src/HOL/Integ/Equiv.ML
author berghofe
Tue Jul 30 17:33:26 1996 +0200 (1996-07-30)
changeset 1894 c2c8279d40f0
parent 1844 791e79473966
child 1978 e7df069acb74
permissions -rw-r--r--
Classical tactics now use default claset.
clasohm@1465
     1
(*  Title:      Equiv.ML
clasohm@925
     2
    ID:         $Id$
clasohm@1465
     3
    Authors:    Riccardo Mattolini, Dip. Sistemi e Informatica
clasohm@1465
     4
                Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@925
     5
    Copyright   1994 Universita' di Firenze
clasohm@925
     6
    Copyright   1993  University of Cambridge
clasohm@925
     7
clasohm@925
     8
Equivalence relations in HOL Set Theory 
clasohm@925
     9
*)
clasohm@925
    10
clasohm@925
    11
open Equiv;
clasohm@925
    12
berghofe@1894
    13
Delrules [equalityI];
berghofe@1894
    14
clasohm@925
    15
(*** Suppes, Theorem 70: r is an equiv relation iff converse(r) O r = r ***)
clasohm@925
    16
clasohm@925
    17
(** first half: equiv A r ==> converse(r) O r = r **)
clasohm@925
    18
clasohm@925
    19
goalw Equiv.thy [trans_def,sym_def,converse_def]
clasohm@925
    20
    "!!r. [| sym(r); trans(r) |] ==> converse(r) O r <= r";
berghofe@1894
    21
by (fast_tac (!claset addSEs [converseD]) 1);
clasohm@925
    22
qed "sym_trans_comp_subset";
clasohm@925
    23
lcp@1045
    24
goalw Equiv.thy [refl_def]
clasohm@925
    25
    "!!A r. refl A r ==> r <= converse(r) O r";
berghofe@1894
    26
by (fast_tac (!claset addIs [compI]) 1);
clasohm@925
    27
qed "refl_comp_subset";
clasohm@925
    28
clasohm@925
    29
goalw Equiv.thy [equiv_def]
clasohm@925
    30
    "!!A r. equiv A r ==> converse(r) O r = r";
clasohm@925
    31
by (rtac equalityI 1);
clasohm@925
    32
by (REPEAT (ares_tac [sym_trans_comp_subset, refl_comp_subset] 1
clasohm@925
    33
     ORELSE etac conjE 1));
clasohm@925
    34
qed "equiv_comp_eq";
clasohm@925
    35
clasohm@925
    36
(*second half*)
clasohm@925
    37
goalw Equiv.thy [equiv_def,refl_def,sym_def,trans_def]
clasohm@925
    38
    "!!A r. [| converse(r) O r = r;  Domain(r) = A |] ==> equiv A r";
clasohm@925
    39
by (etac equalityE 1);
clasohm@972
    40
by (subgoal_tac "ALL x y. (x,y) : r --> (y,x) : r" 1);
berghofe@1894
    41
by (safe_tac (!claset));
berghofe@1894
    42
by (fast_tac (!claset addSIs [converseI] addIs [compI]) 3);
berghofe@1894
    43
by (ALLGOALS (fast_tac (!claset addIs [compI] addSEs [compE])));
clasohm@925
    44
qed "comp_equivI";
clasohm@925
    45
clasohm@925
    46
(** Equivalence classes **)
clasohm@925
    47
clasohm@925
    48
(*Lemma for the next result*)
clasohm@925
    49
goalw Equiv.thy [equiv_def,trans_def,sym_def]
clasohm@972
    50
    "!!A r. [| equiv A r;  (a,b): r |] ==> r^^{a} <= r^^{b}";
berghofe@1894
    51
by (safe_tac (!claset));
clasohm@925
    52
by (rtac ImageI 1);
berghofe@1894
    53
by (Fast_tac 2);
berghofe@1894
    54
by (Fast_tac 1);
clasohm@925
    55
qed "equiv_class_subset";
clasohm@925
    56
clasohm@972
    57
goal Equiv.thy "!!A r. [| equiv A r;  (a,b): r |] ==> r^^{a} = r^^{b}";
clasohm@925
    58
by (REPEAT (ares_tac [equalityI, equiv_class_subset] 1));
clasohm@925
    59
by (rewrite_goals_tac [equiv_def,sym_def]);
berghofe@1894
    60
by (Fast_tac 1);
clasohm@925
    61
qed "equiv_class_eq";
clasohm@925
    62
clasohm@925
    63
val prems = goalw Equiv.thy [equiv_def,refl_def]
clasohm@925
    64
    "[| equiv A r;  a: A |] ==> a: r^^{a}";
clasohm@925
    65
by (cut_facts_tac prems 1);
berghofe@1894
    66
by (Fast_tac 1);
clasohm@925
    67
qed "equiv_class_self";
clasohm@925
    68
clasohm@925
    69
(*Lemma for the next result*)
clasohm@925
    70
goalw Equiv.thy [equiv_def,refl_def]
clasohm@972
    71
    "!!A r. [| equiv A r;  r^^{b} <= r^^{a};  b: A |] ==> (a,b): r";
berghofe@1894
    72
by (Fast_tac 1);
clasohm@925
    73
qed "subset_equiv_class";
clasohm@925
    74
clasohm@925
    75
val prems = goal Equiv.thy
clasohm@972
    76
    "[| r^^{a} = r^^{b};  equiv A r;  b: A |] ==> (a,b): r";
clasohm@925
    77
by (REPEAT (resolve_tac (prems @ [equalityD2, subset_equiv_class]) 1));
clasohm@925
    78
qed "eq_equiv_class";
clasohm@925
    79
clasohm@925
    80
(*thus r^^{a} = r^^{b} as well*)
clasohm@925
    81
goalw Equiv.thy [equiv_def,trans_def,sym_def]
clasohm@972
    82
    "!!A r. [| equiv A r;  x: (r^^{a} Int r^^{b}) |] ==> (a,b): r";
berghofe@1894
    83
by (Fast_tac 1);
clasohm@925
    84
qed "equiv_class_nondisjoint";
clasohm@925
    85
clasohm@925
    86
val [major] = goalw Equiv.thy [equiv_def,refl_def]
paulson@1642
    87
    "equiv A r ==> r <= A Times A";
clasohm@925
    88
by (rtac (major RS conjunct1 RS conjunct1) 1);
clasohm@925
    89
qed "equiv_type";
clasohm@925
    90
clasohm@925
    91
goal Equiv.thy
clasohm@972
    92
    "!!A r. equiv A r ==> ((x,y): r) = (r^^{x} = r^^{y} & x:A & y:A)";
berghofe@1894
    93
by (safe_tac (!claset));
clasohm@925
    94
by ((rtac equiv_class_eq 1) THEN (assume_tac 1) THEN (assume_tac 1));
clasohm@925
    95
by ((rtac eq_equiv_class 3) THEN 
clasohm@925
    96
    (assume_tac 4) THEN (assume_tac 4) THEN (assume_tac 3));
clasohm@925
    97
by ((dtac equiv_type 1) THEN (dtac rev_subsetD 1) THEN
clasohm@925
    98
    (assume_tac 1) THEN (dtac SigmaD1 1) THEN (assume_tac 1));
clasohm@925
    99
by ((dtac equiv_type 1) THEN (dtac rev_subsetD 1) THEN
clasohm@925
   100
    (assume_tac 1) THEN (dtac SigmaD2 1) THEN (assume_tac 1));
clasohm@925
   101
qed "equiv_class_eq_iff";
clasohm@925
   102
clasohm@925
   103
goal Equiv.thy
clasohm@972
   104
    "!!A r. [| equiv A r;  x: A;  y: A |] ==> (r^^{x} = r^^{y}) = ((x,y): r)";
berghofe@1894
   105
by (safe_tac (!claset));
clasohm@925
   106
by ((rtac eq_equiv_class 1) THEN 
clasohm@925
   107
    (assume_tac 1) THEN (assume_tac 1) THEN (assume_tac 1));
clasohm@925
   108
by ((rtac equiv_class_eq 1) THEN 
clasohm@925
   109
    (assume_tac 1) THEN (assume_tac 1));
clasohm@925
   110
qed "eq_equiv_class_iff";
clasohm@925
   111
clasohm@925
   112
(*** Quotients ***)
clasohm@925
   113
clasohm@925
   114
(** Introduction/elimination rules -- needed? **)
clasohm@925
   115
clasohm@925
   116
val prems = goalw Equiv.thy [quotient_def] "x:A ==> r^^{x}: A/r";
clasohm@925
   117
by (rtac UN_I 1);
clasohm@925
   118
by (resolve_tac prems 1);
clasohm@925
   119
by (rtac singletonI 1);
clasohm@925
   120
qed "quotientI";
clasohm@925
   121
clasohm@925
   122
val [major,minor] = goalw Equiv.thy [quotient_def]
clasohm@1465
   123
    "[| X:(A/r);  !!x. [| X = r^^{x};  x:A |] ==> P |]  \
clasohm@925
   124
\    ==> P";
clasohm@925
   125
by (resolve_tac [major RS UN_E] 1);
clasohm@925
   126
by (rtac minor 1);
clasohm@925
   127
by (assume_tac 2);
berghofe@1894
   128
by (Fast_tac 1);
clasohm@925
   129
qed "quotientE";
clasohm@925
   130
clasohm@925
   131
(** Not needed by Theory Integ --> bypassed **)
clasohm@925
   132
(**goalw Equiv.thy [equiv_def,refl_def,quotient_def]
clasohm@925
   133
    "!!A r. equiv A r ==> Union(A/r) = A";
paulson@1844
   134
by (Fast_tac 1);
clasohm@925
   135
qed "Union_quotient";
clasohm@925
   136
**)
clasohm@925
   137
clasohm@925
   138
(** Not needed by Theory Integ --> bypassed **)
clasohm@925
   139
(*goalw Equiv.thy [quotient_def]
clasohm@925
   140
    "!!A r. [| equiv A r;  X: A/r;  Y: A/r |] ==> X=Y | (X Int Y <= 0)";
berghofe@1894
   141
by (safe_tac (!claset addSIs [equiv_class_eq]));
clasohm@925
   142
by (assume_tac 1);
clasohm@925
   143
by (rewrite_goals_tac [equiv_def,trans_def,sym_def]);
berghofe@1894
   144
by (Fast_tac 1);
clasohm@925
   145
qed "quotient_disj";
clasohm@925
   146
**)
clasohm@925
   147
clasohm@925
   148
(**** Defining unary operations upon equivalence classes ****)
clasohm@925
   149
clasohm@925
   150
(* theorem needed to prove UN_equiv_class *)
clasohm@925
   151
goal Set.thy "!!A. [| a:A; ! y:A. b(y)=b(a) |] ==> (UN y:A. b(y))=b(a)";
berghofe@1894
   152
by (fast_tac (!claset addSEs [equalityE] addSIs [equalityI]) 1);
clasohm@925
   153
qed "UN_singleton_lemma";
clasohm@925
   154
val UN_singleton = ballI RSN (2,UN_singleton_lemma);
clasohm@925
   155
clasohm@925
   156
clasohm@925
   157
(** These proofs really require as local premises
clasohm@925
   158
     equiv A r;  congruent r b
clasohm@925
   159
**)
clasohm@925
   160
clasohm@925
   161
(*Conversion rule*)
clasohm@925
   162
val prems as [equivA,bcong,_] = goal Equiv.thy
clasohm@925
   163
    "[| equiv A r;  congruent r b;  a: A |] ==> (UN x:r^^{a}. b(x)) = b(a)";
clasohm@925
   164
by (cut_facts_tac prems 1);
clasohm@925
   165
by (rtac UN_singleton 1);
clasohm@925
   166
by (rtac equiv_class_self 1);
clasohm@925
   167
by (assume_tac 1);
clasohm@925
   168
by (assume_tac 1);
clasohm@925
   169
by (rewrite_goals_tac [equiv_def,congruent_def,sym_def]);
berghofe@1894
   170
by (Fast_tac 1);
clasohm@925
   171
qed "UN_equiv_class";
clasohm@925
   172
clasohm@925
   173
(*Resolve th against the "local" premises*)
clasohm@925
   174
val localize = RSLIST [equivA,bcong];
clasohm@925
   175
clasohm@925
   176
(*type checking of  UN x:r``{a}. b(x) *)
clasohm@925
   177
val _::_::prems = goalw Equiv.thy [quotient_def]
clasohm@1465
   178
    "[| equiv A r;  congruent r b;  X: A/r;     \
clasohm@1465
   179
\       !!x.  x : A ==> b(x) : B |]     \
clasohm@925
   180
\    ==> (UN x:X. b(x)) : B";
clasohm@925
   181
by (cut_facts_tac prems 1);
berghofe@1894
   182
by (safe_tac (!claset));
clasohm@925
   183
by (rtac (localize UN_equiv_class RS ssubst) 1);
clasohm@925
   184
by (REPEAT (ares_tac prems 1));
clasohm@925
   185
qed "UN_equiv_class_type";
clasohm@925
   186
clasohm@925
   187
(*Sufficient conditions for injectiveness.  Could weaken premises!
clasohm@925
   188
  major premise could be an inclusion; bcong could be !!y. y:A ==> b(y):B
clasohm@925
   189
*)
clasohm@925
   190
val _::_::prems = goalw Equiv.thy [quotient_def]
clasohm@925
   191
    "[| equiv A r;   congruent r b;  \
clasohm@925
   192
\       (UN x:X. b(x))=(UN y:Y. b(y));  X: A/r;  Y: A/r;  \
clasohm@1465
   193
\       !!x y. [| x:A; y:A; b(x)=b(y) |] ==> (x,y):r |]         \
clasohm@925
   194
\    ==> X=Y";
clasohm@925
   195
by (cut_facts_tac prems 1);
berghofe@1894
   196
by (safe_tac ((!claset) delrules [equalityI]));
clasohm@925
   197
by (rtac (equivA RS equiv_class_eq) 1);
clasohm@925
   198
by (REPEAT (ares_tac prems 1));
clasohm@925
   199
by (etac box_equals 1);
clasohm@925
   200
by (REPEAT (ares_tac [localize UN_equiv_class] 1));
clasohm@925
   201
qed "UN_equiv_class_inject";
clasohm@925
   202
clasohm@925
   203
clasohm@925
   204
(**** Defining binary operations upon equivalence classes ****)
clasohm@925
   205
clasohm@925
   206
clasohm@925
   207
goalw Equiv.thy [congruent_def,congruent2_def,equiv_def,refl_def]
clasohm@925
   208
    "!!A r. [| equiv A r;  congruent2 r b;  a: A |] ==> congruent r (b a)";
berghofe@1894
   209
by (Fast_tac 1);
clasohm@925
   210
qed "congruent2_implies_congruent";
clasohm@925
   211
clasohm@925
   212
val equivA::prems = goalw Equiv.thy [congruent_def]
clasohm@925
   213
    "[| equiv A r;  congruent2 r b;  a: A |] ==> \
clasohm@925
   214
\    congruent r (%x1. UN x2:r^^{a}. b x1 x2)";
clasohm@925
   215
by (cut_facts_tac (equivA::prems) 1);
berghofe@1894
   216
by (safe_tac (!claset));
clasohm@925
   217
by (rtac (equivA RS equiv_type RS subsetD RS SigmaE2) 1);
clasohm@925
   218
by (assume_tac 1);
clasohm@1266
   219
by (asm_simp_tac (!simpset addsimps [equivA RS UN_equiv_class,
clasohm@1465
   220
                                     congruent2_implies_congruent]) 1);
clasohm@925
   221
by (rewrite_goals_tac [congruent2_def,equiv_def,refl_def]);
berghofe@1894
   222
by (Fast_tac 1);
clasohm@925
   223
qed "congruent2_implies_congruent_UN";
clasohm@925
   224
clasohm@925
   225
val prems as equivA::_ = goal Equiv.thy
clasohm@925
   226
    "[| equiv A r;  congruent2 r b;  a1: A;  a2: A |]  \
clasohm@925
   227
\    ==> (UN x1:r^^{a1}. UN x2:r^^{a2}. b x1 x2) = b a1 a2";
clasohm@925
   228
by (cut_facts_tac prems 1);
clasohm@1266
   229
by (asm_simp_tac (!simpset addsimps [equivA RS UN_equiv_class,
clasohm@1465
   230
                                     congruent2_implies_congruent,
clasohm@1465
   231
                                     congruent2_implies_congruent_UN]) 1);
clasohm@925
   232
qed "UN_equiv_class2";
clasohm@925
   233
clasohm@925
   234
(*type checking*)
clasohm@925
   235
val prems = goalw Equiv.thy [quotient_def]
clasohm@925
   236
    "[| equiv A r;  congruent2 r b;  \
clasohm@1465
   237
\       X1: A/r;  X2: A/r;      \
clasohm@1465
   238
\       !!x1 x2.  [| x1: A; x2: A |] ==> b x1 x2 : B |]    \
clasohm@925
   239
\    ==> (UN x1:X1. UN x2:X2. b x1 x2) : B";
clasohm@925
   240
by (cut_facts_tac prems 1);
berghofe@1894
   241
by (safe_tac (!claset));
clasohm@925
   242
by (REPEAT (ares_tac (prems@[UN_equiv_class_type,
clasohm@1465
   243
                             congruent2_implies_congruent_UN,
clasohm@1465
   244
                             congruent2_implies_congruent, quotientI]) 1));
clasohm@925
   245
qed "UN_equiv_class_type2";
clasohm@925
   246
clasohm@925
   247
clasohm@925
   248
(*Suggested by John Harrison -- the two subproofs may be MUCH simpler
clasohm@925
   249
  than the direct proof*)
clasohm@925
   250
val prems = goalw Equiv.thy [congruent2_def,equiv_def,refl_def]
clasohm@1465
   251
    "[| equiv A r;      \
clasohm@972
   252
\       !! y z w. [| w: A;  (y,z) : r |] ==> b y w = b z w;      \
clasohm@972
   253
\       !! y z w. [| w: A;  (y,z) : r |] ==> b w y = b w z       \
clasohm@925
   254
\    |] ==> congruent2 r b";
clasohm@925
   255
by (cut_facts_tac prems 1);
berghofe@1894
   256
by (safe_tac (!claset));
clasohm@925
   257
by (rtac trans 1);
clasohm@925
   258
by (REPEAT (ares_tac prems 1
clasohm@925
   259
     ORELSE etac (subsetD RS SigmaE2) 1 THEN assume_tac 2 THEN assume_tac 1));
clasohm@925
   260
qed "congruent2I";
clasohm@925
   261
clasohm@925
   262
val [equivA,commute,congt] = goal Equiv.thy
clasohm@1465
   263
    "[| equiv A r;      \
clasohm@925
   264
\       !! y z. [| y: A;  z: A |] ==> b y z = b z y;        \
clasohm@1465
   265
\       !! y z w. [| w: A;  (y,z): r |] ==> b w y = b w z       \
clasohm@925
   266
\    |] ==> congruent2 r b";
clasohm@925
   267
by (resolve_tac [equivA RS congruent2I] 1);
clasohm@925
   268
by (rtac (commute RS trans) 1);
clasohm@925
   269
by (rtac (commute RS trans RS sym) 3);
clasohm@925
   270
by (rtac sym 5);
clasohm@925
   271
by (REPEAT (ares_tac [congt] 1
clasohm@925
   272
     ORELSE etac (equivA RS equiv_type RS subsetD RS SigmaE2) 1));
clasohm@925
   273
qed "congruent2_commuteI";
clasohm@925
   274