src/HOL/Real/RealVector.thy
author huffman
Wed Apr 11 19:42:43 2007 +0200 (2007-04-11)
changeset 22636 c40465deaf20
parent 22625 a2967023d674
child 22852 2490d4b4671a
permissions -rw-r--r--
new class syntax for scaleR and norm classes
huffman@20504
     1
(*  Title       : RealVector.thy
huffman@20504
     2
    ID:         $Id$
huffman@20504
     3
    Author      : Brian Huffman
huffman@20504
     4
*)
huffman@20504
     5
huffman@20504
     6
header {* Vector Spaces and Algebras over the Reals *}
huffman@20504
     7
huffman@20504
     8
theory RealVector
huffman@20684
     9
imports RealPow
huffman@20504
    10
begin
huffman@20504
    11
huffman@20504
    12
subsection {* Locale for additive functions *}
huffman@20504
    13
huffman@20504
    14
locale additive =
huffman@20504
    15
  fixes f :: "'a::ab_group_add \<Rightarrow> 'b::ab_group_add"
huffman@20504
    16
  assumes add: "f (x + y) = f x + f y"
huffman@20504
    17
huffman@20504
    18
lemma (in additive) zero: "f 0 = 0"
huffman@20504
    19
proof -
huffman@20504
    20
  have "f 0 = f (0 + 0)" by simp
huffman@20504
    21
  also have "\<dots> = f 0 + f 0" by (rule add)
huffman@20504
    22
  finally show "f 0 = 0" by simp
huffman@20504
    23
qed
huffman@20504
    24
huffman@20504
    25
lemma (in additive) minus: "f (- x) = - f x"
huffman@20504
    26
proof -
huffman@20504
    27
  have "f (- x) + f x = f (- x + x)" by (rule add [symmetric])
huffman@20504
    28
  also have "\<dots> = - f x + f x" by (simp add: zero)
huffman@20504
    29
  finally show "f (- x) = - f x" by (rule add_right_imp_eq)
huffman@20504
    30
qed
huffman@20504
    31
huffman@20504
    32
lemma (in additive) diff: "f (x - y) = f x - f y"
huffman@20504
    33
by (simp add: diff_def add minus)
huffman@20504
    34
huffman@20504
    35
huffman@20504
    36
subsection {* Real vector spaces *}
huffman@20504
    37
huffman@22636
    38
class scaleR = type +
huffman@22636
    39
  fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a"
huffman@20504
    40
huffman@22636
    41
notation
huffman@22636
    42
  scaleR (infixr "*#" 75)
huffman@20504
    43
huffman@20763
    44
abbreviation
wenzelm@21404
    45
  divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a::scaleR" (infixl "'/#" 70) where
huffman@21809
    46
  "x /# r == scaleR (inverse r) x"
huffman@20763
    47
wenzelm@21210
    48
notation (xsymbols)
wenzelm@21404
    49
  scaleR (infixr "*\<^sub>R" 75) and
huffman@20763
    50
  divideR (infixl "'/\<^sub>R" 70)
huffman@20504
    51
huffman@22636
    52
instance real :: scaleR
huffman@22636
    53
  real_scaleR_def: "scaleR a x \<equiv> a * x" ..
huffman@20554
    54
huffman@20504
    55
axclass real_vector < scaleR, ab_group_add
huffman@21809
    56
  scaleR_right_distrib: "scaleR a (x + y) = scaleR a x + scaleR a y"
huffman@21809
    57
  scaleR_left_distrib: "scaleR (a + b) x = scaleR a x + scaleR b x"
huffman@21809
    58
  scaleR_scaleR [simp]: "scaleR a (scaleR b x) = scaleR (a * b) x"
huffman@21809
    59
  scaleR_one [simp]: "scaleR 1 x = x"
huffman@20504
    60
huffman@20504
    61
axclass real_algebra < real_vector, ring
huffman@21809
    62
  mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)"
huffman@21809
    63
  mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)"
huffman@20504
    64
huffman@20554
    65
axclass real_algebra_1 < real_algebra, ring_1
huffman@20554
    66
huffman@20584
    67
axclass real_div_algebra < real_algebra_1, division_ring
huffman@20584
    68
huffman@20584
    69
axclass real_field < real_div_algebra, field
huffman@20584
    70
huffman@20584
    71
instance real :: real_field
huffman@20554
    72
apply (intro_classes, unfold real_scaleR_def)
huffman@20554
    73
apply (rule right_distrib)
huffman@20554
    74
apply (rule left_distrib)
huffman@20763
    75
apply (rule mult_assoc [symmetric])
huffman@20554
    76
apply (rule mult_1_left)
huffman@20554
    77
apply (rule mult_assoc)
huffman@20554
    78
apply (rule mult_left_commute)
huffman@20554
    79
done
huffman@20554
    80
huffman@20504
    81
lemma scaleR_left_commute:
huffman@20504
    82
  fixes x :: "'a::real_vector"
huffman@21809
    83
  shows "scaleR a (scaleR b x) = scaleR b (scaleR a x)"
huffman@20763
    84
by (simp add: mult_commute)
huffman@20504
    85
huffman@21809
    86
lemma additive_scaleR_right: "additive (\<lambda>x. scaleR a x::'a::real_vector)"
huffman@20504
    87
by (rule additive.intro, rule scaleR_right_distrib)
huffman@20504
    88
huffman@21809
    89
lemma additive_scaleR_left: "additive (\<lambda>a. scaleR a x::'a::real_vector)"
huffman@20504
    90
by (rule additive.intro, rule scaleR_left_distrib)
huffman@20504
    91
huffman@20504
    92
lemmas scaleR_zero_left [simp] =
huffman@20504
    93
  additive.zero [OF additive_scaleR_left, standard]
huffman@20504
    94
huffman@20504
    95
lemmas scaleR_zero_right [simp] =
huffman@20504
    96
  additive.zero [OF additive_scaleR_right, standard]
huffman@20504
    97
huffman@20504
    98
lemmas scaleR_minus_left [simp] =
huffman@20504
    99
  additive.minus [OF additive_scaleR_left, standard]
huffman@20504
   100
huffman@20504
   101
lemmas scaleR_minus_right [simp] =
huffman@20504
   102
  additive.minus [OF additive_scaleR_right, standard]
huffman@20504
   103
huffman@20504
   104
lemmas scaleR_left_diff_distrib =
huffman@20504
   105
  additive.diff [OF additive_scaleR_left, standard]
huffman@20504
   106
huffman@20504
   107
lemmas scaleR_right_diff_distrib =
huffman@20504
   108
  additive.diff [OF additive_scaleR_right, standard]
huffman@20504
   109
huffman@20554
   110
lemma scaleR_eq_0_iff:
huffman@20554
   111
  fixes x :: "'a::real_vector"
huffman@21809
   112
  shows "(scaleR a x = 0) = (a = 0 \<or> x = 0)"
huffman@20554
   113
proof cases
huffman@20554
   114
  assume "a = 0" thus ?thesis by simp
huffman@20554
   115
next
huffman@20554
   116
  assume anz [simp]: "a \<noteq> 0"
huffman@21809
   117
  { assume "scaleR a x = 0"
huffman@21809
   118
    hence "scaleR (inverse a) (scaleR a x) = 0" by simp
huffman@20763
   119
    hence "x = 0" by simp }
huffman@20554
   120
  thus ?thesis by force
huffman@20554
   121
qed
huffman@20554
   122
huffman@20554
   123
lemma scaleR_left_imp_eq:
huffman@20554
   124
  fixes x y :: "'a::real_vector"
huffman@21809
   125
  shows "\<lbrakk>a \<noteq> 0; scaleR a x = scaleR a y\<rbrakk> \<Longrightarrow> x = y"
huffman@20554
   126
proof -
huffman@20554
   127
  assume nonzero: "a \<noteq> 0"
huffman@21809
   128
  assume "scaleR a x = scaleR a y"
huffman@21809
   129
  hence "scaleR a (x - y) = 0"
huffman@20554
   130
     by (simp add: scaleR_right_diff_distrib)
huffman@20554
   131
  hence "x - y = 0"
huffman@20554
   132
     by (simp add: scaleR_eq_0_iff nonzero)
huffman@20554
   133
  thus "x = y" by simp
huffman@20554
   134
qed
huffman@20554
   135
huffman@20554
   136
lemma scaleR_right_imp_eq:
huffman@20554
   137
  fixes x y :: "'a::real_vector"
huffman@21809
   138
  shows "\<lbrakk>x \<noteq> 0; scaleR a x = scaleR b x\<rbrakk> \<Longrightarrow> a = b"
huffman@20554
   139
proof -
huffman@20554
   140
  assume nonzero: "x \<noteq> 0"
huffman@21809
   141
  assume "scaleR a x = scaleR b x"
huffman@21809
   142
  hence "scaleR (a - b) x = 0"
huffman@20554
   143
     by (simp add: scaleR_left_diff_distrib)
huffman@20554
   144
  hence "a - b = 0"
huffman@20554
   145
     by (simp add: scaleR_eq_0_iff nonzero)
huffman@20554
   146
  thus "a = b" by simp
huffman@20554
   147
qed
huffman@20554
   148
huffman@20554
   149
lemma scaleR_cancel_left:
huffman@20554
   150
  fixes x y :: "'a::real_vector"
huffman@21809
   151
  shows "(scaleR a x = scaleR a y) = (x = y \<or> a = 0)"
huffman@20554
   152
by (auto intro: scaleR_left_imp_eq)
huffman@20554
   153
huffman@20554
   154
lemma scaleR_cancel_right:
huffman@20554
   155
  fixes x y :: "'a::real_vector"
huffman@21809
   156
  shows "(scaleR a x = scaleR b x) = (a = b \<or> x = 0)"
huffman@20554
   157
by (auto intro: scaleR_right_imp_eq)
huffman@20554
   158
huffman@20584
   159
lemma nonzero_inverse_scaleR_distrib:
huffman@21809
   160
  fixes x :: "'a::real_div_algebra" shows
huffman@21809
   161
  "\<lbrakk>a \<noteq> 0; x \<noteq> 0\<rbrakk> \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
huffman@20763
   162
by (rule inverse_unique, simp)
huffman@20584
   163
huffman@20584
   164
lemma inverse_scaleR_distrib:
huffman@20584
   165
  fixes x :: "'a::{real_div_algebra,division_by_zero}"
huffman@21809
   166
  shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
huffman@20584
   167
apply (case_tac "a = 0", simp)
huffman@20584
   168
apply (case_tac "x = 0", simp)
huffman@20584
   169
apply (erule (1) nonzero_inverse_scaleR_distrib)
huffman@20584
   170
done
huffman@20584
   171
huffman@20554
   172
huffman@20554
   173
subsection {* Embedding of the Reals into any @{text real_algebra_1}:
huffman@20554
   174
@{term of_real} *}
huffman@20554
   175
huffman@20554
   176
definition
wenzelm@21404
   177
  of_real :: "real \<Rightarrow> 'a::real_algebra_1" where
huffman@21809
   178
  "of_real r = scaleR r 1"
huffman@20554
   179
huffman@21809
   180
lemma scaleR_conv_of_real: "scaleR r x = of_real r * x"
huffman@20763
   181
by (simp add: of_real_def)
huffman@20763
   182
huffman@20554
   183
lemma of_real_0 [simp]: "of_real 0 = 0"
huffman@20554
   184
by (simp add: of_real_def)
huffman@20554
   185
huffman@20554
   186
lemma of_real_1 [simp]: "of_real 1 = 1"
huffman@20554
   187
by (simp add: of_real_def)
huffman@20554
   188
huffman@20554
   189
lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y"
huffman@20554
   190
by (simp add: of_real_def scaleR_left_distrib)
huffman@20554
   191
huffman@20554
   192
lemma of_real_minus [simp]: "of_real (- x) = - of_real x"
huffman@20554
   193
by (simp add: of_real_def)
huffman@20554
   194
huffman@20554
   195
lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y"
huffman@20554
   196
by (simp add: of_real_def scaleR_left_diff_distrib)
huffman@20554
   197
huffman@20554
   198
lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y"
huffman@20763
   199
by (simp add: of_real_def mult_commute)
huffman@20554
   200
huffman@20584
   201
lemma nonzero_of_real_inverse:
huffman@20584
   202
  "x \<noteq> 0 \<Longrightarrow> of_real (inverse x) =
huffman@20584
   203
   inverse (of_real x :: 'a::real_div_algebra)"
huffman@20584
   204
by (simp add: of_real_def nonzero_inverse_scaleR_distrib)
huffman@20584
   205
huffman@20584
   206
lemma of_real_inverse [simp]:
huffman@20584
   207
  "of_real (inverse x) =
huffman@20584
   208
   inverse (of_real x :: 'a::{real_div_algebra,division_by_zero})"
huffman@20584
   209
by (simp add: of_real_def inverse_scaleR_distrib)
huffman@20584
   210
huffman@20584
   211
lemma nonzero_of_real_divide:
huffman@20584
   212
  "y \<noteq> 0 \<Longrightarrow> of_real (x / y) =
huffman@20584
   213
   (of_real x / of_real y :: 'a::real_field)"
huffman@20584
   214
by (simp add: divide_inverse nonzero_of_real_inverse)
huffman@20722
   215
huffman@20722
   216
lemma of_real_divide [simp]:
huffman@20584
   217
  "of_real (x / y) =
huffman@20584
   218
   (of_real x / of_real y :: 'a::{real_field,division_by_zero})"
huffman@20584
   219
by (simp add: divide_inverse)
huffman@20584
   220
huffman@20722
   221
lemma of_real_power [simp]:
huffman@20722
   222
  "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1,recpower}) ^ n"
wenzelm@20772
   223
by (induct n) (simp_all add: power_Suc)
huffman@20722
   224
huffman@20554
   225
lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)"
huffman@20554
   226
by (simp add: of_real_def scaleR_cancel_right)
huffman@20554
   227
huffman@20584
   228
lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified]
huffman@20554
   229
huffman@20554
   230
lemma of_real_eq_id [simp]: "of_real = (id :: real \<Rightarrow> real)"
huffman@20554
   231
proof
huffman@20554
   232
  fix r
huffman@20554
   233
  show "of_real r = id r"
huffman@20554
   234
    by (simp add: of_real_def real_scaleR_def)
huffman@20554
   235
qed
huffman@20554
   236
huffman@20554
   237
text{*Collapse nested embeddings*}
huffman@20554
   238
lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n"
wenzelm@20772
   239
by (induct n) auto
huffman@20554
   240
huffman@20554
   241
lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z"
huffman@20554
   242
by (cases z rule: int_diff_cases, simp)
huffman@20554
   243
huffman@20554
   244
lemma of_real_number_of_eq:
huffman@20554
   245
  "of_real (number_of w) = (number_of w :: 'a::{number_ring,real_algebra_1})"
huffman@20554
   246
by (simp add: number_of_eq)
huffman@20554
   247
huffman@20554
   248
huffman@20554
   249
subsection {* The Set of Real Numbers *}
huffman@20554
   250
wenzelm@20772
   251
definition
wenzelm@21404
   252
  Reals :: "'a::real_algebra_1 set" where
wenzelm@20772
   253
  "Reals \<equiv> range of_real"
huffman@20554
   254
wenzelm@21210
   255
notation (xsymbols)
huffman@20554
   256
  Reals  ("\<real>")
huffman@20554
   257
huffman@21809
   258
lemma Reals_of_real [simp]: "of_real r \<in> Reals"
huffman@20554
   259
by (simp add: Reals_def)
huffman@20554
   260
huffman@21809
   261
lemma Reals_of_int [simp]: "of_int z \<in> Reals"
huffman@21809
   262
by (subst of_real_of_int_eq [symmetric], rule Reals_of_real)
huffman@20718
   263
huffman@21809
   264
lemma Reals_of_nat [simp]: "of_nat n \<in> Reals"
huffman@21809
   265
by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real)
huffman@21809
   266
huffman@21809
   267
lemma Reals_number_of [simp]:
huffman@21809
   268
  "(number_of w::'a::{number_ring,real_algebra_1}) \<in> Reals"
huffman@21809
   269
by (subst of_real_number_of_eq [symmetric], rule Reals_of_real)
huffman@20718
   270
huffman@20554
   271
lemma Reals_0 [simp]: "0 \<in> Reals"
huffman@20554
   272
apply (unfold Reals_def)
huffman@20554
   273
apply (rule range_eqI)
huffman@20554
   274
apply (rule of_real_0 [symmetric])
huffman@20554
   275
done
huffman@20554
   276
huffman@20554
   277
lemma Reals_1 [simp]: "1 \<in> Reals"
huffman@20554
   278
apply (unfold Reals_def)
huffman@20554
   279
apply (rule range_eqI)
huffman@20554
   280
apply (rule of_real_1 [symmetric])
huffman@20554
   281
done
huffman@20554
   282
huffman@20584
   283
lemma Reals_add [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a + b \<in> Reals"
huffman@20554
   284
apply (auto simp add: Reals_def)
huffman@20554
   285
apply (rule range_eqI)
huffman@20554
   286
apply (rule of_real_add [symmetric])
huffman@20554
   287
done
huffman@20554
   288
huffman@20584
   289
lemma Reals_minus [simp]: "a \<in> Reals \<Longrightarrow> - a \<in> Reals"
huffman@20584
   290
apply (auto simp add: Reals_def)
huffman@20584
   291
apply (rule range_eqI)
huffman@20584
   292
apply (rule of_real_minus [symmetric])
huffman@20584
   293
done
huffman@20584
   294
huffman@20584
   295
lemma Reals_diff [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a - b \<in> Reals"
huffman@20584
   296
apply (auto simp add: Reals_def)
huffman@20584
   297
apply (rule range_eqI)
huffman@20584
   298
apply (rule of_real_diff [symmetric])
huffman@20584
   299
done
huffman@20584
   300
huffman@20584
   301
lemma Reals_mult [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a * b \<in> Reals"
huffman@20554
   302
apply (auto simp add: Reals_def)
huffman@20554
   303
apply (rule range_eqI)
huffman@20554
   304
apply (rule of_real_mult [symmetric])
huffman@20554
   305
done
huffman@20554
   306
huffman@20584
   307
lemma nonzero_Reals_inverse:
huffman@20584
   308
  fixes a :: "'a::real_div_algebra"
huffman@20584
   309
  shows "\<lbrakk>a \<in> Reals; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Reals"
huffman@20584
   310
apply (auto simp add: Reals_def)
huffman@20584
   311
apply (rule range_eqI)
huffman@20584
   312
apply (erule nonzero_of_real_inverse [symmetric])
huffman@20584
   313
done
huffman@20584
   314
huffman@20584
   315
lemma Reals_inverse [simp]:
huffman@20584
   316
  fixes a :: "'a::{real_div_algebra,division_by_zero}"
huffman@20584
   317
  shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals"
huffman@20584
   318
apply (auto simp add: Reals_def)
huffman@20584
   319
apply (rule range_eqI)
huffman@20584
   320
apply (rule of_real_inverse [symmetric])
huffman@20584
   321
done
huffman@20584
   322
huffman@20584
   323
lemma nonzero_Reals_divide:
huffman@20584
   324
  fixes a b :: "'a::real_field"
huffman@20584
   325
  shows "\<lbrakk>a \<in> Reals; b \<in> Reals; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
huffman@20584
   326
apply (auto simp add: Reals_def)
huffman@20584
   327
apply (rule range_eqI)
huffman@20584
   328
apply (erule nonzero_of_real_divide [symmetric])
huffman@20584
   329
done
huffman@20584
   330
huffman@20584
   331
lemma Reals_divide [simp]:
huffman@20584
   332
  fixes a b :: "'a::{real_field,division_by_zero}"
huffman@20584
   333
  shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
huffman@20584
   334
apply (auto simp add: Reals_def)
huffman@20584
   335
apply (rule range_eqI)
huffman@20584
   336
apply (rule of_real_divide [symmetric])
huffman@20584
   337
done
huffman@20584
   338
huffman@20722
   339
lemma Reals_power [simp]:
huffman@20722
   340
  fixes a :: "'a::{real_algebra_1,recpower}"
huffman@20722
   341
  shows "a \<in> Reals \<Longrightarrow> a ^ n \<in> Reals"
huffman@20722
   342
apply (auto simp add: Reals_def)
huffman@20722
   343
apply (rule range_eqI)
huffman@20722
   344
apply (rule of_real_power [symmetric])
huffman@20722
   345
done
huffman@20722
   346
huffman@20554
   347
lemma Reals_cases [cases set: Reals]:
huffman@20554
   348
  assumes "q \<in> \<real>"
huffman@20554
   349
  obtains (of_real) r where "q = of_real r"
huffman@20554
   350
  unfolding Reals_def
huffman@20554
   351
proof -
huffman@20554
   352
  from `q \<in> \<real>` have "q \<in> range of_real" unfolding Reals_def .
huffman@20554
   353
  then obtain r where "q = of_real r" ..
huffman@20554
   354
  then show thesis ..
huffman@20554
   355
qed
huffman@20554
   356
huffman@20554
   357
lemma Reals_induct [case_names of_real, induct set: Reals]:
huffman@20554
   358
  "q \<in> \<real> \<Longrightarrow> (\<And>r. P (of_real r)) \<Longrightarrow> P q"
huffman@20554
   359
  by (rule Reals_cases) auto
huffman@20554
   360
huffman@20504
   361
huffman@20504
   362
subsection {* Real normed vector spaces *}
huffman@20504
   363
huffman@22636
   364
class norm = type +
huffman@22636
   365
  fixes norm :: "'a \<Rightarrow> real"
huffman@20504
   366
huffman@22636
   367
instance real :: norm
huffman@22636
   368
  real_norm_def [simp]: "norm r \<equiv> \<bar>r\<bar>" ..
huffman@20554
   369
huffman@20554
   370
axclass normed < plus, zero, norm
huffman@20533
   371
  norm_ge_zero [simp]: "0 \<le> norm x"
huffman@20533
   372
  norm_eq_zero [simp]: "(norm x = 0) = (x = 0)"
huffman@20533
   373
  norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y"
huffman@20554
   374
huffman@20554
   375
axclass real_normed_vector < real_vector, normed
huffman@21809
   376
  norm_scaleR: "norm (scaleR a x) = \<bar>a\<bar> * norm x"
huffman@20504
   377
huffman@20584
   378
axclass real_normed_algebra < real_algebra, real_normed_vector
huffman@20533
   379
  norm_mult_ineq: "norm (x * y) \<le> norm x * norm y"
huffman@20504
   380
huffman@20584
   381
axclass real_normed_div_algebra < real_div_algebra, normed
huffman@20554
   382
  norm_of_real: "norm (of_real r) = abs r"
huffman@20533
   383
  norm_mult: "norm (x * y) = norm x * norm y"
huffman@20504
   384
huffman@20584
   385
axclass real_normed_field < real_field, real_normed_div_algebra
huffman@20584
   386
huffman@20504
   387
instance real_normed_div_algebra < real_normed_algebra
huffman@20554
   388
proof
huffman@20554
   389
  fix a :: real and x :: 'a
huffman@21809
   390
  have "norm (scaleR a x) = norm (of_real a * x)"
huffman@21809
   391
    by (simp add: of_real_def)
huffman@20554
   392
  also have "\<dots> = abs a * norm x"
huffman@20554
   393
    by (simp add: norm_mult norm_of_real)
huffman@21809
   394
  finally show "norm (scaleR a x) = abs a * norm x" .
huffman@20554
   395
next
huffman@20554
   396
  fix x y :: 'a
huffman@20554
   397
  show "norm (x * y) \<le> norm x * norm y"
huffman@20554
   398
    by (simp add: norm_mult)
huffman@20554
   399
qed
huffman@20554
   400
huffman@20584
   401
instance real :: real_normed_field
huffman@20554
   402
apply (intro_classes, unfold real_norm_def)
huffman@20554
   403
apply (rule abs_ge_zero)
huffman@20554
   404
apply (rule abs_eq_0)
huffman@20554
   405
apply (rule abs_triangle_ineq)
huffman@20554
   406
apply simp
huffman@20554
   407
apply (rule abs_mult)
huffman@20554
   408
done
huffman@20504
   409
huffman@20828
   410
lemma norm_zero [simp]: "norm (0::'a::normed) = 0"
huffman@20504
   411
by simp
huffman@20504
   412
huffman@20828
   413
lemma zero_less_norm_iff [simp]: "(0 < norm x) = (x \<noteq> (0::'a::normed))"
huffman@20504
   414
by (simp add: order_less_le)
huffman@20504
   415
huffman@20828
   416
lemma norm_not_less_zero [simp]: "\<not> norm (x::'a::normed) < 0"
huffman@20828
   417
by (simp add: linorder_not_less)
huffman@20828
   418
huffman@20828
   419
lemma norm_le_zero_iff [simp]: "(norm x \<le> 0) = (x = (0::'a::normed))"
huffman@20828
   420
by (simp add: order_le_less)
huffman@20828
   421
huffman@20504
   422
lemma norm_minus_cancel [simp]:
huffman@20584
   423
  fixes x :: "'a::real_normed_vector"
huffman@20584
   424
  shows "norm (- x) = norm x"
huffman@20504
   425
proof -
huffman@21809
   426
  have "norm (- x) = norm (scaleR (- 1) x)"
huffman@20504
   427
    by (simp only: scaleR_minus_left scaleR_one)
huffman@20533
   428
  also have "\<dots> = \<bar>- 1\<bar> * norm x"
huffman@20504
   429
    by (rule norm_scaleR)
huffman@20504
   430
  finally show ?thesis by simp
huffman@20504
   431
qed
huffman@20504
   432
huffman@20504
   433
lemma norm_minus_commute:
huffman@20584
   434
  fixes a b :: "'a::real_normed_vector"
huffman@20584
   435
  shows "norm (a - b) = norm (b - a)"
huffman@20504
   436
proof -
huffman@20533
   437
  have "norm (a - b) = norm (- (a - b))"
huffman@20533
   438
    by (simp only: norm_minus_cancel)
huffman@20533
   439
  also have "\<dots> = norm (b - a)" by simp
huffman@20504
   440
  finally show ?thesis .
huffman@20504
   441
qed
huffman@20504
   442
huffman@20504
   443
lemma norm_triangle_ineq2:
huffman@20584
   444
  fixes a b :: "'a::real_normed_vector"
huffman@20533
   445
  shows "norm a - norm b \<le> norm (a - b)"
huffman@20504
   446
proof -
huffman@20533
   447
  have "norm (a - b + b) \<le> norm (a - b) + norm b"
huffman@20504
   448
    by (rule norm_triangle_ineq)
huffman@20504
   449
  also have "(a - b + b) = a"
huffman@20504
   450
    by simp
huffman@20504
   451
  finally show ?thesis
huffman@20504
   452
    by (simp add: compare_rls)
huffman@20504
   453
qed
huffman@20504
   454
huffman@20584
   455
lemma norm_triangle_ineq3:
huffman@20584
   456
  fixes a b :: "'a::real_normed_vector"
huffman@20584
   457
  shows "\<bar>norm a - norm b\<bar> \<le> norm (a - b)"
huffman@20584
   458
apply (subst abs_le_iff)
huffman@20584
   459
apply auto
huffman@20584
   460
apply (rule norm_triangle_ineq2)
huffman@20584
   461
apply (subst norm_minus_commute)
huffman@20584
   462
apply (rule norm_triangle_ineq2)
huffman@20584
   463
done
huffman@20584
   464
huffman@20504
   465
lemma norm_triangle_ineq4:
huffman@20584
   466
  fixes a b :: "'a::real_normed_vector"
huffman@20533
   467
  shows "norm (a - b) \<le> norm a + norm b"
huffman@20504
   468
proof -
huffman@20533
   469
  have "norm (a - b) = norm (a + - b)"
huffman@20504
   470
    by (simp only: diff_minus)
huffman@20533
   471
  also have "\<dots> \<le> norm a + norm (- b)"
huffman@20504
   472
    by (rule norm_triangle_ineq)
huffman@20504
   473
  finally show ?thesis
huffman@20504
   474
    by simp
huffman@20504
   475
qed
huffman@20504
   476
huffman@20551
   477
lemma norm_diff_triangle_ineq:
huffman@20551
   478
  fixes a b c d :: "'a::real_normed_vector"
huffman@20551
   479
  shows "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)"
huffman@20551
   480
proof -
huffman@20551
   481
  have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))"
huffman@20551
   482
    by (simp add: diff_minus add_ac)
huffman@20551
   483
  also have "\<dots> \<le> norm (a - c) + norm (b - d)"
huffman@20551
   484
    by (rule norm_triangle_ineq)
huffman@20551
   485
  finally show ?thesis .
huffman@20551
   486
qed
huffman@20551
   487
huffman@20560
   488
lemma norm_one [simp]: "norm (1::'a::real_normed_div_algebra) = 1"
huffman@20560
   489
proof -
huffman@20560
   490
  have "norm (of_real 1 :: 'a) = abs 1"
huffman@20560
   491
    by (rule norm_of_real)
huffman@20560
   492
  thus ?thesis by simp
huffman@20560
   493
qed
huffman@20560
   494
huffman@20504
   495
lemma nonzero_norm_inverse:
huffman@20504
   496
  fixes a :: "'a::real_normed_div_algebra"
huffman@20533
   497
  shows "a \<noteq> 0 \<Longrightarrow> norm (inverse a) = inverse (norm a)"
huffman@20504
   498
apply (rule inverse_unique [symmetric])
huffman@20504
   499
apply (simp add: norm_mult [symmetric])
huffman@20504
   500
done
huffman@20504
   501
huffman@20504
   502
lemma norm_inverse:
huffman@20504
   503
  fixes a :: "'a::{real_normed_div_algebra,division_by_zero}"
huffman@20533
   504
  shows "norm (inverse a) = inverse (norm a)"
huffman@20504
   505
apply (case_tac "a = 0", simp)
huffman@20504
   506
apply (erule nonzero_norm_inverse)
huffman@20504
   507
done
huffman@20504
   508
huffman@20584
   509
lemma nonzero_norm_divide:
huffman@20584
   510
  fixes a b :: "'a::real_normed_field"
huffman@20584
   511
  shows "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b"
huffman@20584
   512
by (simp add: divide_inverse norm_mult nonzero_norm_inverse)
huffman@20584
   513
huffman@20584
   514
lemma norm_divide:
huffman@20584
   515
  fixes a b :: "'a::{real_normed_field,division_by_zero}"
huffman@20584
   516
  shows "norm (a / b) = norm a / norm b"
huffman@20584
   517
by (simp add: divide_inverse norm_mult norm_inverse)
huffman@20584
   518
huffman@20684
   519
lemma norm_power:
huffman@20684
   520
  fixes x :: "'a::{real_normed_div_algebra,recpower}"
huffman@20684
   521
  shows "norm (x ^ n) = norm x ^ n"
wenzelm@20772
   522
by (induct n) (simp_all add: power_Suc norm_mult)
huffman@20684
   523
huffman@22442
   524
huffman@22442
   525
subsection {* Bounded Linear and Bilinear Operators *}
huffman@22442
   526
huffman@22442
   527
locale bounded_linear = additive +
huffman@22442
   528
  constrains f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
huffman@22442
   529
  assumes scaleR: "f (scaleR r x) = scaleR r (f x)"
huffman@22442
   530
  assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K"
huffman@22442
   531
huffman@22442
   532
lemma (in bounded_linear) pos_bounded:
huffman@22442
   533
  "\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K"
huffman@22442
   534
proof -
huffman@22442
   535
  obtain K where K: "\<And>x. norm (f x) \<le> norm x * K"
huffman@22442
   536
    using bounded by fast
huffman@22442
   537
  show ?thesis
huffman@22442
   538
  proof (intro exI impI conjI allI)
huffman@22442
   539
    show "0 < max 1 K"
huffman@22442
   540
      by (rule order_less_le_trans [OF zero_less_one le_maxI1])
huffman@22442
   541
  next
huffman@22442
   542
    fix x
huffman@22442
   543
    have "norm (f x) \<le> norm x * K" using K .
huffman@22442
   544
    also have "\<dots> \<le> norm x * max 1 K"
huffman@22442
   545
      by (rule mult_left_mono [OF le_maxI2 norm_ge_zero])
huffman@22442
   546
    finally show "norm (f x) \<le> norm x * max 1 K" .
huffman@22442
   547
  qed
huffman@22442
   548
qed
huffman@22442
   549
huffman@22442
   550
lemma (in bounded_linear) nonneg_bounded:
huffman@22442
   551
  "\<exists>K\<ge>0. \<forall>x. norm (f x) \<le> norm x * K"
huffman@22442
   552
proof -
huffman@22442
   553
  from pos_bounded
huffman@22442
   554
  show ?thesis by (auto intro: order_less_imp_le)
huffman@22442
   555
qed
huffman@22442
   556
huffman@22442
   557
locale bounded_bilinear =
huffman@22442
   558
  fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector]
huffman@22442
   559
                 \<Rightarrow> 'c::real_normed_vector"
huffman@22442
   560
    (infixl "**" 70)
huffman@22442
   561
  assumes add_left: "prod (a + a') b = prod a b + prod a' b"
huffman@22442
   562
  assumes add_right: "prod a (b + b') = prod a b + prod a b'"
huffman@22442
   563
  assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)"
huffman@22442
   564
  assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)"
huffman@22442
   565
  assumes bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K"
huffman@22442
   566
huffman@22442
   567
lemma (in bounded_bilinear) pos_bounded:
huffman@22442
   568
  "\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
huffman@22442
   569
apply (cut_tac bounded, erule exE)
huffman@22442
   570
apply (rule_tac x="max 1 K" in exI, safe)
huffman@22442
   571
apply (rule order_less_le_trans [OF zero_less_one le_maxI1])
huffman@22442
   572
apply (drule spec, drule spec, erule order_trans)
huffman@22442
   573
apply (rule mult_left_mono [OF le_maxI2])
huffman@22442
   574
apply (intro mult_nonneg_nonneg norm_ge_zero)
huffman@22442
   575
done
huffman@22442
   576
huffman@22442
   577
lemma (in bounded_bilinear) nonneg_bounded:
huffman@22442
   578
  "\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
huffman@22442
   579
proof -
huffman@22442
   580
  from pos_bounded
huffman@22442
   581
  show ?thesis by (auto intro: order_less_imp_le)
huffman@22442
   582
qed
huffman@22442
   583
huffman@22442
   584
lemma (in bounded_bilinear) additive_right: "additive (\<lambda>b. prod a b)"
huffman@22442
   585
by (rule additive.intro, rule add_right)
huffman@22442
   586
huffman@22442
   587
lemma (in bounded_bilinear) additive_left: "additive (\<lambda>a. prod a b)"
huffman@22442
   588
by (rule additive.intro, rule add_left)
huffman@22442
   589
huffman@22442
   590
lemma (in bounded_bilinear) zero_left: "prod 0 b = 0"
huffman@22442
   591
by (rule additive.zero [OF additive_left])
huffman@22442
   592
huffman@22442
   593
lemma (in bounded_bilinear) zero_right: "prod a 0 = 0"
huffman@22442
   594
by (rule additive.zero [OF additive_right])
huffman@22442
   595
huffman@22442
   596
lemma (in bounded_bilinear) minus_left: "prod (- a) b = - prod a b"
huffman@22442
   597
by (rule additive.minus [OF additive_left])
huffman@22442
   598
huffman@22442
   599
lemma (in bounded_bilinear) minus_right: "prod a (- b) = - prod a b"
huffman@22442
   600
by (rule additive.minus [OF additive_right])
huffman@22442
   601
huffman@22442
   602
lemma (in bounded_bilinear) diff_left:
huffman@22442
   603
  "prod (a - a') b = prod a b - prod a' b"
huffman@22442
   604
by (rule additive.diff [OF additive_left])
huffman@22442
   605
huffman@22442
   606
lemma (in bounded_bilinear) diff_right:
huffman@22442
   607
  "prod a (b - b') = prod a b - prod a b'"
huffman@22442
   608
by (rule additive.diff [OF additive_right])
huffman@22442
   609
huffman@22442
   610
lemma (in bounded_bilinear) bounded_linear_left:
huffman@22442
   611
  "bounded_linear (\<lambda>a. a ** b)"
huffman@22442
   612
apply (unfold_locales)
huffman@22442
   613
apply (rule add_left)
huffman@22442
   614
apply (rule scaleR_left)
huffman@22442
   615
apply (cut_tac bounded, safe)
huffman@22442
   616
apply (rule_tac x="norm b * K" in exI)
huffman@22442
   617
apply (simp add: mult_ac)
huffman@22442
   618
done
huffman@22442
   619
huffman@22442
   620
lemma (in bounded_bilinear) bounded_linear_right:
huffman@22442
   621
  "bounded_linear (\<lambda>b. a ** b)"
huffman@22442
   622
apply (unfold_locales)
huffman@22442
   623
apply (rule add_right)
huffman@22442
   624
apply (rule scaleR_right)
huffman@22442
   625
apply (cut_tac bounded, safe)
huffman@22442
   626
apply (rule_tac x="norm a * K" in exI)
huffman@22442
   627
apply (simp add: mult_ac)
huffman@22442
   628
done
huffman@22442
   629
huffman@22442
   630
lemma (in bounded_bilinear) prod_diff_prod:
huffman@22442
   631
  "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)"
huffman@22442
   632
by (simp add: diff_left diff_right)
huffman@22442
   633
huffman@22442
   634
interpretation bounded_bilinear_mult:
huffman@22442
   635
  bounded_bilinear ["op * :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra"]
huffman@22442
   636
apply (rule bounded_bilinear.intro)
huffman@22442
   637
apply (rule left_distrib)
huffman@22442
   638
apply (rule right_distrib)
huffman@22442
   639
apply (rule mult_scaleR_left)
huffman@22442
   640
apply (rule mult_scaleR_right)
huffman@22442
   641
apply (rule_tac x="1" in exI)
huffman@22442
   642
apply (simp add: norm_mult_ineq)
huffman@22442
   643
done
huffman@22442
   644
huffman@22442
   645
interpretation bounded_linear_mult_left:
huffman@22442
   646
  bounded_linear ["(\<lambda>x::'a::real_normed_algebra. x * y)"]
huffman@22442
   647
by (rule bounded_bilinear_mult.bounded_linear_left)
huffman@22442
   648
huffman@22442
   649
interpretation bounded_linear_mult_right:
huffman@22442
   650
  bounded_linear ["(\<lambda>y::'a::real_normed_algebra. x * y)"]
huffman@22442
   651
by (rule bounded_bilinear_mult.bounded_linear_right)
huffman@22442
   652
huffman@22442
   653
interpretation bounded_bilinear_scaleR:
huffman@22442
   654
  bounded_bilinear ["scaleR"]
huffman@22442
   655
apply (rule bounded_bilinear.intro)
huffman@22442
   656
apply (rule scaleR_left_distrib)
huffman@22442
   657
apply (rule scaleR_right_distrib)
huffman@22442
   658
apply (simp add: real_scaleR_def)
huffman@22442
   659
apply (rule scaleR_left_commute)
huffman@22442
   660
apply (rule_tac x="1" in exI)
huffman@22442
   661
apply (simp add: norm_scaleR)
huffman@22442
   662
done
huffman@22442
   663
huffman@22625
   664
interpretation bounded_linear_of_real:
huffman@22625
   665
  bounded_linear ["\<lambda>r. of_real r"]
huffman@22625
   666
apply (unfold of_real_def)
huffman@22625
   667
apply (rule bounded_bilinear_scaleR.bounded_linear_left)
huffman@22625
   668
done
huffman@22625
   669
huffman@20504
   670
end