src/HOL/SMT.thy
author blanchet
Thu Aug 03 23:43:17 2017 +0200 (22 months ago)
changeset 66323 c41642bc1ebb
parent 66298 5ff9fe3fee66
child 66551 4df6b0ae900d
permissions -rw-r--r--
pass option recommended by Andy Reynolds to CVC4 1.5 (released) or better
blanchet@58061
     1
(*  Title:      HOL/SMT.thy
blanchet@56078
     2
    Author:     Sascha Boehme, TU Muenchen
blanchet@56078
     3
*)
blanchet@56078
     4
wenzelm@61626
     5
section \<open>Bindings to Satisfiability Modulo Theories (SMT) solvers based on SMT-LIB 2\<close>
blanchet@56078
     6
blanchet@58061
     7
theory SMT
blanchet@57230
     8
imports Divides
blanchet@58061
     9
keywords "smt_status" :: diag
blanchet@56078
    10
begin
blanchet@56078
    11
wenzelm@60758
    12
subsection \<open>A skolemization tactic and proof method\<close>
blanchet@58481
    13
blanchet@58481
    14
lemma choices:
blanchet@58481
    15
  "\<And>Q. \<forall>x. \<exists>y ya. Q x y ya \<Longrightarrow> \<exists>f fa. \<forall>x. Q x (f x) (fa x)"
blanchet@58481
    16
  "\<And>Q. \<forall>x. \<exists>y ya yb. Q x y ya yb \<Longrightarrow> \<exists>f fa fb. \<forall>x. Q x (f x) (fa x) (fb x)"
blanchet@58481
    17
  "\<And>Q. \<forall>x. \<exists>y ya yb yc. Q x y ya yb yc \<Longrightarrow> \<exists>f fa fb fc. \<forall>x. Q x (f x) (fa x) (fb x) (fc x)"
blanchet@58598
    18
  "\<And>Q. \<forall>x. \<exists>y ya yb yc yd. Q x y ya yb yc yd \<Longrightarrow>
blanchet@58598
    19
     \<exists>f fa fb fc fd. \<forall>x. Q x (f x) (fa x) (fb x) (fc x) (fd x)"
blanchet@58598
    20
  "\<And>Q. \<forall>x. \<exists>y ya yb yc yd ye. Q x y ya yb yc yd ye \<Longrightarrow>
blanchet@58598
    21
     \<exists>f fa fb fc fd fe. \<forall>x. Q x (f x) (fa x) (fb x) (fc x) (fd x) (fe x)"
blanchet@58598
    22
  "\<And>Q. \<forall>x. \<exists>y ya yb yc yd ye yf. Q x y ya yb yc yd ye yf \<Longrightarrow>
blanchet@58598
    23
     \<exists>f fa fb fc fd fe ff. \<forall>x. Q x (f x) (fa x) (fb x) (fc x) (fd x) (fe x) (ff x)"
blanchet@58598
    24
  "\<And>Q. \<forall>x. \<exists>y ya yb yc yd ye yf yg. Q x y ya yb yc yd ye yf yg \<Longrightarrow>
blanchet@58598
    25
     \<exists>f fa fb fc fd fe ff fg. \<forall>x. Q x (f x) (fa x) (fb x) (fc x) (fd x) (fe x) (ff x) (fg x)"
blanchet@58481
    26
  by metis+
blanchet@58481
    27
blanchet@58481
    28
lemma bchoices:
blanchet@58481
    29
  "\<And>Q. \<forall>x \<in> S. \<exists>y ya. Q x y ya \<Longrightarrow> \<exists>f fa. \<forall>x \<in> S. Q x (f x) (fa x)"
blanchet@58481
    30
  "\<And>Q. \<forall>x \<in> S. \<exists>y ya yb. Q x y ya yb \<Longrightarrow> \<exists>f fa fb. \<forall>x \<in> S. Q x (f x) (fa x) (fb x)"
blanchet@58481
    31
  "\<And>Q. \<forall>x \<in> S. \<exists>y ya yb yc. Q x y ya yb yc \<Longrightarrow> \<exists>f fa fb fc. \<forall>x \<in> S. Q x (f x) (fa x) (fb x) (fc x)"
blanchet@58598
    32
  "\<And>Q. \<forall>x \<in> S. \<exists>y ya yb yc yd. Q x y ya yb yc yd \<Longrightarrow>
blanchet@58598
    33
    \<exists>f fa fb fc fd. \<forall>x \<in> S. Q x (f x) (fa x) (fb x) (fc x) (fd x)"
blanchet@58598
    34
  "\<And>Q. \<forall>x \<in> S. \<exists>y ya yb yc yd ye. Q x y ya yb yc yd ye \<Longrightarrow>
blanchet@58598
    35
    \<exists>f fa fb fc fd fe. \<forall>x \<in> S. Q x (f x) (fa x) (fb x) (fc x) (fd x) (fe x)"
blanchet@58598
    36
  "\<And>Q. \<forall>x \<in> S. \<exists>y ya yb yc yd ye yf. Q x y ya yb yc yd ye yf \<Longrightarrow>
blanchet@58598
    37
    \<exists>f fa fb fc fd fe ff. \<forall>x \<in> S. Q x (f x) (fa x) (fb x) (fc x) (fd x) (fe x) (ff x)"
blanchet@58598
    38
  "\<And>Q. \<forall>x \<in> S. \<exists>y ya yb yc yd ye yf yg. Q x y ya yb yc yd ye yf yg \<Longrightarrow>
blanchet@58598
    39
    \<exists>f fa fb fc fd fe ff fg. \<forall>x \<in> S. Q x (f x) (fa x) (fb x) (fc x) (fd x) (fe x) (ff x) (fg x)"
blanchet@58481
    40
  by metis+
blanchet@58481
    41
wenzelm@60758
    42
ML \<open>
blanchet@58481
    43
fun moura_tac ctxt =
blanchet@58481
    44
  Atomize_Elim.atomize_elim_tac ctxt THEN'
blanchet@58481
    45
  SELECT_GOAL (Clasimp.auto_tac (ctxt addSIs @{thms choice choices bchoice bchoices}) THEN
blanchet@58598
    46
    ALLGOALS (Metis_Tactic.metis_tac (take 1 ATP_Proof_Reconstruct.partial_type_encs)
blanchet@58598
    47
        ATP_Proof_Reconstruct.default_metis_lam_trans ctxt [] ORELSE'
blanchet@58598
    48
      blast_tac ctxt))
wenzelm@60758
    49
\<close>
blanchet@58481
    50
wenzelm@60758
    51
method_setup moura = \<open>
blanchet@60201
    52
  Scan.succeed (SIMPLE_METHOD' o moura_tac)
wenzelm@60758
    53
\<close> "solve skolemization goals, especially those arising from Z3 proofs"
blanchet@58481
    54
blanchet@58481
    55
hide_fact (open) choices bchoices
blanchet@58481
    56
blanchet@58481
    57
wenzelm@60758
    58
subsection \<open>Triggers for quantifier instantiation\<close>
blanchet@56078
    59
wenzelm@60758
    60
text \<open>
blanchet@56078
    61
Some SMT solvers support patterns as a quantifier instantiation
blanchet@57696
    62
heuristics. Patterns may either be positive terms (tagged by "pat")
blanchet@56078
    63
triggering quantifier instantiations -- when the solver finds a
blanchet@56078
    64
term matching a positive pattern, it instantiates the corresponding
blanchet@56078
    65
quantifier accordingly -- or negative terms (tagged by "nopat")
blanchet@57696
    66
inhibiting quantifier instantiations. A list of patterns
blanchet@56078
    67
of the same kind is called a multipattern, and all patterns in a
blanchet@56078
    68
multipattern are considered conjunctively for quantifier instantiation.
blanchet@56078
    69
A list of multipatterns is called a trigger, and their multipatterns
blanchet@57696
    70
act disjunctively during quantifier instantiation. Each multipattern
blanchet@56078
    71
should mention at least all quantified variables of the preceding
blanchet@56078
    72
quantifier block.
wenzelm@60758
    73
\<close>
blanchet@56078
    74
blanchet@57230
    75
typedecl 'a symb_list
blanchet@57230
    76
blanchet@57230
    77
consts
blanchet@57230
    78
  Symb_Nil :: "'a symb_list"
blanchet@57230
    79
  Symb_Cons :: "'a \<Rightarrow> 'a symb_list \<Rightarrow> 'a symb_list"
blanchet@57230
    80
blanchet@56078
    81
typedecl pattern
blanchet@56078
    82
blanchet@56078
    83
consts
blanchet@56078
    84
  pat :: "'a \<Rightarrow> pattern"
blanchet@56078
    85
  nopat :: "'a \<Rightarrow> pattern"
blanchet@56078
    86
blanchet@57230
    87
definition trigger :: "pattern symb_list symb_list \<Rightarrow> bool \<Rightarrow> bool" where
blanchet@57230
    88
  "trigger _ P = P"
blanchet@56078
    89
blanchet@56078
    90
wenzelm@60758
    91
subsection \<open>Higher-order encoding\<close>
blanchet@56078
    92
wenzelm@60758
    93
text \<open>
blanchet@56078
    94
Application is made explicit for constants occurring with varying
blanchet@57696
    95
numbers of arguments. This is achieved by the introduction of the
blanchet@56078
    96
following constant.
wenzelm@60758
    97
\<close>
blanchet@56078
    98
blanchet@56078
    99
definition fun_app :: "'a \<Rightarrow> 'a" where "fun_app f = f"
blanchet@56078
   100
wenzelm@60758
   101
text \<open>
blanchet@56078
   102
Some solvers support a theory of arrays which can be used to encode
blanchet@57696
   103
higher-order functions. The following set of lemmas specifies the
blanchet@56078
   104
properties of such (extensional) arrays.
wenzelm@60758
   105
\<close>
blanchet@56078
   106
blanchet@56078
   107
lemmas array_rules = ext fun_upd_apply fun_upd_same fun_upd_other  fun_upd_upd fun_app_def
blanchet@56078
   108
blanchet@56078
   109
wenzelm@60758
   110
subsection \<open>Normalization\<close>
blanchet@56103
   111
blanchet@56103
   112
lemma case_bool_if[abs_def]: "case_bool x y P = (if P then x else y)"
blanchet@56103
   113
  by simp
blanchet@56103
   114
blanchet@56103
   115
lemmas Ex1_def_raw = Ex1_def[abs_def]
blanchet@56103
   116
lemmas Ball_def_raw = Ball_def[abs_def]
blanchet@56103
   117
lemmas Bex_def_raw = Bex_def[abs_def]
blanchet@56103
   118
lemmas abs_if_raw = abs_if[abs_def]
blanchet@56103
   119
lemmas min_def_raw = min_def[abs_def]
blanchet@56103
   120
lemmas max_def_raw = max_def[abs_def]
blanchet@56103
   121
blanchet@66298
   122
lemma nat_int': "\<forall>n. nat (int n) = n" by simp
blanchet@66298
   123
lemma int_nat_nneg: "\<forall>i. i \<ge> 0 \<longrightarrow> int (nat i) = i" by simp
blanchet@66298
   124
lemma int_nat_neg: "\<forall>i. i < 0 \<longrightarrow> int (nat i) = 0" by simp
blanchet@66298
   125
blanchet@66298
   126
lemmas nat_zero_as_int = transfer_nat_int_numerals(1)
blanchet@66298
   127
lemmas nat_one_as_int = transfer_nat_int_numerals(2)
blanchet@66298
   128
lemma nat_numeral_as_int: "numeral = (\<lambda>i. nat (numeral i))" by simp
blanchet@66298
   129
lemma nat_less_as_int: "op < = (\<lambda>a b. int a < int b)" by simp
blanchet@66298
   130
lemma nat_leq_as_int: "op \<le> = (\<lambda>a b. int a \<le> int b)" by simp
blanchet@66298
   131
lemma Suc_as_int: "Suc = (\<lambda>a. nat (int a + 1))" by (rule ext) simp
blanchet@66298
   132
lemma nat_plus_as_int: "op + = (\<lambda>a b. nat (int a + int b))" by (rule ext)+ simp
blanchet@66298
   133
lemma nat_minus_as_int: "op - = (\<lambda>a b. nat (int a - int b))" by (rule ext)+ simp
blanchet@66298
   134
lemma nat_times_as_int: "op * = (\<lambda>a b. nat (int a * int b))" by (simp add: nat_mult_distrib)
blanchet@66298
   135
lemma nat_div_as_int: "op div = (\<lambda>a b. nat (int a div int b))" by (simp add: nat_div_distrib)
blanchet@66298
   136
lemma nat_mod_as_int: "op mod = (\<lambda>a b. nat (int a mod int b))" by (simp add: nat_mod_distrib)
blanchet@66298
   137
blanchet@66298
   138
lemma int_Suc: "int (Suc n) = int n + 1" by simp
blanchet@66298
   139
lemma int_plus: "int (n + m) = int n + int m" by (rule of_nat_add)
blanchet@66298
   140
lemma int_minus: "int (n - m) = int (nat (int n - int m))" by auto
blanchet@66298
   141
blanchet@56103
   142
wenzelm@60758
   143
subsection \<open>Integer division and modulo for Z3\<close>
blanchet@56078
   144
wenzelm@60758
   145
text \<open>
wenzelm@61799
   146
The following Z3-inspired definitions are overspecified for the case where \<open>l = 0\<close>. This
wenzelm@61799
   147
Schönheitsfehler is corrected in the \<open>div_as_z3div\<close> and \<open>mod_as_z3mod\<close> theorems.
wenzelm@60758
   148
\<close>
blanchet@56102
   149
blanchet@56078
   150
definition z3div :: "int \<Rightarrow> int \<Rightarrow> int" where
blanchet@56102
   151
  "z3div k l = (if l \<ge> 0 then k div l else - (k div - l))"
blanchet@56078
   152
blanchet@56078
   153
definition z3mod :: "int \<Rightarrow> int \<Rightarrow> int" where
blanchet@56102
   154
  "z3mod k l = k mod (if l \<ge> 0 then l else - l)"
blanchet@56078
   155
blanchet@56101
   156
lemma div_as_z3div:
blanchet@56102
   157
  "\<forall>k l. k div l = (if l = 0 then 0 else if l > 0 then z3div k l else z3div (- k) (- l))"
blanchet@56101
   158
  by (simp add: z3div_def)
blanchet@56101
   159
blanchet@56101
   160
lemma mod_as_z3mod:
blanchet@56102
   161
  "\<forall>k l. k mod l = (if l = 0 then k else if l > 0 then z3mod k l else - z3mod (- k) (- l))"
blanchet@56101
   162
  by (simp add: z3mod_def)
blanchet@56101
   163
blanchet@56078
   164
wenzelm@60758
   165
subsection \<open>Setup\<close>
blanchet@56078
   166
blanchet@58061
   167
ML_file "Tools/SMT/smt_util.ML"
blanchet@58061
   168
ML_file "Tools/SMT/smt_failure.ML"
blanchet@58061
   169
ML_file "Tools/SMT/smt_config.ML"
blanchet@58061
   170
ML_file "Tools/SMT/smt_builtin.ML"
blanchet@58061
   171
ML_file "Tools/SMT/smt_datatypes.ML"
blanchet@58061
   172
ML_file "Tools/SMT/smt_normalize.ML"
blanchet@58061
   173
ML_file "Tools/SMT/smt_translate.ML"
blanchet@58061
   174
ML_file "Tools/SMT/smtlib.ML"
blanchet@58061
   175
ML_file "Tools/SMT/smtlib_interface.ML"
blanchet@58061
   176
ML_file "Tools/SMT/smtlib_proof.ML"
blanchet@58061
   177
ML_file "Tools/SMT/smtlib_isar.ML"
blanchet@58061
   178
ML_file "Tools/SMT/z3_proof.ML"
blanchet@58061
   179
ML_file "Tools/SMT/z3_isar.ML"
blanchet@58061
   180
ML_file "Tools/SMT/smt_solver.ML"
blanchet@58360
   181
ML_file "Tools/SMT/cvc4_interface.ML"
blanchet@59015
   182
ML_file "Tools/SMT/cvc4_proof_parse.ML"
blanchet@58360
   183
ML_file "Tools/SMT/verit_proof.ML"
blanchet@58360
   184
ML_file "Tools/SMT/verit_isar.ML"
blanchet@58360
   185
ML_file "Tools/SMT/verit_proof_parse.ML"
boehmes@59381
   186
ML_file "Tools/SMT/conj_disj_perm.ML"
blanchet@58061
   187
ML_file "Tools/SMT/z3_interface.ML"
blanchet@58061
   188
ML_file "Tools/SMT/z3_replay_util.ML"
blanchet@58061
   189
ML_file "Tools/SMT/z3_replay_rules.ML"
blanchet@58061
   190
ML_file "Tools/SMT/z3_replay_methods.ML"
blanchet@58061
   191
ML_file "Tools/SMT/z3_replay.ML"
blanchet@58061
   192
ML_file "Tools/SMT/smt_systems.ML"
blanchet@56078
   193
wenzelm@60758
   194
method_setup smt = \<open>
blanchet@56078
   195
  Scan.optional Attrib.thms [] >>
blanchet@56078
   196
    (fn thms => fn ctxt =>
blanchet@58061
   197
      METHOD (fn facts => HEADGOAL (SMT_Solver.smt_tac ctxt (thms @ facts))))
wenzelm@60758
   198
\<close> "apply an SMT solver to the current goal"
blanchet@56078
   199
blanchet@56078
   200
wenzelm@60758
   201
subsection \<open>Configuration\<close>
blanchet@56078
   202
wenzelm@60758
   203
text \<open>
blanchet@56078
   204
The current configuration can be printed by the command
wenzelm@61799
   205
\<open>smt_status\<close>, which shows the values of most options.
wenzelm@60758
   206
\<close>
blanchet@56078
   207
blanchet@56078
   208
wenzelm@60758
   209
subsection \<open>General configuration options\<close>
blanchet@56078
   210
wenzelm@60758
   211
text \<open>
wenzelm@61799
   212
The option \<open>smt_solver\<close> can be used to change the target SMT
wenzelm@61799
   213
solver. The possible values can be obtained from the \<open>smt_status\<close>
blanchet@56078
   214
command.
wenzelm@60758
   215
\<close>
blanchet@56078
   216
blanchet@58061
   217
declare [[smt_solver = z3]]
blanchet@56078
   218
wenzelm@60758
   219
text \<open>
blanchet@57696
   220
Since SMT solvers are potentially nonterminating, there is a timeout
blanchet@57696
   221
(given in seconds) to restrict their runtime.
wenzelm@60758
   222
\<close>
blanchet@56078
   223
blanchet@58061
   224
declare [[smt_timeout = 20]]
blanchet@56078
   225
wenzelm@60758
   226
text \<open>
blanchet@57696
   227
SMT solvers apply randomized heuristics. In case a problem is not
blanchet@56078
   228
solvable by an SMT solver, changing the following option might help.
wenzelm@60758
   229
\<close>
blanchet@56078
   230
blanchet@58061
   231
declare [[smt_random_seed = 1]]
blanchet@56078
   232
wenzelm@60758
   233
text \<open>
blanchet@56078
   234
In general, the binding to SMT solvers runs as an oracle, i.e, the SMT
blanchet@57696
   235
solvers are fully trusted without additional checks. The following
blanchet@56078
   236
option can cause the SMT solver to run in proof-producing mode, giving
blanchet@57696
   237
a checkable certificate. This is currently only implemented for Z3.
wenzelm@60758
   238
\<close>
blanchet@56078
   239
blanchet@58061
   240
declare [[smt_oracle = false]]
blanchet@56078
   241
wenzelm@60758
   242
text \<open>
blanchet@56078
   243
Each SMT solver provides several commandline options to tweak its
blanchet@57696
   244
behaviour. They can be passed to the solver by setting the following
blanchet@56078
   245
options.
wenzelm@60758
   246
\<close>
blanchet@56078
   247
blanchet@58061
   248
declare [[cvc3_options = ""]]
blanchet@66323
   249
declare [[cvc4_options = "--full-saturate-quant --inst-when=full-last-call --inst-no-entail --term-db-mode=relevant --multi-trigger-linear"]]
blanchet@59035
   250
declare [[verit_options = ""]]
blanchet@58061
   251
declare [[z3_options = ""]]
blanchet@56078
   252
wenzelm@60758
   253
text \<open>
blanchet@56078
   254
The SMT method provides an inference mechanism to detect simple triggers
blanchet@56078
   255
in quantified formulas, which might increase the number of problems
blanchet@56078
   256
solvable by SMT solvers (note: triggers guide quantifier instantiations
blanchet@57696
   257
in the SMT solver). To turn it on, set the following option.
wenzelm@60758
   258
\<close>
blanchet@56078
   259
blanchet@58061
   260
declare [[smt_infer_triggers = false]]
blanchet@56078
   261
wenzelm@60758
   262
text \<open>
blanchet@58360
   263
Enable the following option to use built-in support for datatypes,
blanchet@58360
   264
codatatypes, and records in CVC4. Currently, this is implemented only
blanchet@58360
   265
in oracle mode.
wenzelm@60758
   266
\<close>
blanchet@58360
   267
blanchet@58360
   268
declare [[cvc4_extensions = false]]
blanchet@58360
   269
wenzelm@60758
   270
text \<open>
blanchet@56078
   271
Enable the following option to use built-in support for div/mod, datatypes,
blanchet@57696
   272
and records in Z3. Currently, this is implemented only in oracle mode.
wenzelm@60758
   273
\<close>
blanchet@56078
   274
blanchet@58061
   275
declare [[z3_extensions = false]]
blanchet@56078
   276
blanchet@56078
   277
wenzelm@60758
   278
subsection \<open>Certificates\<close>
blanchet@56078
   279
wenzelm@60758
   280
text \<open>
wenzelm@61799
   281
By setting the option \<open>smt_certificates\<close> to the name of a file,
blanchet@56078
   282
all following applications of an SMT solver a cached in that file.
blanchet@56078
   283
Any further application of the same SMT solver (using the very same
blanchet@56078
   284
configuration) re-uses the cached certificate instead of invoking the
blanchet@57696
   285
solver. An empty string disables caching certificates.
blanchet@56078
   286
blanchet@57696
   287
The filename should be given as an explicit path. It is good
blanchet@56078
   288
practice to use the name of the current theory (with ending
wenzelm@61799
   289
\<open>.certs\<close> instead of \<open>.thy\<close>) as the certificates file.
blanchet@56078
   290
Certificate files should be used at most once in a certain theory context,
blanchet@56078
   291
to avoid race conditions with other concurrent accesses.
wenzelm@60758
   292
\<close>
blanchet@56078
   293
blanchet@58061
   294
declare [[smt_certificates = ""]]
blanchet@56078
   295
wenzelm@60758
   296
text \<open>
wenzelm@61799
   297
The option \<open>smt_read_only_certificates\<close> controls whether only
blanchet@56078
   298
stored certificates are should be used or invocation of an SMT solver
wenzelm@61799
   299
is allowed. When set to \<open>true\<close>, no SMT solver will ever be
blanchet@56078
   300
invoked and only the existing certificates found in the configured
wenzelm@61799
   301
cache are used;  when set to \<open>false\<close> and there is no cached
blanchet@56078
   302
certificate for some proposition, then the configured SMT solver is
blanchet@56078
   303
invoked.
wenzelm@60758
   304
\<close>
blanchet@56078
   305
blanchet@58061
   306
declare [[smt_read_only_certificates = false]]
blanchet@56078
   307
blanchet@56078
   308
wenzelm@60758
   309
subsection \<open>Tracing\<close>
blanchet@56078
   310
wenzelm@60758
   311
text \<open>
blanchet@57696
   312
The SMT method, when applied, traces important information. To
wenzelm@61799
   313
make it entirely silent, set the following option to \<open>false\<close>.
wenzelm@60758
   314
\<close>
blanchet@56078
   315
blanchet@58061
   316
declare [[smt_verbose = true]]
blanchet@56078
   317
wenzelm@60758
   318
text \<open>
blanchet@56078
   319
For tracing the generated problem file given to the SMT solver as
blanchet@56078
   320
well as the returned result of the solver, the option
wenzelm@61799
   321
\<open>smt_trace\<close> should be set to \<open>true\<close>.
wenzelm@60758
   322
\<close>
blanchet@56078
   323
blanchet@58061
   324
declare [[smt_trace = false]]
blanchet@56078
   325
blanchet@56078
   326
wenzelm@60758
   327
subsection \<open>Schematic rules for Z3 proof reconstruction\<close>
blanchet@56078
   328
wenzelm@60758
   329
text \<open>
blanchet@57696
   330
Several prof rules of Z3 are not very well documented. There are two
blanchet@56078
   331
lemma groups which can turn failing Z3 proof reconstruction attempts
wenzelm@61799
   332
into succeeding ones: the facts in \<open>z3_rule\<close> are tried prior to
blanchet@56078
   333
any implemented reconstruction procedure for all uncertain Z3 proof
wenzelm@61799
   334
rules;  the facts in \<open>z3_simp\<close> are only fed to invocations of
blanchet@56078
   335
the simplifier when reconstructing theory-specific proof steps.
wenzelm@60758
   336
\<close>
blanchet@56078
   337
blanchet@58061
   338
lemmas [z3_rule] =
blanchet@56078
   339
  refl eq_commute conj_commute disj_commute simp_thms nnf_simps
blanchet@56078
   340
  ring_distribs field_simps times_divide_eq_right times_divide_eq_left
blanchet@56078
   341
  if_True if_False not_not
hoelzl@58776
   342
  NO_MATCH_def
blanchet@56078
   343
blanchet@58061
   344
lemma [z3_rule]:
blanchet@57169
   345
  "(P \<and> Q) = (\<not> (\<not> P \<or> \<not> Q))"
blanchet@57169
   346
  "(P \<and> Q) = (\<not> (\<not> Q \<or> \<not> P))"
blanchet@57169
   347
  "(\<not> P \<and> Q) = (\<not> (P \<or> \<not> Q))"
blanchet@57169
   348
  "(\<not> P \<and> Q) = (\<not> (\<not> Q \<or> P))"
blanchet@57169
   349
  "(P \<and> \<not> Q) = (\<not> (\<not> P \<or> Q))"
blanchet@57169
   350
  "(P \<and> \<not> Q) = (\<not> (Q \<or> \<not> P))"
blanchet@57169
   351
  "(\<not> P \<and> \<not> Q) = (\<not> (P \<or> Q))"
blanchet@57169
   352
  "(\<not> P \<and> \<not> Q) = (\<not> (Q \<or> P))"
blanchet@56078
   353
  by auto
blanchet@56078
   354
blanchet@58061
   355
lemma [z3_rule]:
blanchet@57169
   356
  "(P \<longrightarrow> Q) = (Q \<or> \<not> P)"
blanchet@57169
   357
  "(\<not> P \<longrightarrow> Q) = (P \<or> Q)"
blanchet@57169
   358
  "(\<not> P \<longrightarrow> Q) = (Q \<or> P)"
blanchet@56078
   359
  "(True \<longrightarrow> P) = P"
blanchet@56078
   360
  "(P \<longrightarrow> True) = True"
blanchet@56078
   361
  "(False \<longrightarrow> P) = True"
blanchet@56078
   362
  "(P \<longrightarrow> P) = True"
blanchet@59037
   363
  "(\<not> (A \<longleftrightarrow> \<not> B)) \<longleftrightarrow> (A \<longleftrightarrow> B)"
blanchet@56078
   364
  by auto
blanchet@56078
   365
blanchet@58061
   366
lemma [z3_rule]:
blanchet@57169
   367
  "((P = Q) \<longrightarrow> R) = (R | (Q = (\<not> P)))"
blanchet@56078
   368
  by auto
blanchet@56078
   369
blanchet@58061
   370
lemma [z3_rule]:
blanchet@57169
   371
  "(\<not> True) = False"
blanchet@57169
   372
  "(\<not> False) = True"
blanchet@56078
   373
  "(x = x) = True"
blanchet@56078
   374
  "(P = True) = P"
blanchet@56078
   375
  "(True = P) = P"
blanchet@57169
   376
  "(P = False) = (\<not> P)"
blanchet@57169
   377
  "(False = P) = (\<not> P)"
blanchet@57169
   378
  "((\<not> P) = P) = False"
blanchet@57169
   379
  "(P = (\<not> P)) = False"
blanchet@57169
   380
  "((\<not> P) = (\<not> Q)) = (P = Q)"
blanchet@57169
   381
  "\<not> (P = (\<not> Q)) = (P = Q)"
blanchet@57169
   382
  "\<not> ((\<not> P) = Q) = (P = Q)"
blanchet@57169
   383
  "(P \<noteq> Q) = (Q = (\<not> P))"
blanchet@57169
   384
  "(P = Q) = ((\<not> P \<or> Q) \<and> (P \<or> \<not> Q))"
blanchet@57169
   385
  "(P \<noteq> Q) = ((\<not> P \<or> \<not> Q) \<and> (P \<or> Q))"
blanchet@56078
   386
  by auto
blanchet@56078
   387
blanchet@58061
   388
lemma [z3_rule]:
blanchet@57169
   389
  "(if P then P else \<not> P) = True"
blanchet@57169
   390
  "(if \<not> P then \<not> P else P) = True"
blanchet@56078
   391
  "(if P then True else False) = P"
blanchet@57169
   392
  "(if P then False else True) = (\<not> P)"
blanchet@57169
   393
  "(if P then Q else True) = ((\<not> P) \<or> Q)"
blanchet@57169
   394
  "(if P then Q else True) = (Q \<or> (\<not> P))"
blanchet@57169
   395
  "(if P then Q else \<not> Q) = (P = Q)"
blanchet@57169
   396
  "(if P then Q else \<not> Q) = (Q = P)"
blanchet@57169
   397
  "(if P then \<not> Q else Q) = (P = (\<not> Q))"
blanchet@57169
   398
  "(if P then \<not> Q else Q) = ((\<not> Q) = P)"
blanchet@57169
   399
  "(if \<not> P then x else y) = (if P then y else x)"
blanchet@57169
   400
  "(if P then (if Q then x else y) else x) = (if P \<and> (\<not> Q) then y else x)"
blanchet@57169
   401
  "(if P then (if Q then x else y) else x) = (if (\<not> Q) \<and> P then y else x)"
blanchet@56078
   402
  "(if P then (if Q then x else y) else y) = (if P \<and> Q then x else y)"
blanchet@56078
   403
  "(if P then (if Q then x else y) else y) = (if Q \<and> P then x else y)"
blanchet@56078
   404
  "(if P then x else if P then y else z) = (if P then x else z)"
blanchet@56078
   405
  "(if P then x else if Q then x else y) = (if P \<or> Q then x else y)"
blanchet@56078
   406
  "(if P then x else if Q then x else y) = (if Q \<or> P then x else y)"
blanchet@56078
   407
  "(if P then x = y else x = z) = (x = (if P then y else z))"
blanchet@56078
   408
  "(if P then x = y else y = z) = (y = (if P then x else z))"
blanchet@56078
   409
  "(if P then x = y else z = y) = (y = (if P then x else z))"
blanchet@56078
   410
  by auto
blanchet@56078
   411
blanchet@58061
   412
lemma [z3_rule]:
blanchet@56078
   413
  "0 + (x::int) = x"
blanchet@56078
   414
  "x + 0 = x"
blanchet@56078
   415
  "x + x = 2 * x"
blanchet@56078
   416
  "0 * x = 0"
blanchet@56078
   417
  "1 * x = x"
blanchet@56078
   418
  "x + y = y + x"
blanchet@57230
   419
  by (auto simp add: mult_2)
blanchet@56078
   420
blanchet@58061
   421
lemma [z3_rule]:  (* for def-axiom *)
blanchet@56078
   422
  "P = Q \<or> P \<or> Q"
blanchet@57169
   423
  "P = Q \<or> \<not> P \<or> \<not> Q"
blanchet@57169
   424
  "(\<not> P) = Q \<or> \<not> P \<or> Q"
blanchet@57169
   425
  "(\<not> P) = Q \<or> P \<or> \<not> Q"
blanchet@57169
   426
  "P = (\<not> Q) \<or> \<not> P \<or> Q"
blanchet@57169
   427
  "P = (\<not> Q) \<or> P \<or> \<not> Q"
blanchet@57169
   428
  "P \<noteq> Q \<or> P \<or> \<not> Q"
blanchet@57169
   429
  "P \<noteq> Q \<or> \<not> P \<or> Q"
blanchet@57169
   430
  "P \<noteq> (\<not> Q) \<or> P \<or> Q"
blanchet@57169
   431
  "(\<not> P) \<noteq> Q \<or> P \<or> Q"
blanchet@57169
   432
  "P \<or> Q \<or> P \<noteq> (\<not> Q)"
blanchet@57169
   433
  "P \<or> Q \<or> (\<not> P) \<noteq> Q"
blanchet@57169
   434
  "P \<or> \<not> Q \<or> P \<noteq> Q"
blanchet@57169
   435
  "\<not> P \<or> Q \<or> P \<noteq> Q"
blanchet@56078
   436
  "P \<or> y = (if P then x else y)"
blanchet@56078
   437
  "P \<or> (if P then x else y) = y"
blanchet@57169
   438
  "\<not> P \<or> x = (if P then x else y)"
blanchet@57169
   439
  "\<not> P \<or> (if P then x else y) = x"
blanchet@57169
   440
  "P \<or> R \<or> \<not> (if P then Q else R)"
blanchet@57169
   441
  "\<not> P \<or> Q \<or> \<not> (if P then Q else R)"
blanchet@57169
   442
  "\<not> (if P then Q else R) \<or> \<not> P \<or> Q"
blanchet@57169
   443
  "\<not> (if P then Q else R) \<or> P \<or> R"
blanchet@57169
   444
  "(if P then Q else R) \<or> \<not> P \<or> \<not> Q"
blanchet@57169
   445
  "(if P then Q else R) \<or> P \<or> \<not> R"
blanchet@57169
   446
  "(if P then \<not> Q else R) \<or> \<not> P \<or> Q"
blanchet@57169
   447
  "(if P then Q else \<not> R) \<or> P \<or> R"
blanchet@56078
   448
  by auto
blanchet@56078
   449
blanchet@57230
   450
hide_type (open) symb_list pattern
blanchet@57230
   451
hide_const (open) Symb_Nil Symb_Cons trigger pat nopat fun_app z3div z3mod
blanchet@56078
   452
blanchet@56078
   453
end