src/HOL/simpdata.ML
author wenzelm
Fri Mar 31 22:39:06 2000 +0200 (2000-03-31)
changeset 8644 c47735e7bd1c
parent 8641 978db2870862
child 8955 714497ad2348
permissions -rw-r--r--
added cong atts;
clasohm@1465
     1
(*  Title:      HOL/simpdata.ML
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Tobias Nipkow
clasohm@923
     4
    Copyright   1991  University of Cambridge
clasohm@923
     5
oheimb@5304
     6
Instantiation of the generic simplifier for HOL.
clasohm@923
     7
*)
clasohm@923
     8
paulson@1984
     9
section "Simplifier";
paulson@1984
    10
wenzelm@6514
    11
(*** Addition of rules to simpsets and clasets simultaneously ***)	(* FIXME move to Provers/clasimp.ML? *)
paulson@1984
    12
berghofe@5190
    13
infix 4 addIffs delIffs;
berghofe@5190
    14
paulson@1984
    15
(*Takes UNCONDITIONAL theorems of the form A<->B to 
paulson@2031
    16
        the Safe Intr     rule B==>A and 
paulson@2031
    17
        the Safe Destruct rule A==>B.
paulson@1984
    18
  Also ~A goes to the Safe Elim rule A ==> ?R
paulson@1984
    19
  Failing other cases, A is added as a Safe Intr rule*)
paulson@1984
    20
local
paulson@1984
    21
  val iff_const = HOLogic.eq_const HOLogic.boolT;
paulson@1984
    22
berghofe@5190
    23
  fun addIff ((cla, simp), th) = 
berghofe@5190
    24
      (case HOLogic.dest_Trueprop (#prop (rep_thm th)) of
berghofe@5190
    25
                (Const("Not", _) $ A) =>
berghofe@5190
    26
                    cla addSEs [zero_var_indexes (th RS notE)]
paulson@2031
    27
              | (con $ _ $ _) =>
berghofe@5190
    28
                    if con = iff_const
berghofe@5190
    29
                    then cla addSIs [zero_var_indexes (th RS iffD2)]  
berghofe@5190
    30
                              addSDs [zero_var_indexes (th RS iffD1)]
berghofe@5190
    31
                    else  cla addSIs [th]
berghofe@5190
    32
              | _ => cla addSIs [th],
berghofe@5190
    33
       simp addsimps [th])
wenzelm@6968
    34
      handle TERM _ => error ("AddIffs: theorem must be unconditional\n" ^ 
berghofe@5190
    35
                         string_of_thm th);
paulson@1984
    36
berghofe@5190
    37
  fun delIff ((cla, simp), th) = 
berghofe@5190
    38
      (case HOLogic.dest_Trueprop (#prop (rep_thm th)) of
berghofe@5190
    39
                (Const ("Not", _) $ A) =>
berghofe@5190
    40
                    cla delrules [zero_var_indexes (th RS notE)]
paulson@2031
    41
              | (con $ _ $ _) =>
berghofe@5190
    42
                    if con = iff_const
berghofe@5190
    43
                    then cla delrules [zero_var_indexes (th RS iffD2),
berghofe@5190
    44
                                       make_elim (zero_var_indexes (th RS iffD1))]
berghofe@5190
    45
                    else cla delrules [th]
berghofe@5190
    46
              | _ => cla delrules [th],
berghofe@5190
    47
       simp delsimps [th])
wenzelm@6968
    48
      handle TERM _ => (warning("DelIffs: ignoring conditional theorem\n" ^ 
berghofe@5190
    49
                          string_of_thm th); (cla, simp));
berghofe@5190
    50
berghofe@5190
    51
  fun store_clasimp (cla, simp) = (claset_ref () := cla; simpset_ref () := simp)
paulson@1984
    52
in
berghofe@5190
    53
val op addIffs = foldl addIff;
berghofe@5190
    54
val op delIffs = foldl delIff;
berghofe@5190
    55
fun AddIffs thms = store_clasimp ((claset (), simpset ()) addIffs thms);
berghofe@5190
    56
fun DelIffs thms = store_clasimp ((claset (), simpset ()) delIffs thms);
paulson@1984
    57
end;
paulson@1984
    58
oheimb@5304
    59
wenzelm@7357
    60
val [prem] = goal (the_context ()) "x==y ==> x=y";
paulson@7031
    61
by (rewtac prem);
paulson@7031
    62
by (rtac refl 1);
paulson@7031
    63
qed "meta_eq_to_obj_eq";
nipkow@4640
    64
clasohm@923
    65
local
clasohm@923
    66
wenzelm@7357
    67
  fun prover s = prove_goal (the_context ()) s (fn _ => [(Blast_tac 1)]);
clasohm@923
    68
nipkow@2134
    69
in
nipkow@2134
    70
oheimb@5552
    71
(*Make meta-equalities.  The operator below is Trueprop*)
oheimb@5552
    72
nipkow@6128
    73
fun mk_meta_eq r = r RS eq_reflection;
nipkow@6128
    74
nipkow@6128
    75
val Eq_TrueI  = mk_meta_eq(prover  "P --> (P = True)"  RS mp);
nipkow@6128
    76
val Eq_FalseI = mk_meta_eq(prover "~P --> (P = False)" RS mp);
oheimb@5304
    77
nipkow@6128
    78
fun mk_eq th = case concl_of th of
nipkow@6128
    79
        Const("==",_)$_$_       => th
nipkow@6128
    80
    |   _$(Const("op =",_)$_$_) => mk_meta_eq th
nipkow@6128
    81
    |   _$(Const("Not",_)$_)    => th RS Eq_FalseI
nipkow@6128
    82
    |   _                       => th RS Eq_TrueI;
nipkow@6128
    83
(* last 2 lines requires all formulae to be of the from Trueprop(.) *)
oheimb@5304
    84
nipkow@6128
    85
fun mk_eq_True r = Some(r RS meta_eq_to_obj_eq RS Eq_TrueI);
oheimb@5552
    86
nipkow@6128
    87
fun mk_meta_cong rl =
nipkow@6128
    88
  standard(mk_meta_eq(replicate (nprems_of rl) meta_eq_to_obj_eq MRS rl))
nipkow@6128
    89
  handle THM _ =>
nipkow@6128
    90
  error("Premises and conclusion of congruence rules must be =-equalities");
nipkow@3896
    91
nipkow@5975
    92
val not_not = prover "(~ ~ P) = P";
clasohm@923
    93
nipkow@5975
    94
val simp_thms = [not_not] @ map prover
paulson@2082
    95
 [ "(x=x) = True",
nipkow@5975
    96
   "(~True) = False", "(~False) = True",
paulson@2082
    97
   "(~P) ~= P", "P ~= (~P)", "(P ~= Q) = (P = (~Q))",
nipkow@4640
    98
   "(True=P) = P", "(P=True) = P", "(False=P) = (~P)", "(P=False) = (~P)",
paulson@2082
    99
   "(True --> P) = P", "(False --> P) = True", 
paulson@2082
   100
   "(P --> True) = True", "(P --> P) = True",
paulson@2082
   101
   "(P --> False) = (~P)", "(P --> ~P) = (~P)",
paulson@2082
   102
   "(P & True) = P", "(True & P) = P", 
nipkow@2800
   103
   "(P & False) = False", "(False & P) = False",
nipkow@2800
   104
   "(P & P) = P", "(P & (P & Q)) = (P & Q)",
paulson@3913
   105
   "(P & ~P) = False",    "(~P & P) = False",
paulson@2082
   106
   "(P | True) = True", "(True | P) = True", 
nipkow@2800
   107
   "(P | False) = P", "(False | P) = P",
nipkow@2800
   108
   "(P | P) = P", "(P | (P | Q)) = (P | Q)",
paulson@3913
   109
   "(P | ~P) = True",    "(~P | P) = True",
paulson@2082
   110
   "((~P) = (~Q)) = (P=Q)",
wenzelm@3842
   111
   "(!x. P) = P", "(? x. P) = P", "? x. x=t", "? x. t=x", 
paulson@4351
   112
(*two needed for the one-point-rule quantifier simplification procs*)
paulson@4351
   113
   "(? x. x=t & P(x)) = P(t)",		(*essential for termination!!*)
paulson@4351
   114
   "(! x. t=x --> P(x)) = P(t)" ];      (*covers a stray case*)
clasohm@923
   115
oheimb@5552
   116
(* Add congruence rules for = (instead of ==) *)
paulson@4351
   117
oheimb@5552
   118
(* ###FIXME: Move to simplifier, 
oheimb@5552
   119
   taking mk_meta_cong as input, eliminating addeqcongs and deleqcongs *)
oheimb@5552
   120
infix 4 addcongs delcongs;
nipkow@4640
   121
fun ss addcongs congs = ss addeqcongs (map mk_meta_cong congs);
nipkow@4640
   122
fun ss delcongs congs = ss deleqcongs (map mk_meta_cong congs);
wenzelm@4086
   123
fun Addcongs congs = (simpset_ref() := simpset() addcongs congs);
wenzelm@4086
   124
fun Delcongs congs = (simpset_ref() := simpset() delcongs congs);
clasohm@1264
   125
wenzelm@8641
   126
val cong_add_global = Simplifier.change_global_ss (op addcongs);
wenzelm@8644
   127
val cong_del_global = Simplifier.change_global_ss (op delcongs);
wenzelm@8641
   128
val cong_add_local = Simplifier.change_local_ss (op addcongs);
wenzelm@8644
   129
val cong_del_local = Simplifier.change_local_ss (op delcongs);
wenzelm@8641
   130
wenzelm@8641
   131
val cong_attrib_setup =
wenzelm@8644
   132
 [Attrib.add_attributes [("cong",
wenzelm@8644
   133
   (Attrib.add_del_args cong_add_global cong_del_global,
wenzelm@8644
   134
    Attrib.add_del_args cong_add_local cong_del_local),
wenzelm@8644
   135
    "declare Simplifier congruence rules")]];
wenzelm@8641
   136
oheimb@5552
   137
paulson@1922
   138
val imp_cong = impI RSN
wenzelm@7357
   139
    (2, prove_goal (the_context ()) "(P=P')--> (P'--> (Q=Q'))--> ((P-->Q) = (P'-->Q'))"
paulson@7031
   140
        (fn _=> [(Blast_tac 1)]) RS mp RS mp);
paulson@1922
   141
paulson@1948
   142
(*Miniscoping: pushing in existential quantifiers*)
wenzelm@7648
   143
val ex_simps = map prover
wenzelm@3842
   144
                ["(EX x. P x & Q)   = ((EX x. P x) & Q)",
wenzelm@3842
   145
                 "(EX x. P & Q x)   = (P & (EX x. Q x))",
wenzelm@3842
   146
                 "(EX x. P x | Q)   = ((EX x. P x) | Q)",
wenzelm@3842
   147
                 "(EX x. P | Q x)   = (P | (EX x. Q x))",
wenzelm@3842
   148
                 "(EX x. P x --> Q) = ((ALL x. P x) --> Q)",
wenzelm@3842
   149
                 "(EX x. P --> Q x) = (P --> (EX x. Q x))"];
paulson@1948
   150
paulson@1948
   151
(*Miniscoping: pushing in universal quantifiers*)
paulson@1948
   152
val all_simps = map prover
wenzelm@3842
   153
                ["(ALL x. P x & Q)   = ((ALL x. P x) & Q)",
wenzelm@3842
   154
                 "(ALL x. P & Q x)   = (P & (ALL x. Q x))",
wenzelm@3842
   155
                 "(ALL x. P x | Q)   = ((ALL x. P x) | Q)",
wenzelm@3842
   156
                 "(ALL x. P | Q x)   = (P | (ALL x. Q x))",
wenzelm@3842
   157
                 "(ALL x. P x --> Q) = ((EX x. P x) --> Q)",
wenzelm@3842
   158
                 "(ALL x. P --> Q x) = (P --> (ALL x. Q x))"];
paulson@1948
   159
clasohm@923
   160
paulson@2022
   161
(* elimination of existential quantifiers in assumptions *)
clasohm@923
   162
clasohm@923
   163
val ex_all_equiv =
wenzelm@7357
   164
  let val lemma1 = prove_goal (the_context ())
clasohm@923
   165
        "(? x. P(x) ==> PROP Q) ==> (!!x. P(x) ==> PROP Q)"
clasohm@923
   166
        (fn prems => [resolve_tac prems 1, etac exI 1]);
wenzelm@7357
   167
      val lemma2 = prove_goalw (the_context ()) [Ex_def]
clasohm@923
   168
        "(!!x. P(x) ==> PROP Q) ==> (? x. P(x) ==> PROP Q)"
paulson@7031
   169
        (fn prems => [(REPEAT(resolve_tac prems 1))])
clasohm@923
   170
  in equal_intr lemma1 lemma2 end;
clasohm@923
   171
clasohm@923
   172
end;
clasohm@923
   173
wenzelm@7648
   174
bind_thms ("ex_simps", ex_simps);
wenzelm@7648
   175
bind_thms ("all_simps", all_simps);
berghofe@7711
   176
bind_thm ("not_not", not_not);
wenzelm@7648
   177
nipkow@3654
   178
(* Elimination of True from asumptions: *)
nipkow@3654
   179
wenzelm@7357
   180
val True_implies_equals = prove_goal (the_context ())
nipkow@3654
   181
 "(True ==> PROP P) == PROP P"
paulson@7031
   182
(fn _ => [rtac equal_intr_rule 1, atac 2,
nipkow@3654
   183
          METAHYPS (fn prems => resolve_tac prems 1) 1,
nipkow@3654
   184
          rtac TrueI 1]);
nipkow@3654
   185
wenzelm@7357
   186
fun prove nm thm  = qed_goal nm (the_context ()) thm (fn _ => [(Blast_tac 1)]);
clasohm@923
   187
paulson@7623
   188
prove "eq_commute" "(a=b)=(b=a)";
paulson@7623
   189
prove "eq_left_commute" "(P=(Q=R)) = (Q=(P=R))";
paulson@7623
   190
prove "eq_assoc" "((P=Q)=R) = (P=(Q=R))";
paulson@7623
   191
val eq_ac = [eq_commute, eq_left_commute, eq_assoc];
paulson@7623
   192
clasohm@923
   193
prove "conj_commute" "(P&Q) = (Q&P)";
clasohm@923
   194
prove "conj_left_commute" "(P&(Q&R)) = (Q&(P&R))";
clasohm@923
   195
val conj_comms = [conj_commute, conj_left_commute];
nipkow@2134
   196
prove "conj_assoc" "((P&Q)&R) = (P&(Q&R))";
clasohm@923
   197
paulson@1922
   198
prove "disj_commute" "(P|Q) = (Q|P)";
paulson@1922
   199
prove "disj_left_commute" "(P|(Q|R)) = (Q|(P|R))";
paulson@1922
   200
val disj_comms = [disj_commute, disj_left_commute];
nipkow@2134
   201
prove "disj_assoc" "((P|Q)|R) = (P|(Q|R))";
paulson@1922
   202
clasohm@923
   203
prove "conj_disj_distribL" "(P&(Q|R)) = (P&Q | P&R)";
clasohm@923
   204
prove "conj_disj_distribR" "((P|Q)&R) = (P&R | Q&R)";
nipkow@1485
   205
paulson@1892
   206
prove "disj_conj_distribL" "(P|(Q&R)) = ((P|Q) & (P|R))";
paulson@1892
   207
prove "disj_conj_distribR" "((P&Q)|R) = ((P|R) & (Q|R))";
paulson@1892
   208
nipkow@2134
   209
prove "imp_conjR" "(P --> (Q&R)) = ((P-->Q) & (P-->R))";
nipkow@2134
   210
prove "imp_conjL" "((P&Q) -->R)  = (P --> (Q --> R))";
nipkow@2134
   211
prove "imp_disjL" "((P|Q) --> R) = ((P-->R)&(Q-->R))";
paulson@1892
   212
paulson@3448
   213
(*These two are specialized, but imp_disj_not1 is useful in Auth/Yahalom.ML*)
paulson@8114
   214
prove "imp_disj_not1" "(P --> Q | R) = (~Q --> P --> R)";
paulson@8114
   215
prove "imp_disj_not2" "(P --> Q | R) = (~R --> P --> Q)";
paulson@3448
   216
paulson@3904
   217
prove "imp_disj1" "((P-->Q)|R) = (P--> Q|R)";
paulson@3904
   218
prove "imp_disj2" "(Q|(P-->R)) = (P--> Q|R)";
paulson@3904
   219
nipkow@1485
   220
prove "de_Morgan_disj" "(~(P | Q)) = (~P & ~Q)";
nipkow@1485
   221
prove "de_Morgan_conj" "(~(P & Q)) = (~P | ~Q)";
paulson@3446
   222
prove "not_imp" "(~(P --> Q)) = (P & ~Q)";
paulson@1922
   223
prove "not_iff" "(P~=Q) = (P = (~Q))";
oheimb@4743
   224
prove "disj_not1" "(~P | Q) = (P --> Q)";
oheimb@4743
   225
prove "disj_not2" "(P | ~Q) = (Q --> P)"; (* changes orientation :-( *)
nipkow@5975
   226
prove "imp_conv_disj" "(P --> Q) = ((~P) | Q)";
nipkow@5975
   227
nipkow@5975
   228
prove "iff_conv_conj_imp" "(P = Q) = ((P --> Q) & (Q --> P))";
nipkow@5975
   229
nipkow@1485
   230
nipkow@4830
   231
(*Avoids duplication of subgoals after split_if, when the true and false 
nipkow@2134
   232
  cases boil down to the same thing.*) 
nipkow@2134
   233
prove "cases_simp" "((P --> Q) & (~P --> Q)) = Q";
nipkow@2134
   234
wenzelm@3842
   235
prove "not_all" "(~ (! x. P(x))) = (? x.~P(x))";
paulson@1922
   236
prove "imp_all" "((! x. P x) --> Q) = (? x. P x --> Q)";
wenzelm@3842
   237
prove "not_ex"  "(~ (? x. P(x))) = (! x.~P(x))";
paulson@1922
   238
prove "imp_ex" "((? x. P x) --> Q) = (! x. P x --> Q)";
oheimb@1660
   239
nipkow@1655
   240
prove "ex_disj_distrib" "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))";
nipkow@1655
   241
prove "all_conj_distrib" "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))";
nipkow@1655
   242
nipkow@2134
   243
(* '&' congruence rule: not included by default!
nipkow@2134
   244
   May slow rewrite proofs down by as much as 50% *)
nipkow@2134
   245
wenzelm@7357
   246
let val th = prove_goal (the_context ()) 
nipkow@2134
   247
                "(P=P')--> (P'--> (Q=Q'))--> ((P&Q) = (P'&Q'))"
paulson@7031
   248
                (fn _=> [(Blast_tac 1)])
nipkow@2134
   249
in  bind_thm("conj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   250
wenzelm@7357
   251
let val th = prove_goal (the_context ()) 
nipkow@2134
   252
                "(Q=Q')--> (Q'--> (P=P'))--> ((P&Q) = (P'&Q'))"
paulson@7031
   253
                (fn _=> [(Blast_tac 1)])
nipkow@2134
   254
in  bind_thm("rev_conj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   255
nipkow@2134
   256
(* '|' congruence rule: not included by default! *)
nipkow@2134
   257
wenzelm@7357
   258
let val th = prove_goal (the_context ()) 
nipkow@2134
   259
                "(P=P')--> (~P'--> (Q=Q'))--> ((P|Q) = (P'|Q'))"
paulson@7031
   260
                (fn _=> [(Blast_tac 1)])
nipkow@2134
   261
in  bind_thm("disj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   262
nipkow@2134
   263
prove "eq_sym_conv" "(x=y) = (y=x)";
nipkow@2134
   264
paulson@5278
   265
paulson@5278
   266
(** if-then-else rules **)
paulson@5278
   267
paulson@7031
   268
Goalw [if_def] "(if True then x else y) = x";
paulson@7031
   269
by (Blast_tac 1);
paulson@7031
   270
qed "if_True";
nipkow@2134
   271
paulson@7031
   272
Goalw [if_def] "(if False then x else y) = y";
paulson@7031
   273
by (Blast_tac 1);
paulson@7031
   274
qed "if_False";
nipkow@2134
   275
paulson@7127
   276
Goalw [if_def] "P ==> (if P then x else y) = x";
paulson@7031
   277
by (Blast_tac 1);
paulson@7031
   278
qed "if_P";
oheimb@5304
   279
paulson@7127
   280
Goalw [if_def] "~P ==> (if P then x else y) = y";
paulson@7031
   281
by (Blast_tac 1);
paulson@7031
   282
qed "if_not_P";
nipkow@2134
   283
paulson@7031
   284
Goal "P(if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))";
paulson@7031
   285
by (res_inst_tac [("Q","Q")] (excluded_middle RS disjE) 1);
paulson@7031
   286
by (stac if_P 2);
paulson@7031
   287
by (stac if_not_P 1);
paulson@7031
   288
by (ALLGOALS (Blast_tac));
paulson@7031
   289
qed "split_if";
paulson@7031
   290
nipkow@4830
   291
(* for backwards compatibility: *)
nipkow@4830
   292
val expand_if = split_if;
oheimb@4205
   293
paulson@7031
   294
Goal "P(if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))";
paulson@7031
   295
by (stac split_if 1);
paulson@7031
   296
by (Blast_tac 1);
paulson@7031
   297
qed "split_if_asm";
nipkow@2134
   298
paulson@7031
   299
Goal "(if c then x else x) = x";
paulson@7031
   300
by (stac split_if 1);
paulson@7031
   301
by (Blast_tac 1);
paulson@7031
   302
qed "if_cancel";
oheimb@5304
   303
paulson@7031
   304
Goal "(if x = y then y else x) = x";
paulson@7031
   305
by (stac split_if 1);
paulson@7031
   306
by (Blast_tac 1);
paulson@7031
   307
qed "if_eq_cancel";
oheimb@5304
   308
paulson@4769
   309
(*This form is useful for expanding IFs on the RIGHT of the ==> symbol*)
paulson@7127
   310
Goal "(if P then Q else R) = ((P-->Q) & (~P-->R))";
paulson@7031
   311
by (rtac split_if 1);
paulson@7031
   312
qed "if_bool_eq_conj";
paulson@4769
   313
paulson@4769
   314
(*And this form is useful for expanding IFs on the LEFT*)
paulson@7031
   315
Goal "(if P then Q else R) = ((P&Q) | (~P&R))";
paulson@7031
   316
by (stac split_if 1);
paulson@7031
   317
by (Blast_tac 1);
paulson@7031
   318
qed "if_bool_eq_disj";
nipkow@2134
   319
paulson@4351
   320
paulson@4351
   321
(*** make simplification procedures for quantifier elimination ***)
paulson@4351
   322
paulson@4351
   323
structure Quantifier1 = Quantifier1Fun(
paulson@4351
   324
struct
paulson@4351
   325
  (*abstract syntax*)
paulson@4351
   326
  fun dest_eq((c as Const("op =",_)) $ s $ t) = Some(c,s,t)
paulson@4351
   327
    | dest_eq _ = None;
paulson@4351
   328
  fun dest_conj((c as Const("op &",_)) $ s $ t) = Some(c,s,t)
paulson@4351
   329
    | dest_conj _ = None;
paulson@4351
   330
  val conj = HOLogic.conj
paulson@4351
   331
  val imp  = HOLogic.imp
paulson@4351
   332
  (*rules*)
paulson@4351
   333
  val iff_reflection = eq_reflection
paulson@4351
   334
  val iffI = iffI
paulson@4351
   335
  val sym  = sym
paulson@4351
   336
  val conjI= conjI
paulson@4351
   337
  val conjE= conjE
paulson@4351
   338
  val impI = impI
paulson@4351
   339
  val impE = impE
paulson@4351
   340
  val mp   = mp
paulson@4351
   341
  val exI  = exI
paulson@4351
   342
  val exE  = exE
paulson@4351
   343
  val allI = allI
paulson@4351
   344
  val allE = allE
paulson@4351
   345
end);
paulson@4351
   346
nipkow@4320
   347
local
nipkow@4320
   348
val ex_pattern =
wenzelm@7357
   349
  Thm.read_cterm (Theory.sign_of (the_context ())) ("EX x. P(x) & Q(x)",HOLogic.boolT)
paulson@3913
   350
nipkow@4320
   351
val all_pattern =
wenzelm@7357
   352
  Thm.read_cterm (Theory.sign_of (the_context ())) ("ALL x. P(x) & P'(x) --> Q(x)",HOLogic.boolT)
nipkow@4320
   353
nipkow@4320
   354
in
nipkow@4320
   355
val defEX_regroup =
nipkow@4320
   356
  mk_simproc "defined EX" [ex_pattern] Quantifier1.rearrange_ex;
nipkow@4320
   357
val defALL_regroup =
nipkow@4320
   358
  mk_simproc "defined ALL" [all_pattern] Quantifier1.rearrange_all;
nipkow@4320
   359
end;
paulson@3913
   360
paulson@4351
   361
paulson@4351
   362
(*** Case splitting ***)
paulson@3913
   363
oheimb@5304
   364
structure SplitterData =
oheimb@5304
   365
  struct
oheimb@5304
   366
  structure Simplifier = Simplifier
oheimb@5552
   367
  val mk_eq          = mk_eq
oheimb@5304
   368
  val meta_eq_to_iff = meta_eq_to_obj_eq
oheimb@5304
   369
  val iffD           = iffD2
oheimb@5304
   370
  val disjE          = disjE
oheimb@5304
   371
  val conjE          = conjE
oheimb@5304
   372
  val exE            = exE
oheimb@5304
   373
  val contrapos      = contrapos
oheimb@5304
   374
  val contrapos2     = contrapos2
oheimb@5304
   375
  val notnotD        = notnotD
oheimb@5304
   376
  end;
nipkow@4681
   377
oheimb@5304
   378
structure Splitter = SplitterFun(SplitterData);
oheimb@2263
   379
oheimb@5304
   380
val split_tac        = Splitter.split_tac;
oheimb@5304
   381
val split_inside_tac = Splitter.split_inside_tac;
oheimb@5304
   382
val split_asm_tac    = Splitter.split_asm_tac;
oheimb@5307
   383
val op addsplits     = Splitter.addsplits;
oheimb@5307
   384
val op delsplits     = Splitter.delsplits;
oheimb@5304
   385
val Addsplits        = Splitter.Addsplits;
oheimb@5304
   386
val Delsplits        = Splitter.Delsplits;
oheimb@4718
   387
nipkow@2134
   388
(*In general it seems wrong to add distributive laws by default: they
nipkow@2134
   389
  might cause exponential blow-up.  But imp_disjL has been in for a while
nipkow@2134
   390
  and cannot be removed without affecting existing proofs.  Moreover, 
nipkow@2134
   391
  rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the
nipkow@2134
   392
  grounds that it allows simplification of R in the two cases.*)
nipkow@2134
   393
oheimb@5304
   394
fun gen_all th = forall_elim_vars (#maxidx(rep_thm th)+1) th;
oheimb@5304
   395
nipkow@2134
   396
val mksimps_pairs =
nipkow@2134
   397
  [("op -->", [mp]), ("op &", [conjunct1,conjunct2]),
nipkow@2134
   398
   ("All", [spec]), ("True", []), ("False", []),
paulson@4769
   399
   ("If", [if_bool_eq_conj RS iffD1])];
nipkow@1758
   400
oheimb@5552
   401
(* ###FIXME: move to Provers/simplifier.ML
oheimb@5304
   402
val mk_atomize:      (string * thm list) list -> thm -> thm list
oheimb@5304
   403
*)
oheimb@5552
   404
(* ###FIXME: move to Provers/simplifier.ML *)
oheimb@5304
   405
fun mk_atomize pairs =
oheimb@5304
   406
  let fun atoms th =
oheimb@5304
   407
        (case concl_of th of
oheimb@5304
   408
           Const("Trueprop",_) $ p =>
oheimb@5304
   409
             (case head_of p of
oheimb@5304
   410
                Const(a,_) =>
oheimb@5304
   411
                  (case assoc(pairs,a) of
oheimb@5304
   412
                     Some(rls) => flat (map atoms ([th] RL rls))
oheimb@5304
   413
                   | None => [th])
oheimb@5304
   414
              | _ => [th])
oheimb@5304
   415
         | _ => [th])
oheimb@5304
   416
  in atoms end;
oheimb@5304
   417
oheimb@5552
   418
fun mksimps pairs = (map mk_eq o mk_atomize pairs o gen_all);
oheimb@5304
   419
nipkow@7570
   420
fun unsafe_solver_tac prems =
nipkow@7570
   421
  FIRST'[resolve_tac(reflexive_thm::TrueI::refl::prems), atac, etac FalseE];
nipkow@7570
   422
val unsafe_solver = mk_solver "HOL unsafe" unsafe_solver_tac;
nipkow@7570
   423
oheimb@2636
   424
(*No premature instantiation of variables during simplification*)
nipkow@7570
   425
fun safe_solver_tac prems =
nipkow@7570
   426
  FIRST'[match_tac(reflexive_thm::TrueI::refl::prems),
nipkow@7570
   427
         eq_assume_tac, ematch_tac [FalseE]];
nipkow@7570
   428
val safe_solver = mk_solver "HOL safe" safe_solver_tac;
oheimb@2443
   429
oheimb@2636
   430
val HOL_basic_ss = empty_ss setsubgoaler asm_simp_tac
nipkow@7570
   431
			    setSSolver safe_solver
oheimb@2636
   432
			    setSolver  unsafe_solver
nipkow@4677
   433
			    setmksimps (mksimps mksimps_pairs)
oheimb@5552
   434
			    setmkeqTrue mk_eq_True;
oheimb@2443
   435
paulson@3446
   436
val HOL_ss = 
paulson@3446
   437
    HOL_basic_ss addsimps 
paulson@3446
   438
     ([triv_forall_equality, (* prunes params *)
nipkow@3654
   439
       True_implies_equals, (* prune asms `True' *)
oheimb@4718
   440
       if_True, if_False, if_cancel, if_eq_cancel,
oheimb@5304
   441
       imp_disjL, conj_assoc, disj_assoc,
paulson@3904
   442
       de_Morgan_conj, de_Morgan_disj, imp_disj1, imp_disj2, not_imp,
nipkow@5447
   443
       disj_not1, not_all, not_ex, cases_simp, Eps_eq, Eps_sym_eq]
paulson@3446
   444
     @ ex_simps @ all_simps @ simp_thms)
nipkow@4032
   445
     addsimprocs [defALL_regroup,defEX_regroup]
wenzelm@4744
   446
     addcongs [imp_cong]
nipkow@4830
   447
     addsplits [split_if];
paulson@2082
   448
paulson@6293
   449
(*Simplifies x assuming c and y assuming ~c*)
paulson@6293
   450
val prems = Goalw [if_def]
paulson@6293
   451
  "[| b=c; c ==> x=u; ~c ==> y=v |] ==> \
paulson@6293
   452
\  (if b then x else y) = (if c then u else v)";
paulson@6293
   453
by (asm_simp_tac (HOL_ss addsimps prems) 1);
paulson@6293
   454
qed "if_cong";
paulson@6293
   455
paulson@7127
   456
(*Prevents simplification of x and y: faster and allows the execution
paulson@7127
   457
  of functional programs. NOW THE DEFAULT.*)
paulson@7031
   458
Goal "b=c ==> (if b then x else y) = (if c then x else y)";
paulson@7031
   459
by (etac arg_cong 1);
paulson@7031
   460
qed "if_weak_cong";
paulson@6293
   461
paulson@6293
   462
(*Prevents simplification of t: much faster*)
paulson@7031
   463
Goal "a = b ==> (let x=a in t(x)) = (let x=b in t(x))";
paulson@7031
   464
by (etac arg_cong 1);
paulson@7031
   465
qed "let_weak_cong";
paulson@6293
   466
paulson@7031
   467
Goal "f(if c then x else y) = (if c then f x else f y)";
paulson@7031
   468
by (simp_tac (HOL_ss setloop (split_tac [split_if])) 1);
paulson@7031
   469
qed "if_distrib";
nipkow@1655
   470
paulson@4327
   471
(*For expand_case_tac*)
paulson@7584
   472
val prems = Goal "[| P ==> Q(True); ~P ==> Q(False) |] ==> Q(P)";
paulson@2948
   473
by (case_tac "P" 1);
paulson@2948
   474
by (ALLGOALS (asm_simp_tac (HOL_ss addsimps prems)));
paulson@7584
   475
qed "expand_case";
paulson@2948
   476
paulson@4327
   477
(*Used in Auth proofs.  Typically P contains Vars that become instantiated
paulson@4327
   478
  during unification.*)
paulson@2948
   479
fun expand_case_tac P i =
paulson@2948
   480
    res_inst_tac [("P",P)] expand_case i THEN
paulson@2948
   481
    Simp_tac (i+1) THEN 
paulson@2948
   482
    Simp_tac i;
paulson@2948
   483
paulson@7584
   484
(*This lemma restricts the effect of the rewrite rule u=v to the left-hand
paulson@7584
   485
  side of an equality.  Used in {Integ,Real}/simproc.ML*)
paulson@7584
   486
Goal "x=y ==> (x=z) = (y=z)";
paulson@7584
   487
by (asm_simp_tac HOL_ss 1);
paulson@7584
   488
qed "restrict_to_left";
paulson@2948
   489
wenzelm@7357
   490
(* default simpset *)
paulson@7584
   491
val simpsetup = 
paulson@7584
   492
    [fn thy => (simpset_ref_of thy := HOL_ss addcongs [if_weak_cong]; 
paulson@7584
   493
		thy)];
berghofe@3615
   494
oheimb@4652
   495
wenzelm@5219
   496
(*** integration of simplifier with classical reasoner ***)
oheimb@2636
   497
wenzelm@5219
   498
structure Clasimp = ClasimpFun
wenzelm@8473
   499
 (structure Simplifier = Simplifier and Splitter = Splitter
wenzelm@8473
   500
   and Classical  = Classical and Blast = Blast);
oheimb@4652
   501
open Clasimp;
oheimb@2636
   502
oheimb@2636
   503
val HOL_css = (HOL_cs, HOL_ss);
nipkow@5975
   504
nipkow@5975
   505
wenzelm@8641
   506
(* "iff" attribute *)
wenzelm@8641
   507
wenzelm@8641
   508
val iff_add_global = Clasimp.change_global_css (op addIffs);
wenzelm@8641
   509
val iff_add_local = Clasimp.change_local_css (op addIffs);
wenzelm@8641
   510
wenzelm@8641
   511
val iff_attrib_setup =
wenzelm@8641
   512
  [Attrib.add_attributes [("iff", (Attrib.no_args iff_add_global, Attrib.no_args iff_add_local),
wenzelm@8641
   513
    "add rules to simpset and claset simultaneously")]];
wenzelm@8641
   514
wenzelm@8641
   515
wenzelm@8641
   516
nipkow@5975
   517
(*** A general refutation procedure ***)
nipkow@5975
   518
 
nipkow@5975
   519
(* Parameters:
nipkow@5975
   520
nipkow@5975
   521
   test: term -> bool
nipkow@5975
   522
   tests if a term is at all relevant to the refutation proof;
nipkow@5975
   523
   if not, then it can be discarded. Can improve performance,
nipkow@5975
   524
   esp. if disjunctions can be discarded (no case distinction needed!).
nipkow@5975
   525
nipkow@5975
   526
   prep_tac: int -> tactic
nipkow@5975
   527
   A preparation tactic to be applied to the goal once all relevant premises
nipkow@5975
   528
   have been moved to the conclusion.
nipkow@5975
   529
nipkow@5975
   530
   ref_tac: int -> tactic
nipkow@5975
   531
   the actual refutation tactic. Should be able to deal with goals
nipkow@5975
   532
   [| A1; ...; An |] ==> False
nipkow@5975
   533
   where the Ai are atomic, i.e. no top-level &, | or ?
nipkow@5975
   534
*)
nipkow@5975
   535
nipkow@5975
   536
fun refute_tac test prep_tac ref_tac =
nipkow@5975
   537
  let val nnf_simps =
nipkow@5975
   538
        [imp_conv_disj,iff_conv_conj_imp,de_Morgan_disj,de_Morgan_conj,
nipkow@5975
   539
         not_all,not_ex,not_not];
nipkow@5975
   540
      val nnf_simpset =
nipkow@5975
   541
        empty_ss setmkeqTrue mk_eq_True
nipkow@5975
   542
                 setmksimps (mksimps mksimps_pairs)
nipkow@5975
   543
                 addsimps nnf_simps;
nipkow@5975
   544
      val prem_nnf_tac = full_simp_tac nnf_simpset;
nipkow@5975
   545
nipkow@5975
   546
      val refute_prems_tac =
nipkow@5975
   547
        REPEAT(eresolve_tac [conjE, exE] 1 ORELSE
nipkow@5975
   548
               filter_prems_tac test 1 ORELSE
paulson@6301
   549
               etac disjE 1) THEN
nipkow@5975
   550
        ref_tac 1;
nipkow@5975
   551
  in EVERY'[TRY o filter_prems_tac test,
nipkow@6128
   552
            DETERM o REPEAT o etac rev_mp, prep_tac, rtac ccontr, prem_nnf_tac,
nipkow@5975
   553
            SELECT_GOAL (DEPTH_SOLVE refute_prems_tac)]
nipkow@5975
   554
  end;