
   646
(* mk_rews *)
berghofe@10413
   647
wenzelm@15023
   648
local
wenzelm@15023
   649
wenzelm@18208
   650
fun map_mk_rews f = map_simpset2 (fn (congs, procs, {mk, mk_cong, mk_sym, mk_eq_True, reorient},
wenzelm@15023
   651
      termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@18208
   652
  let
wenzelm@18208
   653
    val (mk', mk_cong', mk_sym', mk_eq_True', reorient') =
wenzelm@18208
   654
      f (mk, mk_cong, mk_sym, mk_eq_True, reorient);
wenzelm@18208
   655
    val mk_rews' = {mk = mk', mk_cong = mk_cong', mk_sym = mk_sym', mk_eq_True = mk_eq_True',
wenzelm@18208
   656
      reorient = reorient'};
wenzelm@18208
   657
  in (congs, procs, mk_rews', termless, subgoal_tac, loop_tacs, solvers) end);
wenzelm@15023
   658
wenzelm@15023
   659
in
berghofe@10413
   660
wenzelm@18208
   661
fun ss setmksimps mk = ss |> map_mk_rews (fn (_, mk_cong, mk_sym, mk_eq_True, reorient) =>
wenzelm@18208
   662
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
wenzelm@15023
   663
wenzelm@18208
   664
fun ss setmkcong mk_cong = ss |> map_mk_rews (fn (mk, _, mk_sym, mk_eq_True, reorient) =>
wenzelm@18208
   665
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
berghofe@10413
   666
wenzelm@18208
   667
fun ss setmksym mk_sym = ss |> map_mk_rews (fn (mk, mk_cong, _, mk_eq_True, reorient) =>
wenzelm@18208
   668
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
berghofe@10413
   669
wenzelm@18208
   670
fun ss setmkeqTrue mk_eq_True = ss |> map_mk_rews (fn (mk, mk_cong, mk_sym, _, reorient) =>
wenzelm@18208
   671
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
wenzelm@18208
   672
wenzelm@18208
   673
fun set_reorient reorient = map_mk_rews (fn (mk, mk_cong, mk_sym, mk_eq_True, _) =>
wenzelm@18208
   674
  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
wenzelm@15023
   675
wenzelm@15023
   676
end;
wenzelm@15023
   677
skalberg@14242
   678
berghofe@10413
   679
(* termless *)
berghofe@10413
   680
wenzelm@15023
   681
fun ss settermless termless = ss |>
wenzelm@15023
   682
  map_simpset2 (fn (congs, procs, mk_rews, _, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   683
   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
skalberg@15006
   684
skalberg@15006
   685
wenzelm@15023
   686
(* tactics *)
skalberg@15006
   687
wenzelm@15023
   688
fun ss setsubgoaler subgoal_tac = ss |>
wenzelm@15023
   689
  map_simpset2 (fn (congs, procs, mk_rews, termless, _, loop_tacs, solvers) =>
wenzelm@15023
   690
   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
skalberg@15006
   691
wenzelm@17882
   692
fun ss setloop' tac = ss |>
wenzelm@15023
   693
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, _, solvers) =>
wenzelm@15023
   694
   (congs, procs, mk_rews, termless, subgoal_tac, [("", tac)], solvers));
skalberg@15006
   695
wenzelm@17882
   696
fun ss setloop tac = ss setloop' (K tac);
wenzelm@17882
   697
wenzelm@17882
   698
fun ss addloop' (name, tac) = ss |>
wenzelm@15023
   699
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
wenzelm@15023
   700
    (congs, procs, mk_rews, termless, subgoal_tac,
haftmann@21286
   701
      (if AList.defined (op =) loop_tacs name
haftmann@21286
   702
        then warning ("Overwriting looper " ^ quote name)
haftmann@21286
   703
        else (); AList.update (op =) (name, tac) loop_tacs),
wenzelm@15023
   704
      solvers));
skalberg@15006
   705
wenzelm@17882
   706
fun ss addloop (name, tac) = ss addloop' (name, K tac);
wenzelm@17882
   707
wenzelm@15023
   708
fun ss delloop name = ss |>
wenzelm@15023
   709
  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
haftmann@21286
   710
    (congs, procs, mk_rews, termless, subgoal_tac,
haftmann@21286
   711
      (if AList.defined (op =) loop_tacs name
haftmann@21286
   712
        then ()
haftmann@21286
   713
        else warning ("No such looper in simpset: " ^ quote name);
haftmann@21286
   714
       AList.delete (op =) name loop_tacs), solvers));
skalberg@15006
   715
wenzelm@15023
   716
fun ss setSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   717
  subgoal_tac, loop_tacs, (unsafe_solvers, _)) =>
wenzelm@15023
   718
    (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, (unsafe_solvers, [solver])));
skalberg@15006
   719
wenzelm@15023
   720
fun ss addSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   721
  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
wenzelm@15023
   722
    subgoal_tac, loop_tacs, (unsafe_solvers, merge_solvers solvers [solver])));
skalberg@15006
   723
wenzelm@15023
   724
fun ss setSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   725
  subgoal_tac, loop_tacs, (_, solvers)) => (congs, procs, mk_rews, termless,
wenzelm@15023
   726
    subgoal_tac, loop_tacs, ([solver], solvers)));
skalberg@15006
   727
wenzelm@15023
   728
fun ss addSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   729
  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
wenzelm@15023
   730
    subgoal_tac, loop_tacs, (merge_solvers unsafe_solvers [solver], solvers)));
skalberg@15006
   731
wenzelm@15023
   732
fun set_solvers solvers = map_simpset2 (fn (congs, procs, mk_rews, termless,
wenzelm@15023
   733
  subgoal_tac, loop_tacs, _) => (congs, procs, mk_rews, termless,
wenzelm@15023
   734
  subgoal_tac, loop_tacs, (solvers, solvers)));
skalberg@15006
   735
skalberg@15006
   736
wenzelm@18208
   737
(* empty *)
wenzelm@18208
   738
wenzelm@18208
   739
fun init_ss mk_rews termless subgoal_tac solvers =
wenzelm@18208
   740
  make_simpset ((Net.empty, [], (0, []), NONE),
wenzelm@18208
   741
    (([], []), Net.empty, mk_rews, termless, subgoal_tac, [], solvers));
wenzelm@18208
   742
wenzelm@18208
   743
fun clear_ss (ss as Simpset (_, {mk_rews, termless, subgoal_tac, solvers, ...})) =
wenzelm@18208
   744
  init_ss mk_rews termless subgoal_tac solvers
wenzelm@18208
   745
  |> inherit_context ss;
wenzelm@18208
   746
wenzelm@18208
   747
val basic_mk_rews: mk_rews =
wenzelm@18208
   748
 {mk = fn th => if can Logic.dest_equals (Thm.concl_of th) then [th] else [],
wenzelm@18208
   749
  mk_cong = I,
wenzelm@18208
   750
  mk_sym = SOME o Drule.symmetric_fun,
wenzelm@18208
   751
  mk_eq_True = K NONE,
wenzelm@18208
   752
  reorient = default_reorient};
wenzelm@18208
   753
wenzelm@18208
   754
val empty_ss = init_ss basic_mk_rews Term.termless (K (K no_tac)) ([], []);
wenzelm@18208
   755
wenzelm@18208
   756
wenzelm@18208
   757
(* merge *)  (*NOTE: ignores some fields of 2nd simpset*)
wenzelm@18208
   758
wenzelm@18208
   759
fun merge_ss (ss1, ss2) =
wenzelm@18208
   760
  let
wenzelm@18208
   761
    val Simpset ({rules = rules1, prems = prems1, bounds = bounds1, context = _},
wenzelm@18208
   762
     {congs = (congs1, weak1), procs = procs1, mk_rews, termless, subgoal_tac,
wenzelm@18208
   763
      loop_tacs = loop_tacs1, solvers = (unsafe_solvers1, solvers1)}) = ss1;
wenzelm@18208
   764
    val Simpset ({rules = rules2, prems = prems2, bounds = bounds2, context = _},
wenzelm@18208
   765
     {congs = (congs2, weak2), procs = procs2, mk_rews = _, termless = _, subgoal_tac = _,
wenzelm@18208
   766
      loop_tacs = loop_tacs2, solvers = (unsafe_solvers2, solvers2)}) = ss2;
wenzelm@18208
   767
wenzelm@18208
   768
    val rules' = Net.merge eq_rrule (rules1, rules2);
wenzelm@18208
   769
    val prems' = gen_merge_lists Drule.eq_thm_prop prems1 prems2;
wenzelm@18208
   770
    val bounds' = if #1 bounds1 < #1 bounds2 then bounds2 else bounds1;
wenzelm@18208
   771
    val congs' = gen_merge_lists (eq_cong o pairself #2) congs1 congs2;
wenzelm@18208
   772
    val weak' = merge_lists weak1 weak2;
wenzelm@18208
   773
    val procs' = Net.merge eq_proc (procs1, procs2);
haftmann@21286
   774
    val loop_tacs' = AList.merge (op =) (K true) (loop_tacs1, loop_tacs2);
wenzelm@18208
   775
    val unsafe_solvers' = merge_solvers unsafe_solvers1 unsafe_solvers2;
wenzelm@18208
   776
    val solvers' = merge_solvers solvers1 solvers2;
wenzelm@18208
   777
  in
wenzelm@18208
   778
    make_simpset ((rules', prems', bounds', NONE), ((congs', weak'), procs',
wenzelm@18208
   779
      mk_rews, termless, subgoal_tac, loop_tacs', (unsafe_solvers', solvers')))
wenzelm@18208
   780
  end;
wenzelm@18208
   781
wenzelm@18208
   782
skalberg@15006
   783
berghofe@10413
   784
(** rewriting **)
berghofe@10413
   785
berghofe@10413
   786
(*
berghofe@10413
   787
  Uses conversions, see:
berghofe@10413
   788
    L C Paulson, A higher-order implementation of rewriting,
berghofe@10413
   789
    Science of Computer Programming 3 (1983), pages 119-149.
berghofe@10413
   790
*)
berghofe@10413
   791
wenzelm@16985
   792
fun check_conv msg ss thm thm' =
berghofe@10413
   793
  let
berghofe@10413
   794
    val thm'' = transitive thm (transitive
wenzelm@20905
   795
      (symmetric (Drule.beta_eta_conversion (Drule.lhs_of thm'))) thm')
wenzelm@16985
   796
  in if msg then trace_thm "SUCCEEDED" ss thm' else (); SOME thm'' end
berghofe@10413
   797
  handle THM _ =>
wenzelm@16458
   798
    let val {thy, prop = _ $ _ $ prop0, ...} = Thm.rep_thm thm in
wenzelm@16985
   799
      trace_thm "Proved wrong thm (Check subgoaler?)" ss thm';
wenzelm@16985
   800
      trace_term false "Should have proved:" ss thy prop0;
skalberg@15531
   801
      NONE
berghofe@10413
   802
    end;
berghofe@10413
   803
berghofe@10413
   804
berghofe@10413
   805
(* mk_procrule *)
berghofe@10413
   806
wenzelm@16985
   807
fun mk_procrule ss thm =
wenzelm@15023
   808
  let val (_, prems, lhs, elhs, rhs, _) = decomp_simp thm in
wenzelm@15023
   809
    if rewrite_rule_extra_vars prems lhs rhs
wenzelm@16985
   810
    then (warn_thm "Extra vars on rhs:" ss thm; [])
wenzelm@15023
   811
    else [mk_rrule2 {thm = thm, name = "", lhs = lhs, elhs = elhs, perm = false}]
berghofe@10413
   812
  end;
berghofe@10413
   813
berghofe@10413
   814
wenzelm@15023
   815
(* rewritec: conversion to apply the meta simpset to a term *)
berghofe@10413
   816
wenzelm@15023
   817
(*Since the rewriting strategy is bottom-up, we avoid re-normalizing already
wenzelm@15023
   818
  normalized terms by carrying around the rhs of the rewrite rule just
wenzelm@15023
   819
  applied. This is called the `skeleton'. It is decomposed in parallel
wenzelm@15023
   820
  with the term. Once a Var is encountered, the corresponding term is
wenzelm@15023
   821
  already in normal form.
wenzelm@15023
   822
  skel0 is a dummy skeleton that is to enforce complete normalization.*)
wenzelm@15023
   823
berghofe@10413
   824
val skel0 = Bound 0;
berghofe@10413
   825
wenzelm@15023
   826
(*Use rhs as skeleton only if the lhs does not contain unnormalized bits.
wenzelm@15023
   827
  The latter may happen iff there are weak congruence rules for constants
wenzelm@15023
   828
  in the lhs.*)
berghofe@10413
   829
wenzelm@15023
   830
fun uncond_skel ((_, weak), (lhs, rhs)) =
wenzelm@15023
   831
  if null weak then rhs  (*optimization*)
wenzelm@20671
   832
  else if exists_Const (member (op =) weak o #1) lhs then skel0
wenzelm@15023
   833
  else rhs;
wenzelm@15023
   834
wenzelm@15023
   835
(*Behaves like unconditional rule if rhs does not contain vars not in the lhs.
wenzelm@15023
   836
  Otherwise those vars may become instantiated with unnormalized terms
wenzelm@15023
   837
  while the premises are solved.*)
wenzelm@15023
   838
wenzelm@15023
   839
fun cond_skel (args as (congs, (lhs, rhs))) =
wenzelm@20197
   840
  if Term.add_vars rhs [] subset Term.add_vars lhs [] then uncond_skel args
berghofe@10413
   841
  else skel0;
berghofe@10413
   842
berghofe@10413
   843
(*
wenzelm@15023
   844
  Rewriting -- we try in order:
berghofe@10413
   845
    (1) beta reduction
berghofe@10413
   846
    (2) unconditional rewrite rules
berghofe@10413
   847
    (3) conditional rewrite rules
berghofe@10413
   848
    (4) simplification procedures
berghofe@10413
   849
berghofe@10413
   850
  IMPORTANT: rewrite rules must not introduce new Vars or TVars!
berghofe@10413
   851
*)
berghofe@10413
   852
wenzelm@16458
   853
fun rewritec (prover, thyt, maxt) ss t =
berghofe@10413
   854
  let
wenzelm@15023
   855
    val Simpset ({rules, ...}, {congs, procs, termless, ...}) = ss;
berghofe@10413
   856
    val eta_thm = Thm.eta_conversion t;
wenzelm@20905
   857
    val eta_t' = Drule.rhs_of eta_thm;
berghofe@10413
   858
    val eta_t = term_of eta_t';
wenzelm@20546
   859
    fun rew {thm, name, lhs, elhs, extra, fo, perm} =
berghofe@10413
   860
      let
wenzelm@16458
   861
        val {thy, prop, maxidx, ...} = rep_thm thm;
wenzelm@20546
   862
        val (rthm, elhs') =
wenzelm@20546
   863
          if maxt = ~1 orelse not extra then (thm, elhs)
berghofe@10413
   864
          else (Thm.incr_indexes (maxt+1) thm, Thm.cterm_incr_indexes (maxt+1) elhs);
berghofe@10413
   865
        val insts = if fo then Thm.cterm_first_order_match (elhs', eta_t')
berghofe@10413
   866
                          else Thm.cterm_match (elhs', eta_t');
berghofe@10413
   867
        val thm' = Thm.instantiate insts (Thm.rename_boundvars lhs eta_t rthm);
wenzelm@14643
   868
        val prop' = Thm.prop_of thm';
wenzelm@21576
   869
        val unconditional = (Logic.count_prems prop' = 0);
berghofe@10413
   870
        val (lhs', rhs') = Logic.dest_equals (Logic.strip_imp_concl prop')
berghofe@10413
   871
      in
nipkow@11295
   872
        if perm andalso not (termless (rhs', lhs'))
wenzelm@16985
   873
        then (trace_named_thm "Cannot apply permutative rewrite rule" ss (thm, name);
wenzelm@16985
   874
              trace_thm "Term does not become smaller:" ss thm'; NONE)
wenzelm@16985
   875
        else (trace_named_thm "Applying instance of rewrite rule" ss (thm, name);
berghofe@10413
   876
           if unconditional
berghofe@10413
   877
           then
wenzelm@16985
   878
             (trace_thm "Rewriting:" ss thm';
berghofe@10413
   879
              let val lr = Logic.dest_equals prop;
wenzelm@16985
   880
                  val SOME thm'' = check_conv false ss eta_thm thm'
skalberg@15531
   881
              in SOME (thm'', uncond_skel (congs, lr)) end)
berghofe@10413
   882
           else
wenzelm@16985
   883
             (trace_thm "Trying to rewrite:" ss thm';
nipkow@16042
   884
              if !simp_depth > !simp_depth_limit
nipkow@16042
   885
              then let val s = "simp_depth_limit exceeded - giving up"
nipkow@16042
   886
                   in trace false s; warning s; NONE end
nipkow@16042
   887
              else
nipkow@16042
   888
              case prover ss thm' of
wenzelm@16985
   889
                NONE => (trace_thm "FAILED" ss thm'; NONE)
skalberg@15531
   890
              | SOME thm2 =>
wenzelm@16985
   891
                  (case check_conv true ss eta_thm thm2 of
skalberg@15531
   892
                     NONE => NONE |
skalberg@15531
   893
                     SOME thm2' =>
berghofe@10413
   894
                       let val concl = Logic.strip_imp_concl prop
berghofe@10413
   895
                           val lr = Logic.dest_equals concl
nipkow@16042
   896
                       in SOME (thm2', cond_skel (congs, lr)) end)))
berghofe@10413
   897
      end
berghofe@10413
   898
skalberg@15531
   899
    fun rews [] = NONE
berghofe@10413
   900
      | rews (rrule :: rrules) =
skalberg@15531
   901
          let val opt = rew rrule handle Pattern.MATCH => NONE
skalberg@15531
   902
          in case opt of NONE => rews rrules | some => some end;
berghofe@10413
   903
berghofe@10413
   904
    fun sort_rrules rrs = let
wenzelm@14643
   905
      fun is_simple({thm, ...}:rrule) = case Thm.prop_of thm of
berghofe@10413
   906
                                      Const("==",_) $ _ $ _ => true
wenzelm@12603
   907
                                      | _                   => false
berghofe@10413
   908
      fun sort []        (re1,re2) = re1 @ re2
wenzelm@12603
   909
        | sort (rr::rrs) (re1,re2) = if is_simple rr
berghofe@10413
   910
                                     then sort rrs (rr::re1,re2)
berghofe@10413
   911
                                     else sort rrs (re1,rr::re2)
berghofe@10413
   912
    in sort rrs ([],[]) end
berghofe@10413
   913
skalberg@15531
   914
    fun proc_rews [] = NONE
wenzelm@15023
   915
      | proc_rews (Proc {name, proc, lhs, ...} :: ps) =
wenzelm@17203
   916
          if Pattern.matches thyt (Thm.term_of lhs, Thm.term_of t) then
wenzelm@16985
   917
            (debug_term false ("Trying procedure " ^ quote name ^ " on:") ss thyt eta_t;
wenzelm@13486
   918
             case transform_failure (curry SIMPROC_FAIL name)
wenzelm@22008
   919
                 (fn () => proc ss eta_t') () of
skalberg@15531
   920
               NONE => (debug false "FAILED"; proc_rews ps)
skalberg@15531
   921
             | SOME raw_thm =>
wenzelm@16985
   922
                 (trace_thm ("Procedure " ^ quote name ^ " produced rewrite rule:") ss raw_thm;
wenzelm@16985
   923
                  (case rews (mk_procrule ss raw_thm) of
skalberg@15531
   924
                    NONE => (trace_cterm true ("IGNORED result of simproc " ^ quote name ^
wenzelm@16985
   925
                      " -- does not match") ss t; proc_rews ps)
berghofe@10413
   926
                  | some => some)))
berghofe@10413
   927
          else proc_rews ps;
berghofe@10413
   928
  in case eta_t of
skalberg@15531
   929
       Abs _ $ _ => SOME (transitive eta_thm
berghofe@12155
   930
         (beta_conversion false eta_t'), skel0)
berghofe@10413
   931
     | _ => (case rews (sort_rrules (Net.match_term rules eta_t)) of
skalberg@15531
   932
               NONE => proc_rews (Net.match_term procs eta_t)
berghofe@10413
   933
             | some => some)
berghofe@10413
   934
  end;
berghofe@10413
   935
berghofe@10413
   936
berghofe@10413
   937
(* conversion to apply a congruence rule to a term *)
berghofe@10413
   938
wenzelm@16985
   939
fun congc prover ss maxt {thm=cong,lhs=lhs} t =
wenzelm@16985
   940
  let val rthm = Thm.incr_indexes (maxt+1) cong;
berghofe@10413
   941
      val rlhs = fst (Drule.dest_equals (Drule.strip_imp_concl (cprop_of rthm)));
berghofe@10413
   942
      val insts = Thm.cterm_match (rlhs, t)
berghofe@10413
   943
      (* Pattern.match can raise Pattern.MATCH;
berghofe@10413
   944
         is handled when congc is called *)
berghofe@10413
   945
      val thm' = Thm.instantiate insts (Thm.rename_boundvars (term_of rlhs) (term_of t) rthm);
wenzelm@16985
   946
      val unit = trace_thm "Applying congruence rule:" ss thm';
wenzelm@16985
   947
      fun err (msg, thm) = (trace_thm msg ss thm; NONE)
berghofe@10413
   948
  in case prover thm' of
skalberg@15531
   949
       NONE => err ("Congruence proof failed.  Could not prove", thm')
wenzelm@16985
   950
     | SOME thm2 => (case check_conv true ss (Drule.beta_eta_conversion t) thm2 of
skalberg@15531
   951
          NONE => err ("Congruence proof failed.  Should not have proved", thm2)
skalberg@15531
   952
        | SOME thm2' =>
berghofe@12155
   953
            if op aconv (pairself term_of (dest_equals (cprop_of thm2')))
skalberg@15531
   954
            then NONE else SOME thm2')
berghofe@10413
   955
  end;
berghofe@10413
   956
berghofe@10413
   957
val (cA, (cB, cC)) =
berghofe@10413
   958
  apsnd dest_equals (dest_implies (hd (cprems_of Drule.imp_cong)));
berghofe@10413
   959
skalberg@15531
   960
fun transitive1 NONE NONE = NONE
skalberg@15531
   961
  | transitive1 (SOME thm1) NONE = SOME thm1
skalberg@15531
   962
  | transitive1 NONE (SOME thm2) = SOME thm2
skalberg@15531
   963
  | transitive1 (SOME thm1) (SOME thm2) = SOME (transitive thm1 thm2)
berghofe@10413
   964
skalberg@15531
   965
fun transitive2 thm = transitive1 (SOME thm);
skalberg@15531
   966
fun transitive3 thm = transitive1 thm o SOME;
berghofe@13607
   967
wenzelm@16458
   968
fun bottomc ((simprem, useprem, mutsimp), prover, thy, maxidx) =
berghofe@10413
   969
  let
wenzelm@15023
   970
    fun botc skel ss t =
skalberg@15531
   971
          if is_Var skel then NONE
berghofe@10413
   972
          else
wenzelm@15023
   973
          (case subc skel ss t of
skalberg@15531
   974
             some as SOME thm1 =>
wenzelm@20905
   975
               (case rewritec (prover, thy, maxidx) ss (Drule.rhs_of thm1) of
skalberg@15531
   976
                  SOME (thm2, skel2) =>
berghofe@13607
   977
                    transitive2 (transitive thm1 thm2)
wenzelm@20905
   978
                      (botc skel2 ss (Drule.rhs_of thm2))
skalberg@15531
   979
                | NONE => some)
skalberg@15531
   980
           | NONE =>
wenzelm@16458
   981
               (case rewritec (prover, thy, maxidx) ss t of
skalberg@15531
   982
                  SOME (thm2, skel2) => transitive2 thm2
wenzelm@20905
   983
                    (botc skel2 ss (Drule.rhs_of thm2))
skalberg@15531
   984
                | NONE => NONE))
berghofe@10413
   985
wenzelm@15023
   986
    and try_botc ss t =
wenzelm@15023
   987
          (case botc skel0 ss t of
skalberg@15531
   988
             SOME trec1 => trec1 | NONE => (reflexive t))
berghofe@10413
   989
wenzelm@15023
   990
    and subc skel (ss as Simpset ({bounds, ...}, {congs, ...})) t0 =
berghofe@10413
   991
       (case term_of t0 of
berghofe@10413
   992
           Abs (a, T, t) =>
wenzelm@15023
   993
             let
wenzelm@20079
   994
                 val b = Name.bound (#1 bounds);
wenzelm@16985
   995
                 val (v, t') = Thm.dest_abs (SOME b) t0;
wenzelm@16985
   996
                 val b' = #1 (Term.dest_Free (Thm.term_of v));
wenzelm@21962
   997
                 val _ =
wenzelm@21962
   998
                   if b <> b' then
wenzelm@21962
   999
                     warning ("Simplifier: renamed bound variable " ^ quote b ^ " to " ^ quote b')
wenzelm@21962
  1000
                   else ();
wenzelm@17614
  1001
                 val ss' = add_bound ((b', T), a) ss;
wenzelm@15023
  1002
                 val skel' = case skel of Abs (_, _, sk) => sk | _ => skel0;
wenzelm@15023
  1003
             in case botc skel' ss' t' of
skalberg@15531
  1004
                  SOME thm => SOME (abstract_rule a v thm)
skalberg@15531
  1005
                | NONE => NONE
berghofe@10413
  1006
             end
berghofe@10413
  1007
         | t $ _ => (case t of
wenzelm@15023
  1008
             Const ("==>", _) $ _  => impc t0 ss
berghofe@10413
  1009
           | Abs _ =>
berghofe@10413
  1010
               let val thm = beta_conversion false t0
wenzelm@20905
  1011
               in case subc skel0 ss (Drule.rhs_of thm) of
skalberg@15531
  1012
                    NONE => SOME thm
skalberg@15531
  1013
                  | SOME thm' => SOME (transitive thm thm')
berghofe@10413
  1014
               end
berghofe@10413
  1015
           | _  =>
berghofe@10413
  1016
               let fun appc () =
berghofe@10413
  1017
                     let
berghofe@10413
  1018
                       val (tskel, uskel) = case skel of
berghofe@10413
  1019
                           tskel $ uskel => (tskel, uskel)
berghofe@10413
  1020
                         | _ => (skel0, skel0);
wenzelm@10767
  1021
                       val (ct, cu) = Thm.dest_comb t0
berghofe@10413
  1022
                     in
wenzelm@15023
  1023
                     (case botc tskel ss ct of
skalberg@15531
  1024
                        SOME thm1 =>
wenzelm@15023
  1025
                          (case botc uskel ss cu of
skalberg@15531
  1026
                             SOME thm2 => SOME (combination thm1 thm2)
skalberg@15531
  1027
                           | NONE => SOME (combination thm1 (reflexive cu)))
skalberg@15531
  1028
                      | NONE =>
wenzelm@15023
  1029
                          (case botc uskel ss cu of
skalberg@15531
  1030
                             SOME thm1 => SOME (combination (reflexive ct) thm1)
skalberg@15531
  1031
                           | NONE => NONE))
berghofe@10413
  1032
                     end
berghofe@10413
  1033
                   val (h, ts) = strip_comb t
ballarin@13835
  1034
               in case cong_name h of
skalberg@15531
  1035
                    SOME a =>
haftmann@17232
  1036
                      (case AList.lookup (op =) (fst congs) a of
skalberg@15531
  1037
                         NONE => appc ()
skalberg@15531
  1038
                       | SOME cong =>
wenzelm@15023
  1039
  (*post processing: some partial applications h t1 ... tj, j <= length ts,
wenzelm@15023
  1040
    may be a redex. Example: map (%x. x) = (%xs. xs) wrt map_cong*)
berghofe@10413
  1041
                          (let
wenzelm@16985
  1042
                             val thm = congc (prover ss) ss maxidx cong t0;
wenzelm@20905
  1043
                             val t = the_default t0 (Option.map Drule.rhs_of thm);
wenzelm@10767
  1044
                             val (cl, cr) = Thm.dest_comb t
berghofe@10413
  1045
                             val dVar = Var(("", 0), dummyT)
berghofe@10413
  1046
                             val skel =
berghofe@10413
  1047
                               list_comb (h, replicate (length ts) dVar)
wenzelm@15023
  1048
                           in case botc skel ss cl of
skalberg@15531
  1049
                                NONE => thm
skalberg@15531
  1050
                              | SOME thm' => transitive3 thm
berghofe@12155
  1051
                                  (combination thm' (reflexive cr))
wenzelm@20057
  1052
                           end handle Pattern.MATCH => appc ()))
berghofe@10413
  1053
                  | _ => appc ()
berghofe@10413
  1054
               end)
skalberg@15531
  1055
         | _ => NONE)
berghofe@10413
  1056
wenzelm@15023
  1057
    and impc ct ss =
wenzelm@15023
  1058
      if mutsimp then mut_impc0 [] ct [] [] ss else nonmut_impc ct ss
berghofe@10413
  1059
wenzelm@15023
  1060
    and rules_of_prem ss prem =
berghofe@13607
  1061
      if maxidx_of_term (term_of prem) <> ~1
berghofe@13607
  1062
      then (trace_cterm true
wenzelm@16985
  1063
        "Cannot add premise as rewrite rule because it contains (type) unknowns:" ss prem; ([], NONE))
berghofe@13607
  1064
      else
berghofe@13607
  1065
        let val asm = assume prem
skalberg@15531
  1066
        in (extract_safe_rrules (ss, asm), SOME asm) end
berghofe@10413
  1067
wenzelm@15023
  1068
    and add_rrules (rrss, asms) ss =
wenzelm@20028
  1069
      (fold o fold) insert_rrule rrss ss |> add_prems (map_filter I asms)
berghofe@10413
  1070
berghofe@13607
  1071
    and disch r (prem, eq) =
berghofe@13607
  1072
      let
wenzelm@20905
  1073
        val (lhs, rhs) = Drule.dest_equals (Thm.cprop_of eq);
berghofe@13607
  1074
        val eq' = implies_elim (Thm.instantiate
berghofe@13607
  1075
          ([], [(cA, prem), (cB, lhs), (cC, rhs)]) Drule.imp_cong)
berghofe@13607
  1076
          (implies_intr prem eq)
berghofe@13607
  1077
      in if not r then eq' else
berghofe@10413
  1078
        let
berghofe@13607
  1079
          val (prem', concl) = dest_implies lhs;
berghofe@13607
  1080
          val (prem'', _) = dest_implies rhs
berghofe@13607
  1081
        in transitive (transitive
berghofe@13607
  1082
          (Thm.instantiate ([], [(cA, prem'), (cB, prem), (cC, concl)])
berghofe@13607
  1083
             Drule.swap_prems_eq) eq')
berghofe@13607
  1084
          (Thm.instantiate ([], [(cA, prem), (cB, prem''), (cC, concl)])
berghofe@13607
  1085
             Drule.swap_prems_eq)
berghofe@10413
  1086
        end
berghofe@10413
  1087
      end
berghofe@10413
  1088
berghofe@13607
  1089
    and rebuild [] _ _ _ _ eq = eq
wenzelm@15023
  1090
      | rebuild (prem :: prems) concl (rrs :: rrss) (asm :: asms) ss eq =
berghofe@13607
  1091
          let
wenzelm@15023
  1092
            val ss' = add_rrules (rev rrss, rev asms) ss;
berghofe@13607
  1093
            val concl' =
wenzelm@20905
  1094
              Drule.mk_implies (prem, the_default concl (Option.map Drule.rhs_of eq));
skalberg@15570
  1095
            val dprem = Option.map (curry (disch false) prem)
wenzelm@16458
  1096
          in case rewritec (prover, thy, maxidx) ss' concl' of
skalberg@15531
  1097
              NONE => rebuild prems concl' rrss asms ss (dprem eq)
skalberg@15570
  1098
            | SOME (eq', _) => transitive2 (Library.foldl (disch false o swap)
wenzelm@19502
  1099
                  (the (transitive3 (dprem eq) eq'), prems))
wenzelm@20905
  1100
                (mut_impc0 (rev prems) (Drule.rhs_of eq') (rev rrss) (rev asms) ss)
berghofe@13607
  1101
          end
wenzelm@15023
  1102
wenzelm@15023
  1103
    and mut_impc0 prems concl rrss asms ss =
berghofe@13607
  1104
      let
berghofe@13607
  1105
        val prems' = strip_imp_prems concl;
wenzelm@15023
  1106
        val (rrss', asms') = split_list (map (rules_of_prem ss) prems')
berghofe@13607
  1107
      in mut_impc (prems @ prems') (strip_imp_concl concl) (rrss @ rrss')
wenzelm@15023
  1108
        (asms @ asms') [] [] [] [] ss ~1 ~1
berghofe@13607
  1109
      end
wenzelm@15023
  1110
wenzelm@15023
  1111
    and mut_impc [] concl [] [] prems' rrss' asms' eqns ss changed k =
skalberg@15570
  1112
        transitive1 (Library.foldl (fn (eq2, (eq1, prem)) => transitive1 eq1
skalberg@15570
  1113
            (Option.map (curry (disch false) prem) eq2)) (NONE, eqns ~~ prems'))
berghofe@13607
  1114
          (if changed > 0 then
berghofe@13607
  1115
             mut_impc (rev prems') concl (rev rrss') (rev asms')
wenzelm@15023
  1116
               [] [] [] [] ss ~1 changed
wenzelm@15023
  1117
           else rebuild prems' concl rrss' asms' ss
wenzelm@15023
  1118
             (botc skel0 (add_rrules (rev rrss', rev asms') ss) concl))
berghofe@13607
  1119
berghofe@13607
  1120
      | mut_impc (prem :: prems) concl (rrs :: rrss) (asm :: asms)
wenzelm@15023
  1121
          prems' rrss' asms' eqns ss changed k =
skalberg@15531
  1122
        case (if k = 0 then NONE else botc skel0 (add_rrules
wenzelm@15023
  1123
          (rev rrss' @ rrss, rev asms' @ asms) ss) prem) of
skalberg@15531
  1124
            NONE => mut_impc prems concl rrss asms (prem :: prems')
skalberg@15531
  1125
              (rrs :: rrss') (asm :: asms') (NONE :: eqns) ss changed
berghofe@13607
  1126
              (if k = 0 then 0 else k - 1)
skalberg@15531
  1127
          | SOME eqn =>
berghofe@13607
  1128
            let
wenzelm@20905
  1129
              val prem' = Drule.rhs_of eqn;
berghofe@13607
  1130
              val tprems = map term_of prems;
skalberg@15570
  1131
              val i = 1 + Library.foldl Int.max (~1, map (fn p =>
wenzelm@19618
  1132
                find_index (fn q => q aconv p) tprems) (#hyps (rep_thm eqn)));
wenzelm@15023
  1133
              val (rrs', asm') = rules_of_prem ss prem'
berghofe@13607
  1134
            in mut_impc prems concl rrss asms (prem' :: prems')
skalberg@15574
  1135
              (rrs' :: rrss') (asm' :: asms') (SOME (foldr (disch true)
wenzelm@18470
  1136
                (Drule.imp_cong_rule eqn (reflexive (Drule.list_implies
wenzelm@20671
  1137
                  (Library.drop (i, prems), concl)))) (Library.take (i, prems))) :: eqns)
wenzelm@20671
  1138
                  ss (length prems') ~1
berghofe@13607
  1139
            end
berghofe@13607
  1140
wenzelm@15023
  1141
     (*legacy code - only for backwards compatibility*)
wenzelm@15023
  1142
     and nonmut_impc ct ss =
berghofe@13607
  1143
       let val (prem, conc) = dest_implies ct;
skalberg@15531
  1144
           val thm1 = if simprem then botc skel0 ss prem else NONE;
wenzelm@20905
  1145
           val prem1 = the_default prem (Option.map Drule.rhs_of thm1);
wenzelm@15023
  1146
           val ss1 = if not useprem then ss else add_rrules
wenzelm@15023
  1147
             (apsnd single (apfst single (rules_of_prem ss prem1))) ss
wenzelm@15023
  1148
       in (case botc skel0 ss1 conc of
skalberg@15531
  1149
           NONE => (case thm1 of
skalberg@15531
  1150
               NONE => NONE
wenzelm@18470
  1151
             | SOME thm1' => SOME (Drule.imp_cong_rule thm1' (reflexive conc)))
skalberg@15531
  1152
         | SOME thm2 =>
berghofe@13607
  1153
           let val thm2' = disch false (prem1, thm2)
berghofe@10413
  1154
           in (case thm1 of
skalberg@15531
  1155
               NONE => SOME thm2'
skalberg@15531
  1156
             | SOME thm1' =>
wenzelm@18470
  1157
                 SOME (transitive (Drule.imp_cong_rule thm1' (reflexive conc)) thm2'))
berghofe@10413
  1158
           end)
berghofe@10413
  1159
       end
berghofe@10413
  1160
wenzelm@15023
  1161
 in try_botc end;
berghofe@10413
  1162
berghofe@10413
  1163
wenzelm@15023
  1164
(* Meta-rewriting: rewrites t to u and returns the theorem t==u *)
berghofe@10413
  1165
berghofe@10413
  1166
(*
berghofe@10413
  1167
  Parameters:
berghofe@10413
  1168
    mode = (simplify A,
berghofe@10413
  1169
            use A in simplifying B,
berghofe@10413
  1170
            use prems of B (if B is again a meta-impl.) to simplify A)
berghofe@10413
  1171
           when simplifying A ==> B
berghofe@10413
  1172
    prover: how to solve premises in conditional rewrites and congruences
berghofe@10413
  1173
*)
berghofe@10413
  1174
wenzelm@17705
  1175
val debug_bounds = ref false;
wenzelm@17705
  1176
wenzelm@21962
  1177
fun check_bounds ss ct =
wenzelm@21962
  1178
  if ! debug_bounds then
wenzelm@21962
  1179
    let
wenzelm@21962
  1180
      val Simpset ({bounds = (_, bounds), ...}, _) = ss;
wenzelm@21962
  1181
      val bs = fold_aterms (fn Free (x, _) =>
wenzelm@21962
  1182
          if Name.is_bound x andalso not (AList.defined eq_bound bounds x)
wenzelm@21962
  1183
          then insert (op =) x else I
wenzelm@21962
  1184
        | _ => I) (term_of ct) [];
wenzelm@21962
  1185
    in
wenzelm@21962
  1186
      if null bs then ()
wenzelm@21962
  1187
      else print_term true ("Simplifier: term contains loose bounds: " ^ commas_quote bs) ss
wenzelm@21962
  1188
        (Thm.theory_of_cterm ct) (Thm.term_of ct)
wenzelm@21962
  1189
    end
wenzelm@21962
  1190
  else ();
wenzelm@17614
  1191
wenzelm@19052
  1192
fun rewrite_cterm mode prover raw_ss raw_ct =
wenzelm@17882
  1193
  let
wenzelm@20260
  1194
    val ct = Thm.adjust_maxidx_cterm ~1 raw_ct;
wenzelm@17882
  1195
    val {thy, t, maxidx, ...} = Thm.rep_cterm ct;
wenzelm@22008
  1196
    val ss = activate_context thy raw_ss;
wenzelm@17882
  1197
    val _ = inc simp_depth;
wenzelm@21962
  1198
    val _ =
wenzelm@21962
  1199
      if ! simp_depth mod 20 = 0 then
wenzelm@21962
  1200
        warning ("Simplification depth " ^ string_of_int (! simp_depth))
wenzelm@21962
  1201
      else ();
wenzelm@17882
  1202
    val _ = trace_cterm false "SIMPLIFIER INVOKED ON THE FOLLOWING TERM:" ss ct;
wenzelm@17882
  1203
    val _ = check_bounds ss ct;
wenzelm@17882
  1204
    val res = bottomc (mode, Option.map Drule.flexflex_unique oo prover, thy, maxidx) ss ct
wenzelm@17882
  1205
  in dec simp_depth; res end
wenzelm@20057
  1206
  handle exn => (dec simp_depth; raise exn);  (* FIXME avoid handling of generic exceptions *)
berghofe@10413
  1207
wenzelm@21708
  1208
val simple_prover =
wenzelm@21708
  1209
  SINGLE o (fn ss => ALLGOALS (resolve_tac (prems_of_ss ss)));
wenzelm@21708
  1210
wenzelm@11760
  1211
(*Rewrite a cterm*)
wenzelm@21708
  1212
fun rewrite _ [] ct = Thm.reflexive ct
wenzelm@21708
  1213
  | rewrite full thms ct =
wenzelm@21708
  1214
      rewrite_cterm (full, false, false) simple_prover
wenzelm@21708
  1215
        (theory_context (Thm.theory_of_cterm ct) empty_ss addsimps thms) ct;
wenzelm@11672
  1216
berghofe@10413
  1217
(*Rewrite a theorem*)
wenzelm@21708
  1218
fun simplify _ [] th = th
wenzelm@21708
  1219
  | simplify full thms th =
wenzelm@21708
  1220
      Drule.fconv_rule (rewrite_cterm (full, false, false) simple_prover
wenzelm@17897
  1221
        (theory_context (Thm.theory_of_thm th) empty_ss addsimps thms)) th;
berghofe@10413
  1222
wenzelm@21708
  1223
val rewrite_rule = simplify true;
wenzelm@21708
  1224
wenzelm@15023
  1225
(*simple term rewriting -- no proof*)
wenzelm@16458
  1226
fun rewrite_term thy rules procs =
wenzelm@17203
  1227
  Pattern.rewrite_term thy (map decomp_simp' rules) procs;
wenzelm@15023
  1228
wenzelm@15023
  1229
fun rewrite_thm mode prover ss = Drule.fconv_rule (rewrite_cterm mode prover ss);
berghofe@10413
  1230
berghofe@10413
  1231
(*Rewrite the subgoals of a proof state (represented by a theorem) *)
wenzelm@21708
  1232
fun rewrite_goals_rule thms th =
wenzelm@21708
  1233
  Drule.fconv_rule (Drule.goals_conv (K true) (rewrite_cterm (true, true, true) simple_prover
wenzelm@19142
  1234
    (theory_context (Thm.theory_of_thm th) empty_ss addsimps thms))) th;
berghofe@10413
  1235
wenzelm@15023
  1236
(*Rewrite the subgoal of a proof state (represented by a theorem)*)
skalberg@15011
  1237
fun rewrite_goal_rule mode prover ss i thm =
berghofe@10413
  1238
  if 0 < i  andalso  i <= nprems_of thm
skalberg@15011
  1239
  then Drule.fconv_rule (Drule.goals_conv (fn j => j=i) (rewrite_cterm mode prover ss)) thm
berghofe@10413
  1240
  else raise THM("rewrite_goal_rule",i,[thm]);
berghofe@10413
  1241
wenzelm@20228
  1242
wenzelm@21708
  1243
(** meta-rewriting tactics **)
wenzelm@21708
  1244
wenzelm@21708
  1245
(*Rewrite throughout proof state. *)
wenzelm@21708
  1246
fun rewrite_tac defs = PRIMITIVE(rewrite_rule defs);
wenzelm@21708
  1247
wenzelm@21708
  1248
(*Rewrite subgoals only, not main goal. *)
wenzelm@21708
  1249
fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
wenzelm@21708
  1250
fun rewtac def = rewrite_goals_tac [def];
wenzelm@21708
  1251
wenzelm@21708
  1252
(*Prunes all redundant parameters from the proof state by rewriting.
wenzelm@21708
  1253
  DOES NOT rewrite main goal, where quantification over an unused bound
wenzelm@21708
  1254
    variable is sometimes done to avoid the need for cut_facts_tac.*)
wenzelm@21708
  1255
val prune_params_tac = rewrite_goals_tac [triv_forall_equality];
wenzelm@21708
  1256
wenzelm@21708
  1257
wenzelm@21708
  1258
(* for folding definitions, handling critical pairs *)
wenzelm@21708
  1259
wenzelm@21708
  1260
(*The depth of nesting in a term*)
wenzelm@21708
  1261
fun term_depth (Abs(a,T,t)) = 1 + term_depth t
wenzelm@21708
  1262
  | term_depth (f$t) = 1 + Int.max(term_depth f, term_depth t)
wenzelm@21708
  1263
  | term_depth _ = 0;
wenzelm@21708
  1264
wenzelm@21708
  1265
val lhs_of_thm = #1 o Logic.dest_equals o prop_of;
wenzelm@21708
  1266
wenzelm@21708
  1267
(*folding should handle critical pairs!  E.g. K == Inl(0),  S == Inr(Inl(0))
wenzelm@21708
  1268
  Returns longest lhs first to avoid folding its subexpressions.*)
wenzelm@21708
  1269
fun sort_lhs_depths defs =
wenzelm@21708
  1270
  let val keylist = AList.make (term_depth o lhs_of_thm) defs
wenzelm@21708
  1271
      val keys = sort_distinct (rev_order o int_ord) (map #2 keylist)
wenzelm@21708
  1272
  in map (AList.find (op =) keylist) keys end;
wenzelm@21708
  1273
wenzelm@21708
  1274
val rev_defs = sort_lhs_depths o map symmetric;
wenzelm@21708
  1275
wenzelm@21708
  1276
fun fold_rule defs = fold rewrite_rule (rev_defs defs);
wenzelm@21708
  1277
fun fold_tac defs = EVERY (map rewrite_tac (rev_defs defs));
wenzelm@21708
  1278
fun fold_goals_tac defs = EVERY (map rewrite_goals_tac (rev_defs defs));
wenzelm@21708
  1279
wenzelm@21708
  1280
wenzelm@20228
  1281
(* HHF normal form: !! before ==>, outermost !! generalized *)
wenzelm@20228
  1282
wenzelm@20228
  1283
local
wenzelm@20228
  1284
wenzelm@21565
  1285
fun gen_norm_hhf ss th =
wenzelm@21565
  1286
  (if Drule.is_norm_hhf (Thm.prop_of th) then th
wenzelm@21565
  1287
   else Drule.fconv_rule (rewrite_cterm (true, false, false) (K (K NONE)) ss) th)
wenzelm@21565
  1288
  |> Thm.adjust_maxidx_thm ~1
wenzelm@21565
  1289
  |> Drule.gen_all;
wenzelm@20228
  1290
wenzelm@20228
  1291
val ss = theory_context ProtoPure.thy empty_ss addsimps [Drule.norm_hhf_eq];
wenzelm@20228
  1292
wenzelm@20228
  1293
in
wenzelm@20228
  1294
wenzelm@20228
  1295
val norm_hhf = gen_norm_hhf ss;
wenzelm@20228
  1296
val norm_hhf_protect = gen_norm_hhf (ss addeqcongs [Drule.protect_cong]);
wenzelm@20228
  1297
wenzelm@20228
  1298
end;
wenzelm@20228
  1299
berghofe@10413
  1300
end;
berghofe@10413
  1301
wenzelm@11672
  1302
structure BasicMetaSimplifier: BASIC_META_SIMPLIFIER = MetaSimplifier;
wenzelm@11672
  1303
open BasicMetaSimplifier;