src/HOL/Transitive_Closure.thy
author wenzelm
Tue Nov 07 11:47:57 2006 +0100 (2006-11-07)
changeset 21210 c17fd2df4e9e
parent 20716 a6686a8e1b68
child 21404 eb85850d3eb7
permissions -rw-r--r--
renamed 'const_syntax' to 'notation';
nipkow@10213
     1
(*  Title:      HOL/Transitive_Closure.thy
nipkow@10213
     2
    ID:         $Id$
nipkow@10213
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
nipkow@10213
     4
    Copyright   1992  University of Cambridge
nipkow@10213
     5
*)
nipkow@10213
     6
wenzelm@12691
     7
header {* Reflexive and Transitive closure of a relation *}
wenzelm@12691
     8
nipkow@15131
     9
theory Transitive_Closure
nipkow@15140
    10
imports Inductive
haftmann@16417
    11
uses ("../Provers/trancl.ML")
nipkow@15131
    12
begin
wenzelm@12691
    13
wenzelm@12691
    14
text {*
wenzelm@12691
    15
  @{text rtrancl} is reflexive/transitive closure,
wenzelm@12691
    16
  @{text trancl} is transitive closure,
wenzelm@12691
    17
  @{text reflcl} is reflexive closure.
wenzelm@12691
    18
wenzelm@12691
    19
  These postfix operators have \emph{maximum priority}, forcing their
wenzelm@12691
    20
  operands to be atomic.
wenzelm@12691
    21
*}
nipkow@10213
    22
berghofe@11327
    23
consts
wenzelm@12691
    24
  rtrancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^*)" [1000] 999)
berghofe@11327
    25
berghofe@11327
    26
inductive "r^*"
wenzelm@12691
    27
  intros
wenzelm@15801
    28
    rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) : r^*"
wenzelm@15801
    29
    rtrancl_into_rtrancl [Pure.intro]: "(a, b) : r^* ==> (b, c) : r ==> (a, c) : r^*"
berghofe@11327
    30
berghofe@13704
    31
consts
wenzelm@12691
    32
  trancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^+)" [1000] 999)
berghofe@13704
    33
berghofe@13704
    34
inductive "r^+"
berghofe@13704
    35
  intros
wenzelm@15801
    36
    r_into_trancl [intro, Pure.intro]: "(a, b) : r ==> (a, b) : r^+"
wenzelm@15801
    37
    trancl_into_trancl [Pure.intro]: "(a, b) : r^+ ==> (b, c) : r ==> (a,c) : r^+"
nipkow@10213
    38
wenzelm@19656
    39
abbreviation
wenzelm@19656
    40
  reflcl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^=)" [1000] 999)
wenzelm@19656
    41
  "r^= == r \<union> Id"
nipkow@10213
    42
wenzelm@21210
    43
notation (xsymbols)
wenzelm@19656
    44
  rtrancl  ("(_\<^sup>*)" [1000] 999)
wenzelm@19656
    45
  trancl  ("(_\<^sup>+)" [1000] 999)
wenzelm@19656
    46
  reflcl  ("(_\<^sup>=)" [1000] 999)
wenzelm@12691
    47
wenzelm@21210
    48
notation (HTML output)
wenzelm@19656
    49
  rtrancl  ("(_\<^sup>*)" [1000] 999)
wenzelm@19656
    50
  trancl  ("(_\<^sup>+)" [1000] 999)
wenzelm@19656
    51
  reflcl  ("(_\<^sup>=)" [1000] 999)
kleing@14565
    52
wenzelm@12691
    53
wenzelm@12691
    54
subsection {* Reflexive-transitive closure *}
wenzelm@12691
    55
wenzelm@12691
    56
lemma r_into_rtrancl [intro]: "!!p. p \<in> r ==> p \<in> r^*"
wenzelm@12691
    57
  -- {* @{text rtrancl} of @{text r} contains @{text r} *}
wenzelm@12691
    58
  apply (simp only: split_tupled_all)
wenzelm@12691
    59
  apply (erule rtrancl_refl [THEN rtrancl_into_rtrancl])
wenzelm@12691
    60
  done
wenzelm@12691
    61
wenzelm@12691
    62
lemma rtrancl_mono: "r \<subseteq> s ==> r^* \<subseteq> s^*"
wenzelm@12691
    63
  -- {* monotonicity of @{text rtrancl} *}
wenzelm@12691
    64
  apply (rule subsetI)
wenzelm@12691
    65
  apply (simp only: split_tupled_all)
wenzelm@12691
    66
  apply (erule rtrancl.induct)
paulson@14208
    67
   apply (rule_tac [2] rtrancl_into_rtrancl, blast+)
wenzelm@12691
    68
  done
wenzelm@12691
    69
berghofe@12823
    70
theorem rtrancl_induct [consumes 1, induct set: rtrancl]:
wenzelm@12937
    71
  assumes a: "(a, b) : r^*"
wenzelm@12937
    72
    and cases: "P a" "!!y z. [| (a, y) : r^*; (y, z) : r; P y |] ==> P z"
wenzelm@12937
    73
  shows "P b"
wenzelm@12691
    74
proof -
wenzelm@12691
    75
  from a have "a = a --> P b"
nipkow@17589
    76
    by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+
nipkow@17589
    77
  thus ?thesis by iprover
wenzelm@12691
    78
qed
wenzelm@12691
    79
nipkow@14404
    80
lemmas rtrancl_induct2 =
nipkow@14404
    81
  rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
nipkow@14404
    82
                 consumes 1, case_names refl step]
wenzelm@18372
    83
huffman@19228
    84
lemma reflexive_rtrancl: "reflexive (r^*)"
huffman@19228
    85
  by (unfold refl_def) fast
huffman@19228
    86
wenzelm@12691
    87
lemma trans_rtrancl: "trans(r^*)"
wenzelm@12691
    88
  -- {* transitivity of transitive closure!! -- by induction *}
berghofe@12823
    89
proof (rule transI)
berghofe@12823
    90
  fix x y z
berghofe@12823
    91
  assume "(x, y) \<in> r\<^sup>*"
berghofe@12823
    92
  assume "(y, z) \<in> r\<^sup>*"
nipkow@17589
    93
  thus "(x, z) \<in> r\<^sup>*" by induct (iprover!)+
berghofe@12823
    94
qed
wenzelm@12691
    95
wenzelm@12691
    96
lemmas rtrancl_trans = trans_rtrancl [THEN transD, standard]
wenzelm@12691
    97
wenzelm@12691
    98
lemma rtranclE:
wenzelm@18372
    99
  assumes major: "(a::'a,b) : r^*"
wenzelm@18372
   100
    and cases: "(a = b) ==> P"
wenzelm@18372
   101
      "!!y. [| (a,y) : r^*; (y,b) : r |] ==> P"
wenzelm@18372
   102
  shows P
wenzelm@12691
   103
  -- {* elimination of @{text rtrancl} -- by induction on a special formula *}
wenzelm@18372
   104
  apply (subgoal_tac "(a::'a) = b | (EX y. (a,y) : r^* & (y,b) : r)")
wenzelm@18372
   105
   apply (rule_tac [2] major [THEN rtrancl_induct])
wenzelm@18372
   106
    prefer 2 apply blast
wenzelm@18372
   107
   prefer 2 apply blast
wenzelm@18372
   108
  apply (erule asm_rl exE disjE conjE cases)+
wenzelm@18372
   109
  done
wenzelm@12691
   110
berghofe@12823
   111
lemma converse_rtrancl_into_rtrancl:
berghofe@12823
   112
  "(a, b) \<in> r \<Longrightarrow> (b, c) \<in> r\<^sup>* \<Longrightarrow> (a, c) \<in> r\<^sup>*"
nipkow@17589
   113
  by (rule rtrancl_trans) iprover+
wenzelm@12691
   114
wenzelm@12691
   115
text {*
wenzelm@12691
   116
  \medskip More @{term "r^*"} equations and inclusions.
wenzelm@12691
   117
*}
wenzelm@12691
   118
wenzelm@12691
   119
lemma rtrancl_idemp [simp]: "(r^*)^* = r^*"
wenzelm@12691
   120
  apply auto
wenzelm@12691
   121
  apply (erule rtrancl_induct)
wenzelm@12691
   122
   apply (rule rtrancl_refl)
wenzelm@12691
   123
  apply (blast intro: rtrancl_trans)
wenzelm@12691
   124
  done
wenzelm@12691
   125
wenzelm@12691
   126
lemma rtrancl_idemp_self_comp [simp]: "R^* O R^* = R^*"
wenzelm@12691
   127
  apply (rule set_ext)
wenzelm@12691
   128
  apply (simp only: split_tupled_all)
wenzelm@12691
   129
  apply (blast intro: rtrancl_trans)
wenzelm@12691
   130
  done
wenzelm@12691
   131
wenzelm@12691
   132
lemma rtrancl_subset_rtrancl: "r \<subseteq> s^* ==> r^* \<subseteq> s^*"
paulson@14208
   133
by (drule rtrancl_mono, simp)
wenzelm@12691
   134
wenzelm@12691
   135
lemma rtrancl_subset: "R \<subseteq> S ==> S \<subseteq> R^* ==> S^* = R^*"
wenzelm@12691
   136
  apply (drule rtrancl_mono)
ballarin@14398
   137
  apply (drule rtrancl_mono, simp)
wenzelm@12691
   138
  done
wenzelm@12691
   139
wenzelm@12691
   140
lemma rtrancl_Un_rtrancl: "(R^* \<union> S^*)^* = (R \<union> S)^*"
wenzelm@12691
   141
  by (blast intro!: rtrancl_subset intro: r_into_rtrancl rtrancl_mono [THEN subsetD])
wenzelm@12691
   142
wenzelm@12691
   143
lemma rtrancl_reflcl [simp]: "(R^=)^* = R^*"
wenzelm@12691
   144
  by (blast intro!: rtrancl_subset intro: r_into_rtrancl)
wenzelm@12691
   145
wenzelm@12691
   146
lemma rtrancl_r_diff_Id: "(r - Id)^* = r^*"
wenzelm@12691
   147
  apply (rule sym)
paulson@14208
   148
  apply (rule rtrancl_subset, blast, clarify)
wenzelm@12691
   149
  apply (rename_tac a b)
paulson@14208
   150
  apply (case_tac "a = b", blast)
wenzelm@12691
   151
  apply (blast intro!: r_into_rtrancl)
wenzelm@12691
   152
  done
wenzelm@12691
   153
berghofe@12823
   154
theorem rtrancl_converseD:
wenzelm@12937
   155
  assumes r: "(x, y) \<in> (r^-1)^*"
wenzelm@12937
   156
  shows "(y, x) \<in> r^*"
berghofe@12823
   157
proof -
berghofe@12823
   158
  from r show ?thesis
nipkow@17589
   159
    by induct (iprover intro: rtrancl_trans dest!: converseD)+
berghofe@12823
   160
qed
wenzelm@12691
   161
berghofe@12823
   162
theorem rtrancl_converseI:
wenzelm@12937
   163
  assumes r: "(y, x) \<in> r^*"
wenzelm@12937
   164
  shows "(x, y) \<in> (r^-1)^*"
berghofe@12823
   165
proof -
berghofe@12823
   166
  from r show ?thesis
nipkow@17589
   167
    by induct (iprover intro: rtrancl_trans converseI)+
berghofe@12823
   168
qed
wenzelm@12691
   169
wenzelm@12691
   170
lemma rtrancl_converse: "(r^-1)^* = (r^*)^-1"
wenzelm@12691
   171
  by (fast dest!: rtrancl_converseD intro!: rtrancl_converseI)
wenzelm@12691
   172
huffman@19228
   173
lemma sym_rtrancl: "sym r ==> sym (r^*)"
huffman@19228
   174
  by (simp only: sym_conv_converse_eq rtrancl_converse [symmetric])
huffman@19228
   175
nipkow@14404
   176
theorem converse_rtrancl_induct[consumes 1]:
wenzelm@12937
   177
  assumes major: "(a, b) : r^*"
wenzelm@12937
   178
    and cases: "P b" "!!y z. [| (y, z) : r; (z, b) : r^*; P z |] ==> P y"
wenzelm@12937
   179
  shows "P a"
wenzelm@12691
   180
proof -
berghofe@12823
   181
  from rtrancl_converseI [OF major]
wenzelm@12691
   182
  show ?thesis
nipkow@17589
   183
    by induct (iprover intro: cases dest!: converseD rtrancl_converseD)+
wenzelm@12691
   184
qed
wenzelm@12691
   185
nipkow@14404
   186
lemmas converse_rtrancl_induct2 =
nipkow@14404
   187
  converse_rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
nipkow@14404
   188
                 consumes 1, case_names refl step]
wenzelm@12691
   189
wenzelm@12691
   190
lemma converse_rtranclE:
wenzelm@18372
   191
  assumes major: "(x,z):r^*"
wenzelm@18372
   192
    and cases: "x=z ==> P"
wenzelm@18372
   193
      "!!y. [| (x,y):r; (y,z):r^* |] ==> P"
wenzelm@18372
   194
  shows P
wenzelm@18372
   195
  apply (subgoal_tac "x = z | (EX y. (x,y) : r & (y,z) : r^*)")
wenzelm@18372
   196
   apply (rule_tac [2] major [THEN converse_rtrancl_induct])
wenzelm@18372
   197
    prefer 2 apply iprover
wenzelm@18372
   198
   prefer 2 apply iprover
wenzelm@18372
   199
  apply (erule asm_rl exE disjE conjE cases)+
wenzelm@18372
   200
  done
wenzelm@12691
   201
wenzelm@12691
   202
ML_setup {*
wenzelm@12691
   203
  bind_thm ("converse_rtranclE2", split_rule
wenzelm@12691
   204
    (read_instantiate [("x","(xa,xb)"), ("z","(za,zb)")] (thm "converse_rtranclE")));
wenzelm@12691
   205
*}
wenzelm@12691
   206
wenzelm@12691
   207
lemma r_comp_rtrancl_eq: "r O r^* = r^* O r"
wenzelm@12691
   208
  by (blast elim: rtranclE converse_rtranclE
wenzelm@12691
   209
    intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl)
wenzelm@12691
   210
krauss@20716
   211
lemma rtrancl_unfold: "r^* = Id Un r O r^*"
paulson@15551
   212
  by (auto intro: rtrancl_into_rtrancl elim: rtranclE)
paulson@15551
   213
wenzelm@12691
   214
wenzelm@12691
   215
subsection {* Transitive closure *}
wenzelm@10331
   216
berghofe@13704
   217
lemma trancl_mono: "!!p. p \<in> r^+ ==> r \<subseteq> s ==> p \<in> s^+"
berghofe@13704
   218
  apply (simp only: split_tupled_all)
berghofe@13704
   219
  apply (erule trancl.induct)
nipkow@17589
   220
  apply (iprover dest: subsetD)+
wenzelm@12691
   221
  done
wenzelm@12691
   222
berghofe@13704
   223
lemma r_into_trancl': "!!p. p : r ==> p : r^+"
berghofe@13704
   224
  by (simp only: split_tupled_all) (erule r_into_trancl)
berghofe@13704
   225
wenzelm@12691
   226
text {*
wenzelm@12691
   227
  \medskip Conversions between @{text trancl} and @{text rtrancl}.
wenzelm@12691
   228
*}
wenzelm@12691
   229
berghofe@13704
   230
lemma trancl_into_rtrancl: "(a, b) \<in> r^+ ==> (a, b) \<in> r^*"
nipkow@17589
   231
  by (erule trancl.induct) iprover+
wenzelm@12691
   232
berghofe@13704
   233
lemma rtrancl_into_trancl1: assumes r: "(a, b) \<in> r^*"
berghofe@13704
   234
  shows "!!c. (b, c) \<in> r ==> (a, c) \<in> r^+" using r
nipkow@17589
   235
  by induct iprover+
wenzelm@12691
   236
wenzelm@12691
   237
lemma rtrancl_into_trancl2: "[| (a,b) : r;  (b,c) : r^* |]   ==>  (a,c) : r^+"
wenzelm@12691
   238
  -- {* intro rule from @{text r} and @{text rtrancl} *}
nipkow@17589
   239
  apply (erule rtranclE, iprover)
wenzelm@12691
   240
  apply (rule rtrancl_trans [THEN rtrancl_into_trancl1])
wenzelm@12691
   241
   apply (assumption | rule r_into_rtrancl)+
wenzelm@12691
   242
  done
wenzelm@12691
   243
berghofe@13704
   244
lemma trancl_induct [consumes 1, induct set: trancl]:
berghofe@13704
   245
  assumes a: "(a,b) : r^+"
berghofe@13704
   246
  and cases: "!!y. (a, y) : r ==> P y"
berghofe@13704
   247
    "!!y z. (a,y) : r^+ ==> (y, z) : r ==> P y ==> P z"
berghofe@13704
   248
  shows "P b"
wenzelm@12691
   249
  -- {* Nice induction rule for @{text trancl} *}
wenzelm@12691
   250
proof -
berghofe@13704
   251
  from a have "a = a --> P b"
nipkow@17589
   252
    by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+
nipkow@17589
   253
  thus ?thesis by iprover
wenzelm@12691
   254
qed
wenzelm@12691
   255
wenzelm@12691
   256
lemma trancl_trans_induct:
wenzelm@18372
   257
  assumes major: "(x,y) : r^+"
wenzelm@18372
   258
    and cases: "!!x y. (x,y) : r ==> P x y"
wenzelm@18372
   259
      "!!x y z. [| (x,y) : r^+; P x y; (y,z) : r^+; P y z |] ==> P x z"
wenzelm@18372
   260
  shows "P x y"
wenzelm@12691
   261
  -- {* Another induction rule for trancl, incorporating transitivity *}
wenzelm@18372
   262
  by (iprover intro: r_into_trancl major [THEN trancl_induct] cases)
wenzelm@12691
   263
berghofe@13704
   264
inductive_cases tranclE: "(a, b) : r^+"
wenzelm@10980
   265
krauss@20716
   266
lemma trancl_unfold: "r^+ = r Un r O r^+"
paulson@15551
   267
  by (auto intro: trancl_into_trancl elim: tranclE)
paulson@15551
   268
nipkow@19623
   269
lemma trans_trancl[simp]: "trans(r^+)"
wenzelm@12691
   270
  -- {* Transitivity of @{term "r^+"} *}
berghofe@13704
   271
proof (rule transI)
berghofe@13704
   272
  fix x y z
wenzelm@18372
   273
  assume xy: "(x, y) \<in> r^+"
berghofe@13704
   274
  assume "(y, z) \<in> r^+"
wenzelm@18372
   275
  thus "(x, z) \<in> r^+" by induct (insert xy, iprover)+
berghofe@13704
   276
qed
wenzelm@12691
   277
wenzelm@12691
   278
lemmas trancl_trans = trans_trancl [THEN transD, standard]
wenzelm@12691
   279
nipkow@19623
   280
lemma trancl_id[simp]: "trans r \<Longrightarrow> r^+ = r"
nipkow@19623
   281
apply(auto)
nipkow@19623
   282
apply(erule trancl_induct)
nipkow@19623
   283
apply assumption
nipkow@19623
   284
apply(unfold trans_def)
nipkow@19623
   285
apply(blast)
nipkow@19623
   286
done
nipkow@19623
   287
berghofe@13704
   288
lemma rtrancl_trancl_trancl: assumes r: "(x, y) \<in> r^*"
berghofe@13704
   289
  shows "!!z. (y, z) \<in> r^+ ==> (x, z) \<in> r^+" using r
nipkow@17589
   290
  by induct (iprover intro: trancl_trans)+
wenzelm@12691
   291
wenzelm@12691
   292
lemma trancl_into_trancl2: "(a, b) \<in> r ==> (b, c) \<in> r^+ ==> (a, c) \<in> r^+"
wenzelm@12691
   293
  by (erule transD [OF trans_trancl r_into_trancl])
wenzelm@12691
   294
wenzelm@12691
   295
lemma trancl_insert:
wenzelm@12691
   296
  "(insert (y, x) r)^+ = r^+ \<union> {(a, b). (a, y) \<in> r^* \<and> (x, b) \<in> r^*}"
wenzelm@12691
   297
  -- {* primitive recursion for @{text trancl} over finite relations *}
wenzelm@12691
   298
  apply (rule equalityI)
wenzelm@12691
   299
   apply (rule subsetI)
wenzelm@12691
   300
   apply (simp only: split_tupled_all)
paulson@14208
   301
   apply (erule trancl_induct, blast)
wenzelm@12691
   302
   apply (blast intro: rtrancl_into_trancl1 trancl_into_rtrancl r_into_trancl trancl_trans)
wenzelm@12691
   303
  apply (rule subsetI)
wenzelm@12691
   304
  apply (blast intro: trancl_mono rtrancl_mono
wenzelm@12691
   305
    [THEN [2] rev_subsetD] rtrancl_trancl_trancl rtrancl_into_trancl2)
wenzelm@12691
   306
  done
wenzelm@12691
   307
berghofe@13704
   308
lemma trancl_converseI: "(x, y) \<in> (r^+)^-1 ==> (x, y) \<in> (r^-1)^+"
berghofe@13704
   309
  apply (drule converseD)
berghofe@13704
   310
  apply (erule trancl.induct)
nipkow@17589
   311
  apply (iprover intro: converseI trancl_trans)+
wenzelm@12691
   312
  done
wenzelm@12691
   313
berghofe@13704
   314
lemma trancl_converseD: "(x, y) \<in> (r^-1)^+ ==> (x, y) \<in> (r^+)^-1"
berghofe@13704
   315
  apply (rule converseI)
berghofe@13704
   316
  apply (erule trancl.induct)
nipkow@17589
   317
  apply (iprover dest: converseD intro: trancl_trans)+
berghofe@13704
   318
  done
wenzelm@12691
   319
berghofe@13704
   320
lemma trancl_converse: "(r^-1)^+ = (r^+)^-1"
berghofe@13704
   321
  by (fastsimp simp add: split_tupled_all
berghofe@13704
   322
    intro!: trancl_converseI trancl_converseD)
wenzelm@12691
   323
huffman@19228
   324
lemma sym_trancl: "sym r ==> sym (r^+)"
huffman@19228
   325
  by (simp only: sym_conv_converse_eq trancl_converse [symmetric])
huffman@19228
   326
wenzelm@12691
   327
lemma converse_trancl_induct:
wenzelm@18372
   328
  assumes major: "(a,b) : r^+"
wenzelm@18372
   329
    and cases: "!!y. (y,b) : r ==> P(y)"
wenzelm@18372
   330
      "!!y z.[| (y,z) : r;  (z,b) : r^+;  P(z) |] ==> P(y)"
wenzelm@18372
   331
  shows "P a"
wenzelm@18372
   332
  apply (rule major [THEN converseI, THEN trancl_converseI [THEN trancl_induct]])
wenzelm@18372
   333
   apply (rule cases)
wenzelm@18372
   334
   apply (erule converseD)
wenzelm@18372
   335
  apply (blast intro: prems dest!: trancl_converseD)
wenzelm@18372
   336
  done
wenzelm@12691
   337
wenzelm@12691
   338
lemma tranclD: "(x, y) \<in> R^+ ==> EX z. (x, z) \<in> R \<and> (z, y) \<in> R^*"
paulson@14208
   339
  apply (erule converse_trancl_induct, auto)
wenzelm@12691
   340
  apply (blast intro: rtrancl_trans)
wenzelm@12691
   341
  done
wenzelm@12691
   342
nipkow@13867
   343
lemma irrefl_tranclI: "r^-1 \<inter> r^* = {} ==> (x, x) \<notin> r^+"
wenzelm@18372
   344
  by (blast elim: tranclE dest: trancl_into_rtrancl)
wenzelm@12691
   345
wenzelm@12691
   346
lemma irrefl_trancl_rD: "!!X. ALL x. (x, x) \<notin> r^+ ==> (x, y) \<in> r ==> x \<noteq> y"
wenzelm@12691
   347
  by (blast dest: r_into_trancl)
wenzelm@12691
   348
wenzelm@12691
   349
lemma trancl_subset_Sigma_aux:
wenzelm@12691
   350
    "(a, b) \<in> r^* ==> r \<subseteq> A \<times> A ==> a = b \<or> a \<in> A"
wenzelm@18372
   351
  by (induct rule: rtrancl_induct) auto
wenzelm@12691
   352
wenzelm@12691
   353
lemma trancl_subset_Sigma: "r \<subseteq> A \<times> A ==> r^+ \<subseteq> A \<times> A"
berghofe@13704
   354
  apply (rule subsetI)
berghofe@13704
   355
  apply (simp only: split_tupled_all)
berghofe@13704
   356
  apply (erule tranclE)
berghofe@13704
   357
  apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+
wenzelm@12691
   358
  done
nipkow@10996
   359
wenzelm@11090
   360
lemma reflcl_trancl [simp]: "(r^+)^= = r^*"
wenzelm@11084
   361
  apply safe
wenzelm@12691
   362
   apply (erule trancl_into_rtrancl)
wenzelm@11084
   363
  apply (blast elim: rtranclE dest: rtrancl_into_trancl1)
wenzelm@11084
   364
  done
nipkow@10996
   365
wenzelm@11090
   366
lemma trancl_reflcl [simp]: "(r^=)^+ = r^*"
wenzelm@11084
   367
  apply safe
paulson@14208
   368
   apply (drule trancl_into_rtrancl, simp)
paulson@14208
   369
  apply (erule rtranclE, safe)
paulson@14208
   370
   apply (rule r_into_trancl, simp)
wenzelm@11084
   371
  apply (rule rtrancl_into_trancl1)
paulson@14208
   372
   apply (erule rtrancl_reflcl [THEN equalityD2, THEN subsetD], fast)
wenzelm@11084
   373
  done
nipkow@10996
   374
wenzelm@11090
   375
lemma trancl_empty [simp]: "{}^+ = {}"
wenzelm@11084
   376
  by (auto elim: trancl_induct)
nipkow@10996
   377
wenzelm@11090
   378
lemma rtrancl_empty [simp]: "{}^* = Id"
wenzelm@11084
   379
  by (rule subst [OF reflcl_trancl]) simp
nipkow@10996
   380
wenzelm@11090
   381
lemma rtranclD: "(a, b) \<in> R^* ==> a = b \<or> a \<noteq> b \<and> (a, b) \<in> R^+"
wenzelm@11084
   382
  by (force simp add: reflcl_trancl [symmetric] simp del: reflcl_trancl)
wenzelm@11084
   383
kleing@16514
   384
lemma rtrancl_eq_or_trancl:
kleing@16514
   385
  "(x,y) \<in> R\<^sup>* = (x=y \<or> x\<noteq>y \<and> (x,y) \<in> R\<^sup>+)"
kleing@16514
   386
  by (fast elim: trancl_into_rtrancl dest: rtranclD)
nipkow@10996
   387
wenzelm@12691
   388
text {* @{text Domain} and @{text Range} *}
nipkow@10996
   389
wenzelm@11090
   390
lemma Domain_rtrancl [simp]: "Domain (R^*) = UNIV"
wenzelm@11084
   391
  by blast
nipkow@10996
   392
wenzelm@11090
   393
lemma Range_rtrancl [simp]: "Range (R^*) = UNIV"
wenzelm@11084
   394
  by blast
nipkow@10996
   395
wenzelm@11090
   396
lemma rtrancl_Un_subset: "(R^* \<union> S^*) \<subseteq> (R Un S)^*"
wenzelm@11084
   397
  by (rule rtrancl_Un_rtrancl [THEN subst]) fast
nipkow@10996
   398
wenzelm@11090
   399
lemma in_rtrancl_UnI: "x \<in> R^* \<or> x \<in> S^* ==> x \<in> (R \<union> S)^*"
wenzelm@11084
   400
  by (blast intro: subsetD [OF rtrancl_Un_subset])
nipkow@10996
   401
wenzelm@11090
   402
lemma trancl_domain [simp]: "Domain (r^+) = Domain r"
wenzelm@11084
   403
  by (unfold Domain_def) (blast dest: tranclD)
nipkow@10996
   404
wenzelm@11090
   405
lemma trancl_range [simp]: "Range (r^+) = Range r"
wenzelm@11084
   406
  by (simp add: Range_def trancl_converse [symmetric])
nipkow@10996
   407
paulson@11115
   408
lemma Not_Domain_rtrancl:
wenzelm@12691
   409
    "x ~: Domain R ==> ((x, y) : R^*) = (x = y)"
wenzelm@12691
   410
  apply auto
wenzelm@12691
   411
  by (erule rev_mp, erule rtrancl_induct, auto)
wenzelm@12691
   412
berghofe@11327
   413
wenzelm@12691
   414
text {* More about converse @{text rtrancl} and @{text trancl}, should
wenzelm@12691
   415
  be merged with main body. *}
kleing@12428
   416
nipkow@14337
   417
lemma single_valued_confluent:
nipkow@14337
   418
  "\<lbrakk> single_valued r; (x,y) \<in> r^*; (x,z) \<in> r^* \<rbrakk>
nipkow@14337
   419
  \<Longrightarrow> (y,z) \<in> r^* \<or> (z,y) \<in> r^*"
nipkow@14337
   420
apply(erule rtrancl_induct)
nipkow@14337
   421
 apply simp
nipkow@14337
   422
apply(erule disjE)
nipkow@14337
   423
 apply(blast elim:converse_rtranclE dest:single_valuedD)
nipkow@14337
   424
apply(blast intro:rtrancl_trans)
nipkow@14337
   425
done
nipkow@14337
   426
wenzelm@12691
   427
lemma r_r_into_trancl: "(a, b) \<in> R ==> (b, c) \<in> R ==> (a, c) \<in> R^+"
kleing@12428
   428
  by (fast intro: trancl_trans)
kleing@12428
   429
kleing@12428
   430
lemma trancl_into_trancl [rule_format]:
wenzelm@12691
   431
    "(a, b) \<in> r\<^sup>+ ==> (b, c) \<in> r --> (a,c) \<in> r\<^sup>+"
wenzelm@12691
   432
  apply (erule trancl_induct)
kleing@12428
   433
   apply (fast intro: r_r_into_trancl)
kleing@12428
   434
  apply (fast intro: r_r_into_trancl trancl_trans)
kleing@12428
   435
  done
kleing@12428
   436
kleing@12428
   437
lemma trancl_rtrancl_trancl:
wenzelm@12691
   438
    "(a, b) \<in> r\<^sup>+ ==> (b, c) \<in> r\<^sup>* ==> (a, c) \<in> r\<^sup>+"
kleing@12428
   439
  apply (drule tranclD)
kleing@12428
   440
  apply (erule exE, erule conjE)
kleing@12428
   441
  apply (drule rtrancl_trans, assumption)
paulson@14208
   442
  apply (drule rtrancl_into_trancl2, assumption, assumption)
kleing@12428
   443
  done
kleing@12428
   444
wenzelm@12691
   445
lemmas transitive_closure_trans [trans] =
wenzelm@12691
   446
  r_r_into_trancl trancl_trans rtrancl_trans
wenzelm@12691
   447
  trancl_into_trancl trancl_into_trancl2
wenzelm@12691
   448
  rtrancl_into_rtrancl converse_rtrancl_into_rtrancl
wenzelm@12691
   449
  rtrancl_trancl_trancl trancl_rtrancl_trancl
kleing@12428
   450
kleing@12428
   451
declare trancl_into_rtrancl [elim]
berghofe@11327
   452
berghofe@11327
   453
declare rtranclE [cases set: rtrancl]
berghofe@11327
   454
declare tranclE [cases set: trancl]
berghofe@11327
   455
paulson@15551
   456
paulson@15551
   457
paulson@15551
   458
paulson@15551
   459
ballarin@15076
   460
subsection {* Setup of transitivity reasoner *}
ballarin@15076
   461
ballarin@15076
   462
use "../Provers/trancl.ML";
ballarin@15076
   463
ballarin@15076
   464
ML_setup {*
ballarin@15076
   465
ballarin@15076
   466
structure Trancl_Tac = Trancl_Tac_Fun (
ballarin@15076
   467
  struct
ballarin@15076
   468
    val r_into_trancl = thm "r_into_trancl";
ballarin@15076
   469
    val trancl_trans  = thm "trancl_trans";
ballarin@15076
   470
    val rtrancl_refl = thm "rtrancl_refl";
ballarin@15076
   471
    val r_into_rtrancl = thm "r_into_rtrancl";
ballarin@15076
   472
    val trancl_into_rtrancl = thm "trancl_into_rtrancl";
ballarin@15076
   473
    val rtrancl_trancl_trancl = thm "rtrancl_trancl_trancl";
ballarin@15076
   474
    val trancl_rtrancl_trancl = thm "trancl_rtrancl_trancl";
ballarin@15076
   475
    val rtrancl_trans = thm "rtrancl_trans";
ballarin@15096
   476
wenzelm@18372
   477
  fun decomp (Trueprop $ t) =
wenzelm@18372
   478
    let fun dec (Const ("op :", _) $ (Const ("Pair", _) $ a $ b) $ rel ) =
wenzelm@18372
   479
        let fun decr (Const ("Transitive_Closure.rtrancl", _ ) $ r) = (r,"r*")
wenzelm@18372
   480
              | decr (Const ("Transitive_Closure.trancl", _ ) $ r)  = (r,"r+")
wenzelm@18372
   481
              | decr r = (r,"r");
wenzelm@18372
   482
            val (rel,r) = decr rel;
wenzelm@18372
   483
        in SOME (a,b,rel,r) end
wenzelm@18372
   484
      | dec _ =  NONE
ballarin@15076
   485
    in dec t end;
wenzelm@18372
   486
ballarin@15076
   487
  end); (* struct *)
ballarin@15076
   488
wenzelm@17876
   489
change_simpset (fn ss => ss
wenzelm@17876
   490
  addSolver (mk_solver "Trancl" (fn _ => Trancl_Tac.trancl_tac))
wenzelm@17876
   491
  addSolver (mk_solver "Rtrancl" (fn _ => Trancl_Tac.rtrancl_tac)));
ballarin@15076
   492
ballarin@15076
   493
*}
ballarin@15076
   494
ballarin@15076
   495
(* Optional methods
ballarin@15076
   496
ballarin@15076
   497
method_setup trancl =
ballarin@15076
   498
  {* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (trancl_tac)) *}
wenzelm@18372
   499
  {* simple transitivity reasoner *}
ballarin@15076
   500
method_setup rtrancl =
ballarin@15076
   501
  {* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (rtrancl_tac)) *}
ballarin@15076
   502
  {* simple transitivity reasoner *}
ballarin@15076
   503
ballarin@15076
   504
*)
ballarin@15076
   505
nipkow@10213
   506
end