src/HOL/Tools/inductive.ML
author haftmann
Fri Sep 18 16:00:56 2009 +0200 (2009-09-18)
changeset 32610 c477b0a62ce9
parent 32602 f2b741473860
child 32652 3175e23b79f3
permissions -rw-r--r--
rewrite premises in tactical proof also with inf_fun_eq and inf_bool_eq: attempt to allow user to use inf [=>] and inf [bool] in his specs
haftmann@31723
     1
(*  Title:      HOL/Tools/inductive.ML
berghofe@5094
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
wenzelm@21367
     3
    Author:     Stefan Berghofer and Markus Wenzel, TU Muenchen
berghofe@5094
     4
wenzelm@6424
     5
(Co)Inductive Definition module for HOL.
berghofe@5094
     6
berghofe@5094
     7
Features:
wenzelm@6424
     8
  * least or greatest fixedpoints
wenzelm@6424
     9
  * mutually recursive definitions
wenzelm@6424
    10
  * definitions involving arbitrary monotone operators
wenzelm@6424
    11
  * automatically proves introduction and elimination rules
berghofe@5094
    12
berghofe@5094
    13
  Introduction rules have the form
berghofe@21024
    14
  [| M Pj ti, ..., Q x, ... |] ==> Pk t
berghofe@5094
    15
  where M is some monotone operator (usually the identity)
berghofe@21024
    16
  Q x is any side condition on the free variables
berghofe@5094
    17
  ti, t are any terms
berghofe@21024
    18
  Pj, Pk are two of the predicates being defined in mutual recursion
berghofe@5094
    19
*)
berghofe@5094
    20
haftmann@31723
    21
signature BASIC_INDUCTIVE =
berghofe@5094
    22
sig
berghofe@21024
    23
  type inductive_result
wenzelm@21526
    24
  val morph_result: morphism -> inductive_result -> inductive_result
berghofe@21024
    25
  type inductive_info
wenzelm@21526
    26
  val the_inductive: Proof.context -> string -> inductive_info
wenzelm@21367
    27
  val print_inductives: Proof.context -> unit
wenzelm@18728
    28
  val mono_add: attribute
wenzelm@18728
    29
  val mono_del: attribute
wenzelm@21367
    30
  val get_monos: Proof.context -> thm list
wenzelm@21367
    31
  val mk_cases: Proof.context -> term -> thm
wenzelm@10910
    32
  val inductive_forall_name: string
wenzelm@10910
    33
  val inductive_forall_def: thm
wenzelm@10910
    34
  val rulify: thm -> thm
wenzelm@28839
    35
  val inductive_cases: (Attrib.binding * string list) list -> local_theory ->
wenzelm@28084
    36
    thm list list * local_theory
wenzelm@28839
    37
  val inductive_cases_i: (Attrib.binding * term list) list -> local_theory ->
wenzelm@28084
    38
    thm list list * local_theory
berghofe@26534
    39
  type inductive_flags
wenzelm@24815
    40
  val add_inductive_i:
haftmann@29581
    41
    inductive_flags -> ((binding * typ) * mixfix) list ->
wenzelm@28084
    42
    (string * typ) list -> (Attrib.binding * term) list -> thm list -> local_theory ->
wenzelm@28084
    43
    inductive_result * local_theory
wenzelm@28083
    44
  val add_inductive: bool -> bool ->
haftmann@29581
    45
    (binding * string option * mixfix) list ->
haftmann@29581
    46
    (binding * string option * mixfix) list ->
wenzelm@28084
    47
    (Attrib.binding * string) list ->
wenzelm@28083
    48
    (Facts.ref * Attrib.src list) list ->
wenzelm@29388
    49
    bool -> local_theory -> inductive_result * local_theory
berghofe@26534
    50
  val add_inductive_global: string -> inductive_flags ->
haftmann@29581
    51
    ((binding * typ) * mixfix) list -> (string * typ) list -> (Attrib.binding * term) list ->
wenzelm@28084
    52
    thm list -> theory -> inductive_result * theory
berghofe@22789
    53
  val arities_of: thm -> (string * int) list
berghofe@22789
    54
  val params_of: thm -> term list
berghofe@22789
    55
  val partition_rules: thm -> thm list -> (string * thm list) list
berghofe@25822
    56
  val partition_rules': thm -> (thm * 'a) list -> (string * (thm * 'a) list) list
berghofe@22789
    57
  val unpartition_rules: thm list -> (string * 'a list) list -> 'a list
berghofe@22789
    58
  val infer_intro_vars: thm -> int -> thm list -> term list list
wenzelm@18708
    59
  val setup: theory -> theory
berghofe@5094
    60
end;
berghofe@5094
    61
haftmann@31723
    62
signature INDUCTIVE =
berghofe@23762
    63
sig
haftmann@31723
    64
  include BASIC_INDUCTIVE
berghofe@23762
    65
  type add_ind_def
haftmann@29581
    66
  val declare_rules: string -> binding -> bool -> bool -> string list ->
haftmann@29581
    67
    thm list -> binding list -> Attrib.src list list -> (thm * string list) list ->
berghofe@23762
    68
    thm -> local_theory -> thm list * thm list * thm * local_theory
berghofe@23762
    69
  val add_ind_def: add_ind_def
wenzelm@28083
    70
  val gen_add_inductive_i: add_ind_def -> inductive_flags ->
haftmann@29581
    71
    ((binding * typ) * mixfix) list -> (string * typ) list -> (Attrib.binding * term) list ->
wenzelm@28084
    72
    thm list -> local_theory -> inductive_result * local_theory
wenzelm@28083
    73
  val gen_add_inductive: add_ind_def -> bool -> bool ->
haftmann@29581
    74
    (binding * string option * mixfix) list ->
haftmann@29581
    75
    (binding * string option * mixfix) list ->
wenzelm@28084
    76
    (Attrib.binding * string) list -> (Facts.ref * Attrib.src list) list ->
wenzelm@29388
    77
    bool -> local_theory -> inductive_result * local_theory
wenzelm@26988
    78
  val gen_ind_decl: add_ind_def -> bool ->
wenzelm@29388
    79
    OuterParse.token list -> (bool -> local_theory -> local_theory) * OuterParse.token list
berghofe@23762
    80
end;
berghofe@23762
    81
haftmann@31723
    82
structure Inductive: INDUCTIVE =
berghofe@5094
    83
struct
berghofe@5094
    84
wenzelm@9598
    85
wenzelm@10729
    86
(** theory context references **)
wenzelm@10729
    87
wenzelm@11991
    88
val inductive_forall_name = "HOL.induct_forall";
haftmann@32602
    89
val inductive_forall_def = @{thm induct_forall_def};
wenzelm@11991
    90
val inductive_conj_name = "HOL.induct_conj";
haftmann@32602
    91
val inductive_conj_def = @{thm induct_conj_def};
haftmann@32602
    92
val inductive_conj = @{thms induct_conj};
haftmann@32602
    93
val inductive_atomize = @{thms induct_atomize};
haftmann@32602
    94
val inductive_rulify = @{thms induct_rulify};
haftmann@32602
    95
val inductive_rulify_fallback = @{thms induct_rulify_fallback};
wenzelm@10729
    96
berghofe@21024
    97
val notTrueE = TrueI RSN (2, notE);
berghofe@21024
    98
val notFalseI = Seq.hd (atac 1 notI);
wenzelm@32181
    99
wenzelm@32181
   100
val simp_thms' = map mk_meta_eq
wenzelm@32181
   101
  @{lemma "(~True) = False" "(~False) = True"
wenzelm@32181
   102
      "(True --> P) = P" "(False --> P) = True"
wenzelm@32181
   103
      "(P & True) = P" "(True & P) = P"
wenzelm@32181
   104
    by (fact simp_thms)+};
berghofe@21024
   105
haftmann@32610
   106
val simp_thms'' = inf_fun_eq :: inf_bool_eq :: simp_thms';
wenzelm@10729
   107
wenzelm@10729
   108
wenzelm@22846
   109
(** context data **)
berghofe@7710
   110
berghofe@21024
   111
type inductive_result =
berghofe@23762
   112
  {preds: term list, elims: thm list, raw_induct: thm,
berghofe@23762
   113
   induct: thm, intrs: thm list};
berghofe@7710
   114
berghofe@23762
   115
fun morph_result phi {preds, elims, raw_induct: thm, induct, intrs} =
wenzelm@21526
   116
  let
wenzelm@21526
   117
    val term = Morphism.term phi;
wenzelm@21526
   118
    val thm = Morphism.thm phi;
wenzelm@21526
   119
    val fact = Morphism.fact phi;
wenzelm@21526
   120
  in
berghofe@23762
   121
   {preds = map term preds, elims = fact elims, raw_induct = thm raw_induct,
berghofe@23762
   122
    induct = thm induct, intrs = fact intrs}
wenzelm@21526
   123
  end;
wenzelm@21526
   124
berghofe@21024
   125
type inductive_info =
berghofe@21024
   126
  {names: string list, coind: bool} * inductive_result;
berghofe@21024
   127
berghofe@21024
   128
structure InductiveData = GenericDataFun
wenzelm@22846
   129
(
berghofe@7710
   130
  type T = inductive_info Symtab.table * thm list;
berghofe@7710
   131
  val empty = (Symtab.empty, []);
wenzelm@16432
   132
  val extend = I;
wenzelm@16432
   133
  fun merge _ ((tab1, monos1), (tab2, monos2)) =
wenzelm@24039
   134
    (Symtab.merge (K true) (tab1, tab2), Thm.merge_thms (monos1, monos2));
wenzelm@22846
   135
);
berghofe@7710
   136
wenzelm@21526
   137
val get_inductives = InductiveData.get o Context.Proof;
wenzelm@22846
   138
wenzelm@22846
   139
fun print_inductives ctxt =
wenzelm@22846
   140
  let
wenzelm@22846
   141
    val (tab, monos) = get_inductives ctxt;
wenzelm@22846
   142
    val space = Consts.space_of (ProofContext.consts_of ctxt);
wenzelm@22846
   143
  in
wenzelm@22846
   144
    [Pretty.strs ("(co)inductives:" :: map #1 (NameSpace.extern_table (space, tab))),
wenzelm@32091
   145
     Pretty.big_list "monotonicity rules:" (map (Display.pretty_thm ctxt) monos)]
wenzelm@22846
   146
    |> Pretty.chunks |> Pretty.writeln
wenzelm@22846
   147
  end;
berghofe@7710
   148
berghofe@7710
   149
berghofe@7710
   150
(* get and put data *)
berghofe@7710
   151
wenzelm@21367
   152
fun the_inductive ctxt name =
wenzelm@21526
   153
  (case Symtab.lookup (#1 (get_inductives ctxt)) name of
berghofe@21024
   154
    NONE => error ("Unknown (co)inductive predicate " ^ quote name)
skalberg@15531
   155
  | SOME info => info);
wenzelm@9598
   156
wenzelm@25380
   157
fun put_inductives names info = InductiveData.map
wenzelm@25380
   158
  (apfst (fold (fn name => Symtab.update (name, info)) names));
berghofe@7710
   159
wenzelm@8277
   160
berghofe@7710
   161
berghofe@7710
   162
(** monotonicity rules **)
berghofe@7710
   163
wenzelm@21526
   164
val get_monos = #2 o get_inductives;
wenzelm@21367
   165
val map_monos = InductiveData.map o apsnd;
wenzelm@8277
   166
berghofe@7710
   167
fun mk_mono thm =
berghofe@7710
   168
  let
berghofe@22275
   169
    val concl = concl_of thm;
berghofe@22275
   170
    fun eq2mono thm' = [thm' RS (thm' RS eq_to_mono)] @
berghofe@22275
   171
      (case concl of
berghofe@7710
   172
          (_ $ (_ $ (Const ("Not", _) $ _) $ _)) => []
berghofe@22275
   173
        | _ => [thm' RS (thm' RS eq_to_mono2)]);
berghofe@22275
   174
    fun dest_less_concl thm = dest_less_concl (thm RS le_funD)
wenzelm@22846
   175
      handle THM _ => thm RS le_boolD
berghofe@7710
   176
  in
berghofe@22275
   177
    case concl of
berghofe@22275
   178
      Const ("==", _) $ _ $ _ => eq2mono (thm RS meta_eq_to_obj_eq)
berghofe@22275
   179
    | _ $ (Const ("op =", _) $ _ $ _) => eq2mono thm
haftmann@32602
   180
    | _ $ (Const (@{const_name HOL.less_eq}, _) $ _ $ _) =>
berghofe@22275
   181
      [dest_less_concl (Seq.hd (REPEAT (FIRSTGOAL
berghofe@22275
   182
         (resolve_tac [le_funI, le_boolI'])) thm))]
berghofe@22275
   183
    | _ => [thm]
wenzelm@32091
   184
  end handle THM _ =>
wenzelm@32091
   185
    error ("Bad monotonicity theorem:\n" ^ Display.string_of_thm_without_context thm);
berghofe@7710
   186
wenzelm@24039
   187
val mono_add = Thm.declaration_attribute (map_monos o fold Thm.add_thm o mk_mono);
wenzelm@24039
   188
val mono_del = Thm.declaration_attribute (map_monos o fold Thm.del_thm o mk_mono);
berghofe@7710
   189
berghofe@7710
   190
wenzelm@7107
   191
wenzelm@10735
   192
(** misc utilities **)
wenzelm@6424
   193
wenzelm@26477
   194
fun message quiet_mode s = if quiet_mode then () else writeln s;
wenzelm@26477
   195
fun clean_message quiet_mode s = if ! quick_and_dirty then () else message quiet_mode s;
berghofe@5662
   196
wenzelm@6424
   197
fun coind_prefix true = "co"
wenzelm@6424
   198
  | coind_prefix false = "";
wenzelm@6424
   199
wenzelm@24133
   200
fun log (b:int) m n = if m >= n then 0 else 1 + log b (b * m) n;
wenzelm@6424
   201
berghofe@21024
   202
fun make_bool_args f g [] i = []
berghofe@21024
   203
  | make_bool_args f g (x :: xs) i =
berghofe@21024
   204
      (if i mod 2 = 0 then f x else g x) :: make_bool_args f g xs (i div 2);
berghofe@21024
   205
berghofe@21024
   206
fun make_bool_args' xs =
berghofe@21024
   207
  make_bool_args (K HOLogic.false_const) (K HOLogic.true_const) xs;
berghofe@21024
   208
berghofe@21024
   209
fun find_arg T x [] = sys_error "find_arg"
berghofe@21024
   210
  | find_arg T x ((p as (_, (SOME _, _))) :: ps) =
berghofe@21024
   211
      apsnd (cons p) (find_arg T x ps)
berghofe@21024
   212
  | find_arg T x ((p as (U, (NONE, y))) :: ps) =
wenzelm@23577
   213
      if (T: typ) = U then (y, (U, (SOME x, y)) :: ps)
berghofe@21024
   214
      else apsnd (cons p) (find_arg T x ps);
berghofe@7020
   215
berghofe@21024
   216
fun make_args Ts xs =
haftmann@28524
   217
  map (fn (T, (NONE, ())) => Const (@{const_name undefined}, T) | (_, (SOME t, ())) => t)
berghofe@21024
   218
    (fold (fn (t, T) => snd o find_arg T t) xs (map (rpair (NONE, ())) Ts));
berghofe@7020
   219
berghofe@21024
   220
fun make_args' Ts xs Us =
berghofe@21024
   221
  fst (fold_map (fn T => find_arg T ()) Us (Ts ~~ map (pair NONE) xs));
berghofe@7020
   222
berghofe@21024
   223
fun dest_predicate cs params t =
berghofe@5094
   224
  let
berghofe@21024
   225
    val k = length params;
berghofe@21024
   226
    val (c, ts) = strip_comb t;
berghofe@21024
   227
    val (xs, ys) = chop k ts;
haftmann@31986
   228
    val i = find_index (fn c' => c' = c) cs;
berghofe@21024
   229
  in
berghofe@21024
   230
    if xs = params andalso i >= 0 then
berghofe@21024
   231
      SOME (c, i, ys, chop (length ys)
berghofe@21024
   232
        (List.drop (binder_types (fastype_of c), k)))
berghofe@21024
   233
    else NONE
berghofe@5094
   234
  end;
berghofe@5094
   235
berghofe@21024
   236
fun mk_names a 0 = []
berghofe@21024
   237
  | mk_names a 1 = [a]
berghofe@21024
   238
  | mk_names a n = map (fn i => a ^ string_of_int i) (1 upto n);
berghofe@10988
   239
wenzelm@6424
   240
wenzelm@6424
   241
wenzelm@10729
   242
(** process rules **)
wenzelm@10729
   243
wenzelm@10729
   244
local
berghofe@5094
   245
berghofe@23762
   246
fun err_in_rule ctxt name t msg =
wenzelm@16432
   247
  error (cat_lines ["Ill-formed introduction rule " ^ quote name,
wenzelm@24920
   248
    Syntax.string_of_term ctxt t, msg]);
wenzelm@10729
   249
berghofe@23762
   250
fun err_in_prem ctxt name t p msg =
wenzelm@24920
   251
  error (cat_lines ["Ill-formed premise", Syntax.string_of_term ctxt p,
wenzelm@24920
   252
    "in introduction rule " ^ quote name, Syntax.string_of_term ctxt t, msg]);
berghofe@5094
   253
berghofe@21024
   254
val bad_concl = "Conclusion of introduction rule must be an inductive predicate";
wenzelm@10729
   255
berghofe@21024
   256
val bad_ind_occ = "Inductive predicate occurs in argument of inductive predicate";
berghofe@21024
   257
berghofe@21024
   258
val bad_app = "Inductive predicate must be applied to parameter(s) ";
paulson@11358
   259
wenzelm@16432
   260
fun atomize_term thy = MetaSimplifier.rewrite_term thy inductive_atomize [];
wenzelm@10729
   261
wenzelm@10729
   262
in
berghofe@5094
   263
wenzelm@28083
   264
fun check_rule ctxt cs params ((binding, att), rule) =
wenzelm@10729
   265
  let
wenzelm@30218
   266
    val err_name = Binding.str_of binding;
berghofe@21024
   267
    val params' = Term.variant_frees rule (Logic.strip_params rule);
berghofe@21024
   268
    val frees = rev (map Free params');
berghofe@21024
   269
    val concl = subst_bounds (frees, Logic.strip_assums_concl rule);
berghofe@21024
   270
    val prems = map (curry subst_bounds frees) (Logic.strip_assums_hyp rule);
berghofe@23762
   271
    val rule' = Logic.list_implies (prems, concl);
berghofe@23762
   272
    val aprems = map (atomize_term (ProofContext.theory_of ctxt)) prems;
berghofe@21024
   273
    val arule = list_all_free (params', Logic.list_implies (aprems, concl));
berghofe@21024
   274
berghofe@21024
   275
    fun check_ind err t = case dest_predicate cs params t of
berghofe@21024
   276
        NONE => err (bad_app ^
wenzelm@24920
   277
          commas (map (Syntax.string_of_term ctxt) params))
berghofe@21024
   278
      | SOME (_, _, ys, _) =>
berghofe@21024
   279
          if exists (fn c => exists (fn t => Logic.occs (c, t)) ys) cs
berghofe@21024
   280
          then err bad_ind_occ else ();
berghofe@21024
   281
berghofe@21024
   282
    fun check_prem' prem t =
berghofe@21024
   283
      if head_of t mem cs then
haftmann@29006
   284
        check_ind (err_in_prem ctxt err_name rule prem) t
berghofe@21024
   285
      else (case t of
berghofe@21024
   286
          Abs (_, _, t) => check_prem' prem t
berghofe@21024
   287
        | t $ u => (check_prem' prem t; check_prem' prem u)
berghofe@21024
   288
        | _ => ());
berghofe@5094
   289
wenzelm@10729
   290
    fun check_prem (prem, aprem) =
berghofe@21024
   291
      if can HOLogic.dest_Trueprop aprem then check_prem' prem prem
haftmann@29006
   292
      else err_in_prem ctxt err_name rule prem "Non-atomic premise";
wenzelm@10729
   293
  in
paulson@11358
   294
    (case concl of
wenzelm@21367
   295
       Const ("Trueprop", _) $ t =>
berghofe@21024
   296
         if head_of t mem cs then
haftmann@29006
   297
           (check_ind (err_in_rule ctxt err_name rule') t;
berghofe@21024
   298
            List.app check_prem (prems ~~ aprems))
haftmann@29006
   299
         else err_in_rule ctxt err_name rule' bad_concl
haftmann@29006
   300
     | _ => err_in_rule ctxt err_name rule' bad_concl);
wenzelm@28083
   301
    ((binding, att), arule)
wenzelm@10729
   302
  end;
berghofe@5094
   303
berghofe@24744
   304
val rulify =
wenzelm@18222
   305
  hol_simplify inductive_conj
wenzelm@18463
   306
  #> hol_simplify inductive_rulify
wenzelm@18463
   307
  #> hol_simplify inductive_rulify_fallback
wenzelm@30552
   308
  #> Simplifier.norm_hhf;
wenzelm@10729
   309
wenzelm@10729
   310
end;
wenzelm@10729
   311
berghofe@5094
   312
wenzelm@6424
   313
berghofe@21024
   314
(** proofs for (co)inductive predicates **)
wenzelm@6424
   315
berghofe@26534
   316
(* prove monotonicity *)
berghofe@5094
   317
wenzelm@29388
   318
fun prove_mono quiet_mode skip_mono fork_mono predT fp_fun monos ctxt =
wenzelm@29388
   319
 (message (quiet_mode orelse skip_mono andalso !quick_and_dirty orelse fork_mono)
berghofe@26534
   320
    "  Proving monotonicity ...";
wenzelm@29388
   321
  (if skip_mono then SkipProof.prove else if fork_mono then Goal.prove_future else Goal.prove) ctxt
wenzelm@29388
   322
    [] []
wenzelm@17985
   323
    (HOLogic.mk_Trueprop
wenzelm@24815
   324
      (Const (@{const_name Orderings.mono}, (predT --> predT) --> HOLogic.boolT) $ fp_fun))
wenzelm@25380
   325
    (fn _ => EVERY [rtac @{thm monoI} 1,
berghofe@21024
   326
      REPEAT (resolve_tac [le_funI, le_boolI'] 1),
berghofe@21024
   327
      REPEAT (FIRST
berghofe@21024
   328
        [atac 1,
wenzelm@21367
   329
         resolve_tac (List.concat (map mk_mono monos) @ get_monos ctxt) 1,
berghofe@21024
   330
         etac le_funE 1, dtac le_boolD 1])]));
berghofe@5094
   331
wenzelm@6424
   332
wenzelm@10735
   333
(* prove introduction rules *)
berghofe@5094
   334
wenzelm@26477
   335
fun prove_intrs quiet_mode coind mono fp_def k params intr_ts rec_preds_defs ctxt =
berghofe@5094
   336
  let
wenzelm@26477
   337
    val _ = clean_message quiet_mode "  Proving the introduction rules ...";
berghofe@5094
   338
berghofe@21024
   339
    val unfold = funpow k (fn th => th RS fun_cong)
berghofe@21024
   340
      (mono RS (fp_def RS
berghofe@21024
   341
        (if coind then def_gfp_unfold else def_lfp_unfold)));
berghofe@5094
   342
berghofe@5094
   343
    fun select_disj 1 1 = []
berghofe@5094
   344
      | select_disj _ 1 = [rtac disjI1]
berghofe@5094
   345
      | select_disj n i = (rtac disjI2)::(select_disj (n - 1) (i - 1));
berghofe@5094
   346
berghofe@21024
   347
    val rules = [refl, TrueI, notFalseI, exI, conjI];
berghofe@21024
   348
berghofe@22605
   349
    val intrs = map_index (fn (i, intr) => rulify
berghofe@22605
   350
      (SkipProof.prove ctxt (map (fst o dest_Free) params) [] intr (fn _ => EVERY
berghofe@21024
   351
       [rewrite_goals_tac rec_preds_defs,
berghofe@21024
   352
        rtac (unfold RS iffD2) 1,
berghofe@21024
   353
        EVERY1 (select_disj (length intr_ts) (i + 1)),
wenzelm@17985
   354
        (*Not ares_tac, since refl must be tried before any equality assumptions;
wenzelm@17985
   355
          backtracking may occur if the premises have extra variables!*)
berghofe@21024
   356
        DEPTH_SOLVE_1 (resolve_tac rules 1 APPEND assume_tac 1)]))) intr_ts
berghofe@5094
   357
berghofe@5094
   358
  in (intrs, unfold) end;
berghofe@5094
   359
wenzelm@6424
   360
wenzelm@10735
   361
(* prove elimination rules *)
berghofe@5094
   362
wenzelm@26477
   363
fun prove_elims quiet_mode cs params intr_ts intr_names unfold rec_preds_defs ctxt =
berghofe@5094
   364
  let
wenzelm@26477
   365
    val _ = clean_message quiet_mode "  Proving the elimination rules ...";
berghofe@5094
   366
berghofe@22605
   367
    val ([pname], ctxt') = ctxt |>
berghofe@22605
   368
      Variable.add_fixes (map (fst o dest_Free) params) |> snd |>
berghofe@22605
   369
      Variable.variant_fixes ["P"];
berghofe@21024
   370
    val P = HOLogic.mk_Trueprop (Free (pname, HOLogic.boolT));
berghofe@21024
   371
berghofe@21024
   372
    fun dest_intr r =
berghofe@21024
   373
      (the (dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))),
berghofe@21024
   374
       Logic.strip_assums_hyp r, Logic.strip_params r);
berghofe@21024
   375
berghofe@21024
   376
    val intrs = map dest_intr intr_ts ~~ intr_names;
berghofe@21024
   377
berghofe@21024
   378
    val rules1 = [disjE, exE, FalseE];
berghofe@21024
   379
    val rules2 = [conjE, FalseE, notTrueE];
berghofe@21024
   380
berghofe@21024
   381
    fun prove_elim c =
berghofe@21024
   382
      let
berghofe@21024
   383
        val Ts = List.drop (binder_types (fastype_of c), length params);
berghofe@21024
   384
        val (anames, ctxt'') = Variable.variant_fixes (mk_names "a" (length Ts)) ctxt';
berghofe@21024
   385
        val frees = map Free (anames ~~ Ts);
berghofe@21024
   386
berghofe@21024
   387
        fun mk_elim_prem ((_, _, us, _), ts, params') =
berghofe@21024
   388
          list_all (params',
berghofe@21024
   389
            Logic.list_implies (map (HOLogic.mk_Trueprop o HOLogic.mk_eq)
berghofe@21024
   390
              (frees ~~ us) @ ts, P));
berghofe@21024
   391
        val c_intrs = (List.filter (equal c o #1 o #1 o #1) intrs);
berghofe@21024
   392
        val prems = HOLogic.mk_Trueprop (list_comb (c, params @ frees)) ::
berghofe@21024
   393
           map mk_elim_prem (map #1 c_intrs)
berghofe@21024
   394
      in
berghofe@21048
   395
        (SkipProof.prove ctxt'' [] prems P
berghofe@21024
   396
          (fn {prems, ...} => EVERY
berghofe@21024
   397
            [cut_facts_tac [hd prems] 1,
berghofe@21024
   398
             rewrite_goals_tac rec_preds_defs,
berghofe@21024
   399
             dtac (unfold RS iffD1) 1,
berghofe@21024
   400
             REPEAT (FIRSTGOAL (eresolve_tac rules1)),
berghofe@21024
   401
             REPEAT (FIRSTGOAL (eresolve_tac rules2)),
berghofe@21024
   402
             EVERY (map (fn prem =>
berghofe@21024
   403
               DEPTH_SOLVE_1 (ares_tac [rewrite_rule rec_preds_defs prem, conjI] 1)) (tl prems))])
berghofe@21024
   404
          |> rulify
berghofe@21048
   405
          |> singleton (ProofContext.export ctxt'' ctxt),
berghofe@21048
   406
         map #2 c_intrs)
berghofe@21024
   407
      end
berghofe@21024
   408
berghofe@21024
   409
   in map prove_elim cs end;
berghofe@5094
   410
wenzelm@6424
   411
wenzelm@10735
   412
(* derivation of simplified elimination rules *)
berghofe@5094
   413
wenzelm@11682
   414
local
wenzelm@11682
   415
wenzelm@11682
   416
(*delete needless equality assumptions*)
wenzelm@29064
   417
val refl_thin = Goal.prove_global @{theory HOL} [] [] @{prop "!!P. a = a ==> P ==> P"}
haftmann@22838
   418
  (fn _ => assume_tac 1);
berghofe@21024
   419
val elim_rls = [asm_rl, FalseE, refl_thin, conjE, exE];
wenzelm@11682
   420
val elim_tac = REPEAT o Tactic.eresolve_tac elim_rls;
wenzelm@11682
   421
berghofe@23762
   422
fun simp_case_tac ss i =
berghofe@23762
   423
  EVERY' [elim_tac, asm_full_simp_tac ss, elim_tac, REPEAT o bound_hyp_subst_tac] i;
wenzelm@21367
   424
wenzelm@11682
   425
in
wenzelm@9598
   426
wenzelm@21367
   427
fun mk_cases ctxt prop =
wenzelm@7107
   428
  let
wenzelm@21367
   429
    val thy = ProofContext.theory_of ctxt;
wenzelm@32149
   430
    val ss = simpset_of ctxt;
wenzelm@21367
   431
wenzelm@21526
   432
    fun err msg =
wenzelm@21526
   433
      error (Pretty.string_of (Pretty.block
wenzelm@24920
   434
        [Pretty.str msg, Pretty.fbrk, Syntax.pretty_term ctxt prop]));
wenzelm@21526
   435
wenzelm@24861
   436
    val elims = Induct.find_casesP ctxt prop;
wenzelm@21367
   437
wenzelm@21367
   438
    val cprop = Thm.cterm_of thy prop;
berghofe@23762
   439
    val tac = ALLGOALS (simp_case_tac ss) THEN prune_params_tac;
wenzelm@21367
   440
    fun mk_elim rl =
wenzelm@21367
   441
      Thm.implies_intr cprop (Tactic.rule_by_tactic tac (Thm.assume cprop RS rl))
wenzelm@21367
   442
      |> singleton (Variable.export (Variable.auto_fixes prop ctxt) ctxt);
wenzelm@7107
   443
  in
wenzelm@7107
   444
    (case get_first (try mk_elim) elims of
skalberg@15531
   445
      SOME r => r
wenzelm@21526
   446
    | NONE => err "Proposition not an inductive predicate:")
wenzelm@7107
   447
  end;
wenzelm@7107
   448
wenzelm@11682
   449
end;
wenzelm@11682
   450
wenzelm@7107
   451
wenzelm@21367
   452
(* inductive_cases *)
wenzelm@7107
   453
wenzelm@21367
   454
fun gen_inductive_cases prep_att prep_prop args lthy =
wenzelm@9598
   455
  let
wenzelm@21367
   456
    val thy = ProofContext.theory_of lthy;
wenzelm@12876
   457
    val facts = args |> map (fn ((a, atts), props) =>
wenzelm@21367
   458
      ((a, map (prep_att thy) atts),
wenzelm@21367
   459
        map (Thm.no_attributes o single o mk_cases lthy o prep_prop lthy) props));
haftmann@31177
   460
  in lthy |> LocalTheory.notes Thm.generatedK facts |>> map snd end;
berghofe@5094
   461
wenzelm@24509
   462
val inductive_cases = gen_inductive_cases Attrib.intern_src Syntax.read_prop;
wenzelm@24509
   463
val inductive_cases_i = gen_inductive_cases (K I) Syntax.check_prop;
wenzelm@7107
   464
wenzelm@6424
   465
wenzelm@30722
   466
val ind_cases_setup =
wenzelm@30722
   467
  Method.setup @{binding ind_cases}
wenzelm@30722
   468
    (Scan.lift (Scan.repeat1 Args.name_source --
wenzelm@30722
   469
      Scan.optional (Args.$$$ "for" |-- Scan.repeat1 Args.name) []) >>
wenzelm@30722
   470
      (fn (raw_props, fixes) => fn ctxt =>
wenzelm@30722
   471
        let
wenzelm@30722
   472
          val (_, ctxt') = Variable.add_fixes fixes ctxt;
wenzelm@30722
   473
          val props = Syntax.read_props ctxt' raw_props;
wenzelm@30722
   474
          val ctxt'' = fold Variable.declare_term props ctxt';
wenzelm@30722
   475
          val rules = ProofContext.export ctxt'' ctxt (map (mk_cases ctxt'') props)
wenzelm@30722
   476
        in Method.erule 0 rules end))
wenzelm@30722
   477
    "dynamic case analysis on predicates";
wenzelm@9598
   478
wenzelm@9598
   479
wenzelm@10735
   480
(* prove induction rule *)
berghofe@5094
   481
wenzelm@26477
   482
fun prove_indrule quiet_mode cs argTs bs xs rec_const params intr_ts mono
berghofe@21024
   483
    fp_def rec_preds_defs ctxt =
berghofe@5094
   484
  let
wenzelm@26477
   485
    val _ = clean_message quiet_mode "  Proving the induction rule ...";
wenzelm@20047
   486
    val thy = ProofContext.theory_of ctxt;
berghofe@5094
   487
berghofe@21024
   488
    (* predicates for induction rule *)
berghofe@21024
   489
berghofe@22605
   490
    val (pnames, ctxt') = ctxt |>
berghofe@22605
   491
      Variable.add_fixes (map (fst o dest_Free) params) |> snd |>
berghofe@22605
   492
      Variable.variant_fixes (mk_names "P" (length cs));
berghofe@21024
   493
    val preds = map Free (pnames ~~
berghofe@21024
   494
      map (fn c => List.drop (binder_types (fastype_of c), length params) --->
berghofe@21024
   495
        HOLogic.boolT) cs);
berghofe@21024
   496
berghofe@21024
   497
    (* transform an introduction rule into a premise for induction rule *)
berghofe@21024
   498
berghofe@21024
   499
    fun mk_ind_prem r =
berghofe@21024
   500
      let
berghofe@21024
   501
        fun subst s = (case dest_predicate cs params s of
berghofe@21024
   502
            SOME (_, i, ys, (_, Ts)) =>
berghofe@21024
   503
              let
berghofe@21024
   504
                val k = length Ts;
berghofe@21024
   505
                val bs = map Bound (k - 1 downto 0);
berghofe@23762
   506
                val P = list_comb (List.nth (preds, i),
berghofe@23762
   507
                  map (incr_boundvars k) ys @ bs);
berghofe@21024
   508
                val Q = list_abs (mk_names "x" k ~~ Ts,
berghofe@23762
   509
                  HOLogic.mk_binop inductive_conj_name
berghofe@23762
   510
                    (list_comb (incr_boundvars k s, bs), P))
berghofe@21024
   511
              in (Q, case Ts of [] => SOME (s, P) | _ => NONE) end
berghofe@21024
   512
          | NONE => (case s of
berghofe@21024
   513
              (t $ u) => (fst (subst t) $ fst (subst u), NONE)
berghofe@21024
   514
            | (Abs (a, T, t)) => (Abs (a, T, fst (subst t)), NONE)
berghofe@21024
   515
            | _ => (s, NONE)));
berghofe@7293
   516
berghofe@21024
   517
        fun mk_prem (s, prems) = (case subst s of
berghofe@21024
   518
              (_, SOME (t, u)) => t :: u :: prems
berghofe@21024
   519
            | (t, _) => t :: prems);
berghofe@21024
   520
berghofe@21024
   521
        val SOME (_, i, ys, _) = dest_predicate cs params
berghofe@21024
   522
          (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))
berghofe@21024
   523
berghofe@21024
   524
      in list_all_free (Logic.strip_params r,
wenzelm@30190
   525
        Logic.list_implies (map HOLogic.mk_Trueprop (List.foldr mk_prem
berghofe@21024
   526
          [] (map HOLogic.dest_Trueprop (Logic.strip_assums_hyp r))),
berghofe@21024
   527
            HOLogic.mk_Trueprop (list_comb (List.nth (preds, i), ys))))
berghofe@21024
   528
      end;
berghofe@21024
   529
berghofe@21024
   530
    val ind_prems = map mk_ind_prem intr_ts;
berghofe@21024
   531
wenzelm@21526
   532
berghofe@21024
   533
    (* make conclusions for induction rules *)
berghofe@21024
   534
berghofe@21024
   535
    val Tss = map (binder_types o fastype_of) preds;
berghofe@21024
   536
    val (xnames, ctxt'') =
berghofe@21024
   537
      Variable.variant_fixes (mk_names "x" (length (flat Tss))) ctxt';
berghofe@21024
   538
    val mutual_ind_concl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
berghofe@21024
   539
        (map (fn (((xnames, Ts), c), P) =>
berghofe@21024
   540
           let val frees = map Free (xnames ~~ Ts)
berghofe@21024
   541
           in HOLogic.mk_imp
berghofe@21024
   542
             (list_comb (c, params @ frees), list_comb (P, frees))
berghofe@21024
   543
           end) (unflat Tss xnames ~~ Tss ~~ cs ~~ preds)));
berghofe@5094
   544
paulson@13626
   545
berghofe@5094
   546
    (* make predicate for instantiation of abstract induction rule *)
berghofe@5094
   547
berghofe@21024
   548
    val ind_pred = fold_rev lambda (bs @ xs) (foldr1 HOLogic.mk_conj
wenzelm@30190
   549
      (map_index (fn (i, P) => List.foldr HOLogic.mk_imp
berghofe@21024
   550
         (list_comb (P, make_args' argTs xs (binder_types (fastype_of P))))
berghofe@21024
   551
         (make_bool_args HOLogic.mk_not I bs i)) preds));
berghofe@5094
   552
berghofe@5094
   553
    val ind_concl = HOLogic.mk_Trueprop
haftmann@23881
   554
      (HOLogic.mk_binrel "HOL.ord_class.less_eq" (rec_const, ind_pred));
berghofe@5094
   555
paulson@13626
   556
    val raw_fp_induct = (mono RS (fp_def RS def_lfp_induct));
paulson@13626
   557
berghofe@21024
   558
    val induct = SkipProof.prove ctxt'' [] ind_prems ind_concl
wenzelm@20248
   559
      (fn {prems, ...} => EVERY
wenzelm@17985
   560
        [rewrite_goals_tac [inductive_conj_def],
berghofe@21024
   561
         DETERM (rtac raw_fp_induct 1),
berghofe@21024
   562
         REPEAT (resolve_tac [le_funI, le_boolI] 1),
haftmann@32610
   563
         rewrite_goals_tac simp_thms'',
berghofe@21024
   564
         (*This disjE separates out the introduction rules*)
berghofe@21024
   565
         REPEAT (FIRSTGOAL (eresolve_tac [disjE, exE, FalseE])),
berghofe@5094
   566
         (*Now break down the individual cases.  No disjE here in case
berghofe@5094
   567
           some premise involves disjunction.*)
paulson@13747
   568
         REPEAT (FIRSTGOAL (etac conjE ORELSE' bound_hyp_subst_tac)),
berghofe@21024
   569
         REPEAT (FIRSTGOAL
berghofe@21024
   570
           (resolve_tac [conjI, impI] ORELSE' (etac notE THEN' atac))),
berghofe@21024
   571
         EVERY (map (fn prem => DEPTH_SOLVE_1 (ares_tac [rewrite_rule
haftmann@32610
   572
             (inductive_conj_def :: rec_preds_defs @ simp_thms'') prem,
berghofe@22980
   573
           conjI, refl] 1)) prems)]);
berghofe@5094
   574
berghofe@21024
   575
    val lemma = SkipProof.prove ctxt'' [] []
wenzelm@17985
   576
      (Logic.mk_implies (ind_concl, mutual_ind_concl)) (fn _ => EVERY
berghofe@21024
   577
        [rewrite_goals_tac rec_preds_defs,
berghofe@5094
   578
         REPEAT (EVERY
berghofe@5094
   579
           [REPEAT (resolve_tac [conjI, impI] 1),
berghofe@21024
   580
            REPEAT (eresolve_tac [le_funE, le_boolE] 1),
berghofe@21024
   581
            atac 1,
berghofe@21024
   582
            rewrite_goals_tac simp_thms',
berghofe@21024
   583
            atac 1])])
berghofe@5094
   584
berghofe@21024
   585
  in singleton (ProofContext.export ctxt'' ctxt) (induct RS lemma) end;
berghofe@5094
   586
wenzelm@6424
   587
wenzelm@6424
   588
berghofe@21024
   589
(** specification of (co)inductive predicates **)
wenzelm@10729
   590
wenzelm@29388
   591
fun mk_ind_def quiet_mode skip_mono fork_mono alt_name coind cs intr_ts monos params cnames_syn ctxt =
berghofe@5094
   592
  let
haftmann@24915
   593
    val fp_name = if coind then @{const_name Inductive.gfp} else @{const_name Inductive.lfp};
berghofe@5094
   594
berghofe@21024
   595
    val argTs = fold (fn c => fn Ts => Ts @
berghofe@21024
   596
      (List.drop (binder_types (fastype_of c), length params) \\ Ts)) cs [];
berghofe@21024
   597
    val k = log 2 1 (length cs);
berghofe@21024
   598
    val predT = replicate k HOLogic.boolT ---> argTs ---> HOLogic.boolT;
berghofe@21024
   599
    val p :: xs = map Free (Variable.variant_frees ctxt intr_ts
berghofe@21024
   600
      (("p", predT) :: (mk_names "x" (length argTs) ~~ argTs)));
berghofe@21024
   601
    val bs = map Free (Variable.variant_frees ctxt (p :: xs @ intr_ts)
berghofe@21024
   602
      (map (rpair HOLogic.boolT) (mk_names "b" k)));
berghofe@21024
   603
berghofe@21024
   604
    fun subst t = (case dest_predicate cs params t of
berghofe@21024
   605
        SOME (_, i, ts, (Ts, Us)) =>
berghofe@23762
   606
          let
berghofe@23762
   607
            val l = length Us;
berghofe@23762
   608
            val zs = map Bound (l - 1 downto 0)
berghofe@21024
   609
          in
berghofe@21024
   610
            list_abs (map (pair "z") Us, list_comb (p,
berghofe@23762
   611
              make_bool_args' bs i @ make_args argTs
berghofe@23762
   612
                ((map (incr_boundvars l) ts ~~ Ts) @ (zs ~~ Us))))
berghofe@21024
   613
          end
berghofe@21024
   614
      | NONE => (case t of
berghofe@21024
   615
          t1 $ t2 => subst t1 $ subst t2
berghofe@21024
   616
        | Abs (x, T, u) => Abs (x, T, subst u)
berghofe@21024
   617
        | _ => t));
berghofe@5149
   618
berghofe@5094
   619
    (* transform an introduction rule into a conjunction  *)
berghofe@21024
   620
    (*   [| p_i t; ... |] ==> p_j u                       *)
berghofe@5094
   621
    (* is transformed into                                *)
berghofe@21024
   622
    (*   b_j & x_j = u & p b_j t & ...                    *)
berghofe@5094
   623
berghofe@5094
   624
    fun transform_rule r =
berghofe@5094
   625
      let
berghofe@21024
   626
        val SOME (_, i, ts, (Ts, _)) = dest_predicate cs params
berghofe@21048
   627
          (HOLogic.dest_Trueprop (Logic.strip_assums_concl r));
berghofe@21048
   628
        val ps = make_bool_args HOLogic.mk_not I bs i @
berghofe@21048
   629
          map HOLogic.mk_eq (make_args' argTs xs Ts ~~ ts) @
berghofe@21048
   630
          map (subst o HOLogic.dest_Trueprop)
berghofe@21048
   631
            (Logic.strip_assums_hyp r)
wenzelm@30190
   632
      in List.foldr (fn ((x, T), P) => HOLogic.exists_const T $ (Abs (x, T, P)))
berghofe@21048
   633
        (if null ps then HOLogic.true_const else foldr1 HOLogic.mk_conj ps)
berghofe@21048
   634
        (Logic.strip_params r)
berghofe@5094
   635
      end
berghofe@5094
   636
berghofe@5094
   637
    (* make a disjunction of all introduction rules *)
berghofe@5094
   638
berghofe@21024
   639
    val fp_fun = fold_rev lambda (p :: bs @ xs)
berghofe@21024
   640
      (if null intr_ts then HOLogic.false_const
berghofe@21024
   641
       else foldr1 HOLogic.mk_disj (map transform_rule intr_ts));
berghofe@5094
   642
berghofe@21024
   643
    (* add definiton of recursive predicates to theory *)
berghofe@5094
   644
wenzelm@28083
   645
    val rec_name =
haftmann@28965
   646
      if Binding.is_empty alt_name then
wenzelm@30223
   647
        Binding.name (space_implode "_" (map (Binding.name_of o fst) cnames_syn))
wenzelm@28083
   648
      else alt_name;
berghofe@5094
   649
berghofe@21024
   650
    val ((rec_const, (_, fp_def)), ctxt') = ctxt |>
wenzelm@26128
   651
      LocalTheory.define Thm.internalK
berghofe@21024
   652
        ((rec_name, case cnames_syn of [(_, syn)] => syn | _ => NoSyn),
haftmann@28965
   653
         (Attrib.empty_binding, fold_rev lambda params
berghofe@21024
   654
           (Const (fp_name, (predT --> predT) --> predT) $ fp_fun)));
berghofe@21024
   655
    val fp_def' = Simplifier.rewrite (HOL_basic_ss addsimps [fp_def])
berghofe@21024
   656
      (cterm_of (ProofContext.theory_of ctxt') (list_comb (rec_const, params)));
berghofe@21024
   657
    val specs = if length cs < 2 then [] else
berghofe@21024
   658
      map_index (fn (i, (name_mx, c)) =>
berghofe@21024
   659
        let
berghofe@21024
   660
          val Ts = List.drop (binder_types (fastype_of c), length params);
berghofe@21024
   661
          val xs = map Free (Variable.variant_frees ctxt intr_ts
berghofe@21024
   662
            (mk_names "x" (length Ts) ~~ Ts))
berghofe@21024
   663
        in
haftmann@28965
   664
          (name_mx, (Attrib.empty_binding, fold_rev lambda (params @ xs)
berghofe@21024
   665
            (list_comb (rec_const, params @ make_bool_args' bs i @
berghofe@21024
   666
              make_args argTs (xs ~~ Ts)))))
berghofe@21024
   667
        end) (cnames_syn ~~ cs);
wenzelm@26128
   668
    val (consts_defs, ctxt'') = fold_map (LocalTheory.define Thm.internalK) specs ctxt';
berghofe@21024
   669
    val preds = (case cs of [_] => [rec_const] | _ => map #1 consts_defs);
berghofe@5094
   670
wenzelm@29388
   671
    val mono = prove_mono quiet_mode skip_mono fork_mono predT fp_fun monos ctxt'';
wenzelm@29388
   672
    val ((_, [mono']), ctxt''') =
wenzelm@29388
   673
      LocalTheory.note Thm.internalK (Attrib.empty_binding, [mono]) ctxt'';
berghofe@5094
   674
wenzelm@29388
   675
  in (ctxt''', rec_name, mono', fp_def', map (#2 o #2) consts_defs,
berghofe@21024
   676
    list_comb (rec_const, params), preds, argTs, bs, xs)
berghofe@21024
   677
  end;
berghofe@5094
   678
wenzelm@28083
   679
fun declare_rules kind rec_binding coind no_ind cnames intrs intr_bindings intr_atts
berghofe@23762
   680
      elims raw_induct ctxt =
berghofe@23762
   681
  let
wenzelm@30223
   682
    val rec_name = Binding.name_of rec_binding;
wenzelm@30223
   683
    val rec_qualified = Binding.qualify false rec_name;
wenzelm@30223
   684
    val intr_names = map Binding.name_of intr_bindings;
berghofe@23762
   685
    val ind_case_names = RuleCases.case_names intr_names;
berghofe@23762
   686
    val induct =
berghofe@23762
   687
      if coind then
berghofe@23762
   688
        (raw_induct, [RuleCases.case_names [rec_name],
berghofe@23762
   689
          RuleCases.case_conclusion (rec_name, intr_names),
wenzelm@24861
   690
          RuleCases.consumes 1, Induct.coinduct_pred (hd cnames)])
berghofe@23762
   691
      else if no_ind orelse length cnames > 1 then
berghofe@23762
   692
        (raw_induct, [ind_case_names, RuleCases.consumes 0])
berghofe@23762
   693
      else (raw_induct RSN (2, rev_mp), [ind_case_names, RuleCases.consumes 1]);
berghofe@23762
   694
berghofe@23762
   695
    val (intrs', ctxt1) =
berghofe@23762
   696
      ctxt |>
wenzelm@26128
   697
      LocalTheory.notes kind
wenzelm@28107
   698
        (map rec_qualified intr_bindings ~~ intr_atts ~~ map (fn th => [([th],
blanchet@29868
   699
           [Attrib.internal (K (ContextRules.intro_query NONE)),
wenzelm@31902
   700
            Attrib.internal (K Nitpick_Ind_Intros.add)])]) intrs) |>>
berghofe@24744
   701
      map (hd o snd);
berghofe@23762
   702
    val (((_, elims'), (_, [induct'])), ctxt2) =
berghofe@23762
   703
      ctxt1 |>
haftmann@28965
   704
      LocalTheory.note kind ((rec_qualified (Binding.name "intros"), []), intrs') ||>>
berghofe@23762
   705
      fold_map (fn (name, (elim, cases)) =>
wenzelm@30435
   706
        LocalTheory.note kind ((Binding.qualified_name (Long_Name.qualify (Long_Name.base_name name) "cases"),
berghofe@23762
   707
          [Attrib.internal (K (RuleCases.case_names cases)),
berghofe@23762
   708
           Attrib.internal (K (RuleCases.consumes 1)),
wenzelm@24861
   709
           Attrib.internal (K (Induct.cases_pred name)),
berghofe@23762
   710
           Attrib.internal (K (ContextRules.elim_query NONE))]), [elim]) #>
berghofe@23762
   711
        apfst (hd o snd)) (if null elims then [] else cnames ~~ elims) ||>>
wenzelm@28107
   712
      LocalTheory.note kind
haftmann@28965
   713
        ((rec_qualified (Binding.name (coind_prefix coind ^ "induct")),
wenzelm@28107
   714
          map (Attrib.internal o K) (#2 induct)), [rulify (#1 induct)]);
berghofe@23762
   715
berghofe@23762
   716
    val ctxt3 = if no_ind orelse coind then ctxt2 else
wenzelm@32172
   717
      let val inducts = cnames ~~ Project_Rule.projects ctxt2 (1 upto length cnames) induct'
berghofe@23762
   718
      in
berghofe@23762
   719
        ctxt2 |>
haftmann@28965
   720
        LocalTheory.notes kind [((rec_qualified (Binding.name "inducts"), []),
berghofe@23762
   721
          inducts |> map (fn (name, th) => ([th],
berghofe@23762
   722
            [Attrib.internal (K ind_case_names),
berghofe@23762
   723
             Attrib.internal (K (RuleCases.consumes 1)),
wenzelm@24861
   724
             Attrib.internal (K (Induct.induct_pred name))])))] |> snd
berghofe@23762
   725
      end
berghofe@23762
   726
  in (intrs', elims', induct', ctxt3) end;
berghofe@23762
   727
berghofe@26534
   728
type inductive_flags =
haftmann@29581
   729
  {quiet_mode: bool, verbose: bool, kind: string, alt_name: binding,
wenzelm@29388
   730
   coind: bool, no_elim: bool, no_ind: bool, skip_mono: bool, fork_mono: bool}
berghofe@26534
   731
berghofe@26534
   732
type add_ind_def =
berghofe@26534
   733
  inductive_flags ->
wenzelm@28084
   734
  term list -> (Attrib.binding * term) list -> thm list ->
haftmann@29581
   735
  term list -> (binding * mixfix) list ->
berghofe@23762
   736
  local_theory -> inductive_result * local_theory
berghofe@23762
   737
wenzelm@29388
   738
fun add_ind_def {quiet_mode, verbose, kind, alt_name, coind, no_elim, no_ind, skip_mono, fork_mono}
wenzelm@24815
   739
    cs intros monos params cnames_syn ctxt =
berghofe@9072
   740
  let
wenzelm@25288
   741
    val _ = null cnames_syn andalso error "No inductive predicates given";
wenzelm@30223
   742
    val names = map (Binding.name_of o fst) cnames_syn;
wenzelm@26477
   743
    val _ = message (quiet_mode andalso not verbose)
wenzelm@28083
   744
      ("Proofs for " ^ coind_prefix coind ^ "inductive predicate(s) " ^ commas_quote names);
berghofe@9072
   745
berghofe@30089
   746
    val cnames = map (LocalTheory.full_name ctxt o #1) cnames_syn;  (* FIXME *)
berghofe@23762
   747
    val ((intr_names, intr_atts), intr_ts) =
berghofe@23762
   748
      apfst split_list (split_list (map (check_rule ctxt cs params) intros));
berghofe@21024
   749
berghofe@21024
   750
    val (ctxt1, rec_name, mono, fp_def, rec_preds_defs, rec_const, preds,
wenzelm@29388
   751
      argTs, bs, xs) = mk_ind_def quiet_mode skip_mono fork_mono alt_name coind cs intr_ts
berghofe@26534
   752
        monos params cnames_syn ctxt;
berghofe@9072
   753
wenzelm@26477
   754
    val (intrs, unfold) = prove_intrs quiet_mode coind mono fp_def (length bs + length xs)
berghofe@22605
   755
      params intr_ts rec_preds_defs ctxt1;
berghofe@21048
   756
    val elims = if no_elim then [] else
wenzelm@30223
   757
      prove_elims quiet_mode cs params intr_ts (map Binding.name_of intr_names)
wenzelm@28083
   758
        unfold rec_preds_defs ctxt1;
berghofe@22605
   759
    val raw_induct = zero_var_indexes
berghofe@21024
   760
      (if no_ind then Drule.asm_rl else
berghofe@23762
   761
       if coind then
berghofe@23762
   762
         singleton (ProofContext.export
berghofe@23762
   763
           (snd (Variable.add_fixes (map (fst o dest_Free) params) ctxt1)) ctxt1)
wenzelm@28839
   764
           (rotate_prems ~1 (ObjectLogic.rulify
wenzelm@28839
   765
             (fold_rule rec_preds_defs
wenzelm@28839
   766
               (rewrite_rule [le_fun_def, le_bool_def, sup_fun_eq, sup_bool_eq]
wenzelm@28839
   767
                (mono RS (fp_def RS def_coinduct))))))
berghofe@21024
   768
       else
wenzelm@26477
   769
         prove_indrule quiet_mode cs argTs bs xs rec_const params intr_ts mono fp_def
berghofe@22605
   770
           rec_preds_defs ctxt1);
berghofe@5094
   771
wenzelm@26128
   772
    val (intrs', elims', induct, ctxt2) = declare_rules kind rec_name coind no_ind
berghofe@23762
   773
      cnames intrs intr_names intr_atts elims raw_induct ctxt1;
berghofe@21048
   774
berghofe@21048
   775
    val result =
berghofe@21048
   776
      {preds = preds,
berghofe@21048
   777
       intrs = intrs',
berghofe@21048
   778
       elims = elims',
berghofe@21048
   779
       raw_induct = rulify raw_induct,
berghofe@23762
   780
       induct = induct};
wenzelm@21367
   781
berghofe@23762
   782
    val ctxt3 = ctxt2
wenzelm@21526
   783
      |> LocalTheory.declaration (fn phi =>
wenzelm@25380
   784
        let val result' = morph_result phi result;
wenzelm@25380
   785
        in put_inductives cnames (*global names!?*) ({names = cnames, coind = coind}, result') end);
berghofe@23762
   786
  in (result, ctxt3) end;
berghofe@5094
   787
wenzelm@6424
   788
wenzelm@10735
   789
(* external interfaces *)
berghofe@5094
   790
wenzelm@26477
   791
fun gen_add_inductive_i mk_def
wenzelm@29388
   792
    (flags as {quiet_mode, verbose, kind, alt_name, coind, no_elim, no_ind, skip_mono, fork_mono})
wenzelm@25029
   793
    cnames_syn pnames spec monos lthy =
berghofe@5094
   794
  let
wenzelm@25029
   795
    val thy = ProofContext.theory_of lthy;
wenzelm@6424
   796
    val _ = Theory.requires thy "Inductive" (coind_prefix coind ^ "inductive definitions");
berghofe@5094
   797
berghofe@21766
   798
wenzelm@25029
   799
    (* abbrevs *)
wenzelm@25029
   800
wenzelm@30223
   801
    val (_, ctxt1) = Variable.add_fixes (map (Binding.name_of o fst o fst) cnames_syn) lthy;
berghofe@21766
   802
wenzelm@25029
   803
    fun get_abbrev ((name, atts), t) =
wenzelm@25029
   804
      if can (Logic.strip_assums_concl #> Logic.dest_equals) t then
wenzelm@25029
   805
        let
haftmann@29006
   806
          val _ = Binding.is_empty name andalso null atts orelse
wenzelm@25029
   807
            error "Abbreviations may not have names or attributes";
wenzelm@25029
   808
          val ((x, T), rhs) = LocalDefs.abs_def (snd (LocalDefs.cert_def ctxt1 t));
wenzelm@28083
   809
          val var =
wenzelm@30223
   810
            (case find_first (fn ((c, _), _) => Binding.name_of c = x) cnames_syn of
wenzelm@25029
   811
              NONE => error ("Undeclared head of abbreviation " ^ quote x)
wenzelm@28083
   812
            | SOME ((b, T'), mx) =>
wenzelm@25029
   813
                if T <> T' then error ("Bad type specification for abbreviation " ^ quote x)
wenzelm@28083
   814
                else (b, mx));
wenzelm@28083
   815
        in SOME (var, rhs) end
wenzelm@25029
   816
      else NONE;
berghofe@21766
   817
wenzelm@25029
   818
    val abbrevs = map_filter get_abbrev spec;
wenzelm@30223
   819
    val bs = map (Binding.name_of o fst o fst) abbrevs;
wenzelm@25029
   820
berghofe@21766
   821
wenzelm@25029
   822
    (* predicates *)
berghofe@21766
   823
wenzelm@25029
   824
    val pre_intros = filter_out (is_some o get_abbrev) spec;
wenzelm@30223
   825
    val cnames_syn' = filter_out (member (op =) bs o Binding.name_of o fst o fst) cnames_syn;
wenzelm@30223
   826
    val cs = map (Free o apfst Binding.name_of o fst) cnames_syn';
wenzelm@25029
   827
    val ps = map Free pnames;
berghofe@5094
   828
wenzelm@30223
   829
    val (_, ctxt2) = lthy |> Variable.add_fixes (map (Binding.name_of o fst o fst) cnames_syn');
wenzelm@25143
   830
    val _ = map (fn abbr => LocalDefs.fixed_abbrev abbr ctxt2) abbrevs;
wenzelm@25143
   831
    val ctxt3 = ctxt2 |> fold (snd oo LocalDefs.fixed_abbrev) abbrevs;
wenzelm@25143
   832
    val expand = Assumption.export_term ctxt3 lthy #> ProofContext.cert_term lthy;
wenzelm@25029
   833
wenzelm@25029
   834
    fun close_rule r = list_all_free (rev (fold_aterms
berghofe@21024
   835
      (fn t as Free (v as (s, _)) =>
wenzelm@25029
   836
          if Variable.is_fixed ctxt1 s orelse
wenzelm@25029
   837
            member (op =) ps t then I else insert (op =) v
wenzelm@25029
   838
        | _ => I) r []), r);
berghofe@5094
   839
haftmann@26736
   840
    val intros = map (apsnd (Syntax.check_term lthy #> close_rule #> expand)) pre_intros;
wenzelm@25029
   841
    val preds = map (fn ((c, _), mx) => (c, mx)) cnames_syn';
berghofe@21048
   842
  in
wenzelm@25029
   843
    lthy
wenzelm@25029
   844
    |> mk_def flags cs intros monos ps preds
wenzelm@25029
   845
    ||> fold (snd oo LocalTheory.abbrev Syntax.mode_default) abbrevs
berghofe@21048
   846
  end;
berghofe@5094
   847
wenzelm@29388
   848
fun gen_add_inductive mk_def verbose coind cnames_syn pnames_syn intro_srcs raw_monos int lthy =
berghofe@5094
   849
  let
wenzelm@30486
   850
    val ((vars, intrs), _) = lthy
wenzelm@30486
   851
      |> ProofContext.set_mode ProofContext.mode_abbrev
wenzelm@30486
   852
      |> Specification.read_spec (cnames_syn @ pnames_syn) intro_srcs;
wenzelm@24721
   853
    val (cs, ps) = chop (length cnames_syn) vars;
wenzelm@24721
   854
    val monos = Attrib.eval_thms lthy raw_monos;
haftmann@31177
   855
    val flags = {quiet_mode = false, verbose = verbose, kind = Thm.generatedK,
wenzelm@29388
   856
      alt_name = Binding.empty, coind = coind, no_elim = false, no_ind = false,
wenzelm@29388
   857
      skip_mono = false, fork_mono = not int};
wenzelm@26128
   858
  in
wenzelm@26128
   859
    lthy
wenzelm@26128
   860
    |> LocalTheory.set_group (serial_string ())
wenzelm@30223
   861
    |> gen_add_inductive_i mk_def flags cs (map (apfst Binding.name_of o fst) ps) intrs monos
wenzelm@26128
   862
  end;
berghofe@5094
   863
berghofe@23762
   864
val add_inductive_i = gen_add_inductive_i add_ind_def;
berghofe@23762
   865
val add_inductive = gen_add_inductive add_ind_def;
berghofe@23762
   866
wenzelm@26128
   867
fun add_inductive_global group flags cnames_syn pnames pre_intros monos thy =
wenzelm@25380
   868
  let
haftmann@29006
   869
    val name = Sign.full_name thy (fst (fst (hd cnames_syn)));
wenzelm@25380
   870
    val ctxt' = thy
wenzelm@25380
   871
      |> TheoryTarget.init NONE
wenzelm@26128
   872
      |> LocalTheory.set_group group
wenzelm@25380
   873
      |> add_inductive_i flags cnames_syn pnames pre_intros monos |> snd
wenzelm@25380
   874
      |> LocalTheory.exit;
wenzelm@25380
   875
    val info = #2 (the_inductive ctxt' name);
wenzelm@25380
   876
  in (info, ProofContext.theory_of ctxt') end;
wenzelm@6424
   877
wenzelm@6424
   878
berghofe@22789
   879
(* read off arities of inductive predicates from raw induction rule *)
berghofe@22789
   880
fun arities_of induct =
berghofe@22789
   881
  map (fn (_ $ t $ u) =>
berghofe@22789
   882
      (fst (dest_Const (head_of t)), length (snd (strip_comb u))))
berghofe@22789
   883
    (HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of induct)));
berghofe@22789
   884
berghofe@22789
   885
(* read off parameters of inductive predicate from raw induction rule *)
berghofe@22789
   886
fun params_of induct =
berghofe@22789
   887
  let
berghofe@22789
   888
    val (_ $ t $ u :: _) =
berghofe@22789
   889
      HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of induct));
berghofe@22789
   890
    val (_, ts) = strip_comb t;
berghofe@22789
   891
    val (_, us) = strip_comb u
berghofe@22789
   892
  in
berghofe@22789
   893
    List.take (ts, length ts - length us)
berghofe@22789
   894
  end;
berghofe@22789
   895
berghofe@22789
   896
val pname_of_intr =
berghofe@22789
   897
  concl_of #> HOLogic.dest_Trueprop #> head_of #> dest_Const #> fst;
berghofe@22789
   898
berghofe@22789
   899
(* partition introduction rules according to predicate name *)
berghofe@25822
   900
fun gen_partition_rules f induct intros =
berghofe@25822
   901
  fold_rev (fn r => AList.map_entry op = (pname_of_intr (f r)) (cons r)) intros
berghofe@22789
   902
    (map (rpair [] o fst) (arities_of induct));
berghofe@22789
   903
berghofe@25822
   904
val partition_rules = gen_partition_rules I;
berghofe@25822
   905
fun partition_rules' induct = gen_partition_rules fst induct;
berghofe@25822
   906
berghofe@22789
   907
fun unpartition_rules intros xs =
berghofe@22789
   908
  fold_map (fn r => AList.map_entry_yield op = (pname_of_intr r)
berghofe@22789
   909
    (fn x :: xs => (x, xs)) #>> the) intros xs |> fst;
berghofe@22789
   910
berghofe@22789
   911
(* infer order of variables in intro rules from order of quantifiers in elim rule *)
berghofe@22789
   912
fun infer_intro_vars elim arity intros =
berghofe@22789
   913
  let
berghofe@22789
   914
    val thy = theory_of_thm elim;
berghofe@22789
   915
    val _ :: cases = prems_of elim;
berghofe@22789
   916
    val used = map (fst o fst) (Term.add_vars (prop_of elim) []);
berghofe@22789
   917
    fun mtch (t, u) =
berghofe@22789
   918
      let
berghofe@22789
   919
        val params = Logic.strip_params t;
berghofe@22789
   920
        val vars = map (Var o apfst (rpair 0))
berghofe@22789
   921
          (Name.variant_list used (map fst params) ~~ map snd params);
berghofe@22789
   922
        val ts = map (curry subst_bounds (rev vars))
berghofe@22789
   923
          (List.drop (Logic.strip_assums_hyp t, arity));
berghofe@22789
   924
        val us = Logic.strip_imp_prems u;
berghofe@22789
   925
        val tab = fold (Pattern.first_order_match thy) (ts ~~ us)
berghofe@22789
   926
          (Vartab.empty, Vartab.empty);
berghofe@22789
   927
      in
wenzelm@32035
   928
        map (Envir.subst_term tab) vars
berghofe@22789
   929
      end
berghofe@22789
   930
  in
berghofe@22789
   931
    map (mtch o apsnd prop_of) (cases ~~ intros)
berghofe@22789
   932
  end;
berghofe@22789
   933
berghofe@22789
   934
wenzelm@25978
   935
wenzelm@6437
   936
(** package setup **)
wenzelm@6437
   937
wenzelm@6437
   938
(* setup theory *)
wenzelm@6437
   939
wenzelm@8634
   940
val setup =
wenzelm@30722
   941
  ind_cases_setup #>
wenzelm@30528
   942
  Attrib.setup @{binding mono} (Attrib.add_del mono_add mono_del)
wenzelm@30528
   943
    "declaration of monotonicity rule";
wenzelm@6437
   944
wenzelm@6437
   945
wenzelm@6437
   946
(* outer syntax *)
wenzelm@6424
   947
wenzelm@17057
   948
local structure P = OuterParse and K = OuterKeyword in
wenzelm@6424
   949
wenzelm@27353
   950
val _ = OuterKeyword.keyword "monos";
wenzelm@24867
   951
berghofe@23762
   952
fun gen_ind_decl mk_def coind =
wenzelm@21367
   953
  P.fixes -- P.for_fixes --
wenzelm@30486
   954
  Scan.optional SpecParse.where_alt_specs [] --
wenzelm@22102
   955
  Scan.optional (P.$$$ "monos" |-- P.!!! SpecParse.xthms1) []
wenzelm@26988
   956
  >> (fn (((preds, params), specs), monos) =>
wenzelm@30486
   957
      (snd oo gen_add_inductive mk_def true coind preds params specs monos));
berghofe@23762
   958
berghofe@23762
   959
val ind_decl = gen_ind_decl add_ind_def;
wenzelm@6424
   960
wenzelm@29388
   961
val _ = OuterSyntax.local_theory' "inductive" "define inductive predicates" K.thy_decl (ind_decl false);
wenzelm@29388
   962
val _ = OuterSyntax.local_theory' "coinductive" "define coinductive predicates" K.thy_decl (ind_decl true);
wenzelm@6723
   963
wenzelm@24867
   964
val _ =
wenzelm@26988
   965
  OuterSyntax.local_theory "inductive_cases"
wenzelm@21367
   966
    "create simplified instances of elimination rules (improper)" K.thy_script
wenzelm@30486
   967
    (P.and_list1 SpecParse.specs >> (snd oo inductive_cases));
wenzelm@7107
   968
berghofe@5094
   969
end;
wenzelm@6424
   970
wenzelm@6424
   971
end;