src/HOLCF/UpperPD.thy
author huffman
Thu Jun 19 22:50:58 2008 +0200 (2008-06-19)
changeset 27289 c49d427867aa
parent 27267 5ebfb7f25ebb
child 27297 2c42b1505f25
permissions -rw-r--r--
move lemmas into locales;
restructure some proofs
huffman@25904
     1
(*  Title:      HOLCF/UpperPD.thy
huffman@25904
     2
    ID:         $Id$
huffman@25904
     3
    Author:     Brian Huffman
huffman@25904
     4
*)
huffman@25904
     5
huffman@25904
     6
header {* Upper powerdomain *}
huffman@25904
     7
huffman@25904
     8
theory UpperPD
huffman@25904
     9
imports CompactBasis
huffman@25904
    10
begin
huffman@25904
    11
huffman@25904
    12
subsection {* Basis preorder *}
huffman@25904
    13
huffman@25904
    14
definition
huffman@25904
    15
  upper_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<sharp>" 50) where
huffman@26420
    16
  "upper_le = (\<lambda>u v. \<forall>y\<in>Rep_pd_basis v. \<exists>x\<in>Rep_pd_basis u. x \<sqsubseteq> y)"
huffman@25904
    17
huffman@25904
    18
lemma upper_le_refl [simp]: "t \<le>\<sharp> t"
huffman@26420
    19
unfolding upper_le_def by fast
huffman@25904
    20
huffman@25904
    21
lemma upper_le_trans: "\<lbrakk>t \<le>\<sharp> u; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> t \<le>\<sharp> v"
huffman@25904
    22
unfolding upper_le_def
huffman@25904
    23
apply (rule ballI)
huffman@25904
    24
apply (drule (1) bspec, erule bexE)
huffman@25904
    25
apply (drule (1) bspec, erule bexE)
huffman@25904
    26
apply (erule rev_bexI)
huffman@26420
    27
apply (erule (1) trans_less)
huffman@25904
    28
done
huffman@25904
    29
huffman@25904
    30
interpretation upper_le: preorder [upper_le]
huffman@25904
    31
by (rule preorder.intro, rule upper_le_refl, rule upper_le_trans)
huffman@25904
    32
huffman@25904
    33
lemma upper_le_minimal [simp]: "PDUnit compact_bot \<le>\<sharp> t"
huffman@25904
    34
unfolding upper_le_def Rep_PDUnit by simp
huffman@25904
    35
huffman@26420
    36
lemma PDUnit_upper_mono: "x \<sqsubseteq> y \<Longrightarrow> PDUnit x \<le>\<sharp> PDUnit y"
huffman@25904
    37
unfolding upper_le_def Rep_PDUnit by simp
huffman@25904
    38
huffman@25904
    39
lemma PDPlus_upper_mono: "\<lbrakk>s \<le>\<sharp> t; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<sharp> PDPlus t v"
huffman@25904
    40
unfolding upper_le_def Rep_PDPlus by fast
huffman@25904
    41
huffman@25904
    42
lemma PDPlus_upper_less: "PDPlus t u \<le>\<sharp> t"
huffman@26420
    43
unfolding upper_le_def Rep_PDPlus by fast
huffman@25904
    44
huffman@25904
    45
lemma upper_le_PDUnit_PDUnit_iff [simp]:
huffman@26420
    46
  "(PDUnit a \<le>\<sharp> PDUnit b) = a \<sqsubseteq> b"
huffman@25904
    47
unfolding upper_le_def Rep_PDUnit by fast
huffman@25904
    48
huffman@25904
    49
lemma upper_le_PDPlus_PDUnit_iff:
huffman@25904
    50
  "(PDPlus t u \<le>\<sharp> PDUnit a) = (t \<le>\<sharp> PDUnit a \<or> u \<le>\<sharp> PDUnit a)"
huffman@25904
    51
unfolding upper_le_def Rep_PDPlus Rep_PDUnit by fast
huffman@25904
    52
huffman@25904
    53
lemma upper_le_PDPlus_iff: "(t \<le>\<sharp> PDPlus u v) = (t \<le>\<sharp> u \<and> t \<le>\<sharp> v)"
huffman@25904
    54
unfolding upper_le_def Rep_PDPlus by fast
huffman@25904
    55
huffman@25904
    56
lemma upper_le_induct [induct set: upper_le]:
huffman@25904
    57
  assumes le: "t \<le>\<sharp> u"
huffman@26420
    58
  assumes 1: "\<And>a b. a \<sqsubseteq> b \<Longrightarrow> P (PDUnit a) (PDUnit b)"
huffman@25904
    59
  assumes 2: "\<And>t u a. P t (PDUnit a) \<Longrightarrow> P (PDPlus t u) (PDUnit a)"
huffman@25904
    60
  assumes 3: "\<And>t u v. \<lbrakk>P t u; P t v\<rbrakk> \<Longrightarrow> P t (PDPlus u v)"
huffman@25904
    61
  shows "P t u"
huffman@25904
    62
using le apply (induct u arbitrary: t rule: pd_basis_induct)
huffman@25904
    63
apply (erule rev_mp)
huffman@25904
    64
apply (induct_tac t rule: pd_basis_induct)
huffman@25904
    65
apply (simp add: 1)
huffman@25904
    66
apply (simp add: upper_le_PDPlus_PDUnit_iff)
huffman@25904
    67
apply (simp add: 2)
huffman@25904
    68
apply (subst PDPlus_commute)
huffman@25904
    69
apply (simp add: 2)
huffman@25904
    70
apply (simp add: upper_le_PDPlus_iff 3)
huffman@25904
    71
done
huffman@25904
    72
huffman@27289
    73
lemma approx_pd_upper_chain:
huffman@27289
    74
  "approx_pd n t \<le>\<sharp> approx_pd (Suc n) t"
huffman@25904
    75
apply (induct t rule: pd_basis_induct)
huffman@27289
    76
apply (simp add: compact_basis.take_chain)
huffman@25904
    77
apply (simp add: PDPlus_upper_mono)
huffman@25904
    78
done
huffman@25904
    79
huffman@25904
    80
lemma approx_pd_upper_le: "approx_pd i t \<le>\<sharp> t"
huffman@25904
    81
apply (induct t rule: pd_basis_induct)
huffman@27289
    82
apply (simp add: compact_basis.take_less)
huffman@25904
    83
apply (simp add: PDPlus_upper_mono)
huffman@25904
    84
done
huffman@25904
    85
huffman@25904
    86
lemma approx_pd_upper_mono:
huffman@25904
    87
  "t \<le>\<sharp> u \<Longrightarrow> approx_pd n t \<le>\<sharp> approx_pd n u"
huffman@25904
    88
apply (erule upper_le_induct)
huffman@27289
    89
apply (simp add: compact_basis.take_mono)
huffman@25904
    90
apply (simp add: upper_le_PDPlus_PDUnit_iff)
huffman@25904
    91
apply (simp add: upper_le_PDPlus_iff)
huffman@25904
    92
done
huffman@25904
    93
huffman@25904
    94
huffman@25904
    95
subsection {* Type definition *}
huffman@25904
    96
huffman@25904
    97
cpodef (open) 'a upper_pd =
huffman@26407
    98
  "{S::'a::profinite pd_basis set. upper_le.ideal S}"
huffman@25904
    99
apply (simp add: upper_le.adm_ideal)
huffman@25904
   100
apply (fast intro: upper_le.ideal_principal)
huffman@25904
   101
done
huffman@25904
   102
huffman@25904
   103
lemma ideal_Rep_upper_pd: "upper_le.ideal (Rep_upper_pd x)"
huffman@26927
   104
by (rule Rep_upper_pd [unfolded mem_Collect_eq])
huffman@25904
   105
huffman@25904
   106
definition
huffman@25904
   107
  upper_principal :: "'a pd_basis \<Rightarrow> 'a upper_pd" where
huffman@25904
   108
  "upper_principal t = Abs_upper_pd {u. u \<le>\<sharp> t}"
huffman@25904
   109
huffman@25904
   110
lemma Rep_upper_principal:
huffman@25904
   111
  "Rep_upper_pd (upper_principal t) = {u. u \<le>\<sharp> t}"
huffman@25904
   112
unfolding upper_principal_def
huffman@26927
   113
apply (rule Abs_upper_pd_inverse [unfolded mem_Collect_eq])
huffman@25904
   114
apply (rule upper_le.ideal_principal)
huffman@25904
   115
done
huffman@25904
   116
huffman@25904
   117
interpretation upper_pd:
huffman@26927
   118
  ideal_completion [upper_le approx_pd upper_principal Rep_upper_pd]
huffman@25904
   119
apply unfold_locales
huffman@25904
   120
apply (rule approx_pd_upper_le)
huffman@25904
   121
apply (rule approx_pd_idem)
huffman@25904
   122
apply (erule approx_pd_upper_mono)
huffman@27289
   123
apply (rule approx_pd_upper_chain)
huffman@25904
   124
apply (rule finite_range_approx_pd)
huffman@27289
   125
apply (rule approx_pd_covers)
huffman@26420
   126
apply (rule ideal_Rep_upper_pd)
huffman@26420
   127
apply (rule cont_Rep_upper_pd)
huffman@26420
   128
apply (rule Rep_upper_principal)
berghofe@26806
   129
apply (simp only: less_upper_pd_def less_set_eq)
huffman@25904
   130
done
huffman@25904
   131
huffman@27289
   132
text {* Upper powerdomain is pointed *}
huffman@25904
   133
huffman@25904
   134
lemma upper_pd_minimal: "upper_principal (PDUnit compact_bot) \<sqsubseteq> ys"
huffman@25904
   135
by (induct ys rule: upper_pd.principal_induct, simp, simp)
huffman@25904
   136
huffman@25904
   137
instance upper_pd :: (bifinite) pcpo
huffman@26927
   138
by intro_classes (fast intro: upper_pd_minimal)
huffman@25904
   139
huffman@25904
   140
lemma inst_upper_pd_pcpo: "\<bottom> = upper_principal (PDUnit compact_bot)"
huffman@25904
   141
by (rule upper_pd_minimal [THEN UU_I, symmetric])
huffman@25904
   142
huffman@27289
   143
text {* Upper powerdomain is profinite *}
huffman@25904
   144
huffman@26962
   145
instantiation upper_pd :: (profinite) profinite
huffman@26962
   146
begin
huffman@25904
   147
huffman@26962
   148
definition
huffman@26962
   149
  approx_upper_pd_def: "approx = upper_pd.completion_approx"
huffman@26927
   150
huffman@26962
   151
instance
huffman@26927
   152
apply (intro_classes, unfold approx_upper_pd_def)
huffman@26927
   153
apply (simp add: upper_pd.chain_completion_approx)
huffman@26927
   154
apply (rule upper_pd.lub_completion_approx)
huffman@26927
   155
apply (rule upper_pd.completion_approx_idem)
huffman@26927
   156
apply (rule upper_pd.finite_fixes_completion_approx)
huffman@26927
   157
done
huffman@26927
   158
huffman@26962
   159
end
huffman@26962
   160
huffman@26927
   161
instance upper_pd :: (bifinite) bifinite ..
huffman@25904
   162
huffman@25904
   163
lemma approx_upper_principal [simp]:
huffman@25904
   164
  "approx n\<cdot>(upper_principal t) = upper_principal (approx_pd n t)"
huffman@25904
   165
unfolding approx_upper_pd_def
huffman@26927
   166
by (rule upper_pd.completion_approx_principal)
huffman@25904
   167
huffman@25904
   168
lemma approx_eq_upper_principal:
huffman@25904
   169
  "\<exists>t\<in>Rep_upper_pd xs. approx n\<cdot>xs = upper_principal (approx_pd n t)"
huffman@25904
   170
unfolding approx_upper_pd_def
huffman@26927
   171
by (rule upper_pd.completion_approx_eq_principal)
huffman@26407
   172
huffman@25904
   173
huffman@26927
   174
subsection {* Monadic unit and plus *}
huffman@25904
   175
huffman@25904
   176
definition
huffman@25904
   177
  upper_unit :: "'a \<rightarrow> 'a upper_pd" where
huffman@25904
   178
  "upper_unit = compact_basis.basis_fun (\<lambda>a. upper_principal (PDUnit a))"
huffman@25904
   179
huffman@25904
   180
definition
huffman@25904
   181
  upper_plus :: "'a upper_pd \<rightarrow> 'a upper_pd \<rightarrow> 'a upper_pd" where
huffman@25904
   182
  "upper_plus = upper_pd.basis_fun (\<lambda>t. upper_pd.basis_fun (\<lambda>u.
huffman@25904
   183
      upper_principal (PDPlus t u)))"
huffman@25904
   184
huffman@25904
   185
abbreviation
huffman@25904
   186
  upper_add :: "'a upper_pd \<Rightarrow> 'a upper_pd \<Rightarrow> 'a upper_pd"
huffman@25904
   187
    (infixl "+\<sharp>" 65) where
huffman@25904
   188
  "xs +\<sharp> ys == upper_plus\<cdot>xs\<cdot>ys"
huffman@25904
   189
huffman@26927
   190
syntax
huffman@26927
   191
  "_upper_pd" :: "args \<Rightarrow> 'a upper_pd" ("{_}\<sharp>")
huffman@26927
   192
huffman@26927
   193
translations
huffman@26927
   194
  "{x,xs}\<sharp>" == "{x}\<sharp> +\<sharp> {xs}\<sharp>"
huffman@26927
   195
  "{x}\<sharp>" == "CONST upper_unit\<cdot>x"
huffman@26927
   196
huffman@26927
   197
lemma upper_unit_Rep_compact_basis [simp]:
huffman@26927
   198
  "{Rep_compact_basis a}\<sharp> = upper_principal (PDUnit a)"
huffman@26927
   199
unfolding upper_unit_def
huffman@27289
   200
by (simp add: compact_basis.basis_fun_principal PDUnit_upper_mono)
huffman@26927
   201
huffman@25904
   202
lemma upper_plus_principal [simp]:
huffman@26927
   203
  "upper_principal t +\<sharp> upper_principal u = upper_principal (PDPlus t u)"
huffman@25904
   204
unfolding upper_plus_def
huffman@25904
   205
by (simp add: upper_pd.basis_fun_principal
huffman@25904
   206
    upper_pd.basis_fun_mono PDPlus_upper_mono)
huffman@25904
   207
huffman@26927
   208
lemma approx_upper_unit [simp]:
huffman@26927
   209
  "approx n\<cdot>{x}\<sharp> = {approx n\<cdot>x}\<sharp>"
huffman@27289
   210
apply (induct x rule: compact_basis.principal_induct, simp)
huffman@26927
   211
apply (simp add: approx_Rep_compact_basis)
huffman@26927
   212
done
huffman@26927
   213
huffman@25904
   214
lemma approx_upper_plus [simp]:
huffman@26927
   215
  "approx n\<cdot>(xs +\<sharp> ys) = (approx n\<cdot>xs) +\<sharp> (approx n\<cdot>ys)"
huffman@27289
   216
by (induct xs ys rule: upper_pd.principal_induct2, simp, simp, simp)
huffman@25904
   217
huffman@26927
   218
lemma upper_plus_assoc: "(xs +\<sharp> ys) +\<sharp> zs = xs +\<sharp> (ys +\<sharp> zs)"
huffman@27289
   219
apply (induct xs ys arbitrary: zs rule: upper_pd.principal_induct2, simp, simp)
huffman@27289
   220
apply (rule_tac x=zs in upper_pd.principal_induct, simp)
huffman@25904
   221
apply (simp add: PDPlus_assoc)
huffman@25904
   222
done
huffman@25904
   223
huffman@26927
   224
lemma upper_plus_commute: "xs +\<sharp> ys = ys +\<sharp> xs"
huffman@27289
   225
apply (induct xs ys rule: upper_pd.principal_induct2, simp, simp)
huffman@26927
   226
apply (simp add: PDPlus_commute)
huffman@26927
   227
done
huffman@26927
   228
huffman@26927
   229
lemma upper_plus_absorb: "xs +\<sharp> xs = xs"
huffman@27289
   230
apply (induct xs rule: upper_pd.principal_induct, simp)
huffman@25904
   231
apply (simp add: PDPlus_absorb)
huffman@25904
   232
done
huffman@25904
   233
huffman@26927
   234
interpretation aci_upper_plus: ab_semigroup_idem_mult ["op +\<sharp>"]
huffman@26927
   235
  by unfold_locales
huffman@26927
   236
    (rule upper_plus_assoc upper_plus_commute upper_plus_absorb)+
huffman@26927
   237
huffman@26927
   238
lemma upper_plus_left_commute: "xs +\<sharp> (ys +\<sharp> zs) = ys +\<sharp> (xs +\<sharp> zs)"
huffman@26927
   239
by (rule aci_upper_plus.mult_left_commute)
huffman@26927
   240
huffman@26927
   241
lemma upper_plus_left_absorb: "xs +\<sharp> (xs +\<sharp> ys) = xs +\<sharp> ys"
huffman@26927
   242
by (rule aci_upper_plus.mult_left_idem)
huffman@26927
   243
huffman@26927
   244
lemmas upper_plus_aci = aci_upper_plus.mult_ac_idem
huffman@26927
   245
huffman@26927
   246
lemma upper_plus_less1: "xs +\<sharp> ys \<sqsubseteq> xs"
huffman@27289
   247
apply (induct xs ys rule: upper_pd.principal_induct2, simp, simp)
huffman@25904
   248
apply (simp add: PDPlus_upper_less)
huffman@25904
   249
done
huffman@25904
   250
huffman@26927
   251
lemma upper_plus_less2: "xs +\<sharp> ys \<sqsubseteq> ys"
huffman@25904
   252
by (subst upper_plus_commute, rule upper_plus_less1)
huffman@25904
   253
huffman@26927
   254
lemma upper_plus_greatest: "\<lbrakk>xs \<sqsubseteq> ys; xs \<sqsubseteq> zs\<rbrakk> \<Longrightarrow> xs \<sqsubseteq> ys +\<sharp> zs"
huffman@25904
   255
apply (subst upper_plus_absorb [of xs, symmetric])
huffman@25904
   256
apply (erule (1) monofun_cfun [OF monofun_cfun_arg])
huffman@25904
   257
done
huffman@25904
   258
huffman@25904
   259
lemma upper_less_plus_iff:
huffman@26927
   260
  "xs \<sqsubseteq> ys +\<sharp> zs \<longleftrightarrow> xs \<sqsubseteq> ys \<and> xs \<sqsubseteq> zs"
huffman@25904
   261
apply safe
huffman@25904
   262
apply (erule trans_less [OF _ upper_plus_less1])
huffman@25904
   263
apply (erule trans_less [OF _ upper_plus_less2])
huffman@25904
   264
apply (erule (1) upper_plus_greatest)
huffman@25904
   265
done
huffman@25904
   266
huffman@25904
   267
lemma upper_plus_less_unit_iff:
huffman@26927
   268
  "xs +\<sharp> ys \<sqsubseteq> {z}\<sharp> \<longleftrightarrow> xs \<sqsubseteq> {z}\<sharp> \<or> ys \<sqsubseteq> {z}\<sharp>"
huffman@25904
   269
 apply (rule iffI)
huffman@25904
   270
  apply (subgoal_tac
huffman@26927
   271
    "adm (\<lambda>f. f\<cdot>xs \<sqsubseteq> f\<cdot>{z}\<sharp> \<or> f\<cdot>ys \<sqsubseteq> f\<cdot>{z}\<sharp>)")
huffman@25925
   272
   apply (drule admD, rule chain_approx)
huffman@25904
   273
    apply (drule_tac f="approx i" in monofun_cfun_arg)
huffman@27289
   274
    apply (cut_tac x="approx i\<cdot>xs" in upper_pd.compact_imp_principal, simp)
huffman@27289
   275
    apply (cut_tac x="approx i\<cdot>ys" in upper_pd.compact_imp_principal, simp)
huffman@27289
   276
    apply (cut_tac x="approx i\<cdot>z" in compact_basis.compact_imp_principal, simp)
huffman@25904
   277
    apply (clarify, simp add: upper_le_PDPlus_PDUnit_iff)
huffman@25904
   278
   apply simp
huffman@25904
   279
  apply simp
huffman@25904
   280
 apply (erule disjE)
huffman@25904
   281
  apply (erule trans_less [OF upper_plus_less1])
huffman@25904
   282
 apply (erule trans_less [OF upper_plus_less2])
huffman@25904
   283
done
huffman@25904
   284
huffman@26927
   285
lemma upper_unit_less_iff [simp]: "{x}\<sharp> \<sqsubseteq> {y}\<sharp> \<longleftrightarrow> x \<sqsubseteq> y"
huffman@26927
   286
 apply (rule iffI)
huffman@26927
   287
  apply (rule bifinite_less_ext)
huffman@26927
   288
  apply (drule_tac f="approx i" in monofun_cfun_arg, simp)
huffman@27289
   289
  apply (cut_tac x="approx i\<cdot>x" in compact_basis.compact_imp_principal, simp)
huffman@27289
   290
  apply (cut_tac x="approx i\<cdot>y" in compact_basis.compact_imp_principal, simp)
huffman@27289
   291
  apply clarsimp
huffman@26927
   292
 apply (erule monofun_cfun_arg)
huffman@26927
   293
done
huffman@26927
   294
huffman@25904
   295
lemmas upper_pd_less_simps =
huffman@25904
   296
  upper_unit_less_iff
huffman@25904
   297
  upper_less_plus_iff
huffman@25904
   298
  upper_plus_less_unit_iff
huffman@25904
   299
huffman@26927
   300
lemma upper_unit_eq_iff [simp]: "{x}\<sharp> = {y}\<sharp> \<longleftrightarrow> x = y"
huffman@26927
   301
unfolding po_eq_conv by simp
huffman@26927
   302
huffman@26927
   303
lemma upper_unit_strict [simp]: "{\<bottom>}\<sharp> = \<bottom>"
huffman@26927
   304
unfolding inst_upper_pd_pcpo Rep_compact_bot [symmetric] by simp
huffman@26927
   305
huffman@26927
   306
lemma upper_plus_strict1 [simp]: "\<bottom> +\<sharp> ys = \<bottom>"
huffman@26927
   307
by (rule UU_I, rule upper_plus_less1)
huffman@26927
   308
huffman@26927
   309
lemma upper_plus_strict2 [simp]: "xs +\<sharp> \<bottom> = \<bottom>"
huffman@26927
   310
by (rule UU_I, rule upper_plus_less2)
huffman@26927
   311
huffman@26927
   312
lemma upper_unit_strict_iff [simp]: "{x}\<sharp> = \<bottom> \<longleftrightarrow> x = \<bottom>"
huffman@26927
   313
unfolding upper_unit_strict [symmetric] by (rule upper_unit_eq_iff)
huffman@26927
   314
huffman@26927
   315
lemma upper_plus_strict_iff [simp]:
huffman@26927
   316
  "xs +\<sharp> ys = \<bottom> \<longleftrightarrow> xs = \<bottom> \<or> ys = \<bottom>"
huffman@26927
   317
apply (rule iffI)
huffman@26927
   318
apply (erule rev_mp)
huffman@27289
   319
apply (rule upper_pd.principal_induct2 [where x=xs and y=ys], simp, simp)
huffman@27289
   320
apply (simp add: inst_upper_pd_pcpo upper_pd.principal_eq_iff
huffman@26927
   321
                 upper_le_PDPlus_PDUnit_iff)
huffman@26927
   322
apply auto
huffman@26927
   323
done
huffman@26927
   324
huffman@26927
   325
lemma compact_upper_unit_iff [simp]: "compact {x}\<sharp> \<longleftrightarrow> compact x"
huffman@26927
   326
unfolding bifinite_compact_iff by simp
huffman@26927
   327
huffman@26927
   328
lemma compact_upper_plus [simp]:
huffman@26927
   329
  "\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs +\<sharp> ys)"
huffman@27289
   330
by (auto dest!: upper_pd.compact_imp_principal)
huffman@26927
   331
huffman@25904
   332
huffman@25904
   333
subsection {* Induction rules *}
huffman@25904
   334
huffman@25904
   335
lemma upper_pd_induct1:
huffman@25904
   336
  assumes P: "adm P"
huffman@26927
   337
  assumes unit: "\<And>x. P {x}\<sharp>"
huffman@26927
   338
  assumes insert: "\<And>x ys. \<lbrakk>P {x}\<sharp>; P ys\<rbrakk> \<Longrightarrow> P ({x}\<sharp> +\<sharp> ys)"
huffman@25904
   339
  shows "P (xs::'a upper_pd)"
huffman@27289
   340
apply (induct xs rule: upper_pd.principal_induct, rule P)
huffman@27289
   341
apply (induct_tac a rule: pd_basis_induct1)
huffman@25904
   342
apply (simp only: upper_unit_Rep_compact_basis [symmetric])
huffman@25904
   343
apply (rule unit)
huffman@25904
   344
apply (simp only: upper_unit_Rep_compact_basis [symmetric]
huffman@25904
   345
                  upper_plus_principal [symmetric])
huffman@25904
   346
apply (erule insert [OF unit])
huffman@25904
   347
done
huffman@25904
   348
huffman@25904
   349
lemma upper_pd_induct:
huffman@25904
   350
  assumes P: "adm P"
huffman@26927
   351
  assumes unit: "\<And>x. P {x}\<sharp>"
huffman@26927
   352
  assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (xs +\<sharp> ys)"
huffman@25904
   353
  shows "P (xs::'a upper_pd)"
huffman@27289
   354
apply (induct xs rule: upper_pd.principal_induct, rule P)
huffman@27289
   355
apply (induct_tac a rule: pd_basis_induct)
huffman@25904
   356
apply (simp only: upper_unit_Rep_compact_basis [symmetric] unit)
huffman@25904
   357
apply (simp only: upper_plus_principal [symmetric] plus)
huffman@25904
   358
done
huffman@25904
   359
huffman@25904
   360
huffman@25904
   361
subsection {* Monadic bind *}
huffman@25904
   362
huffman@25904
   363
definition
huffman@25904
   364
  upper_bind_basis ::
huffman@25904
   365
  "'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where
huffman@25904
   366
  "upper_bind_basis = fold_pd
huffman@25904
   367
    (\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a))
huffman@26927
   368
    (\<lambda>x y. \<Lambda> f. x\<cdot>f +\<sharp> y\<cdot>f)"
huffman@25904
   369
huffman@26927
   370
lemma ACI_upper_bind:
huffman@26927
   371
  "ab_semigroup_idem_mult (\<lambda>x y. \<Lambda> f. x\<cdot>f +\<sharp> y\<cdot>f)"
huffman@25904
   372
apply unfold_locales
haftmann@26041
   373
apply (simp add: upper_plus_assoc)
huffman@25904
   374
apply (simp add: upper_plus_commute)
huffman@25904
   375
apply (simp add: upper_plus_absorb eta_cfun)
huffman@25904
   376
done
huffman@25904
   377
huffman@25904
   378
lemma upper_bind_basis_simps [simp]:
huffman@25904
   379
  "upper_bind_basis (PDUnit a) =
huffman@25904
   380
    (\<Lambda> f. f\<cdot>(Rep_compact_basis a))"
huffman@25904
   381
  "upper_bind_basis (PDPlus t u) =
huffman@26927
   382
    (\<Lambda> f. upper_bind_basis t\<cdot>f +\<sharp> upper_bind_basis u\<cdot>f)"
huffman@25904
   383
unfolding upper_bind_basis_def
huffman@25904
   384
apply -
huffman@26927
   385
apply (rule fold_pd_PDUnit [OF ACI_upper_bind])
huffman@26927
   386
apply (rule fold_pd_PDPlus [OF ACI_upper_bind])
huffman@25904
   387
done
huffman@25904
   388
huffman@25904
   389
lemma upper_bind_basis_mono:
huffman@25904
   390
  "t \<le>\<sharp> u \<Longrightarrow> upper_bind_basis t \<sqsubseteq> upper_bind_basis u"
huffman@25904
   391
unfolding expand_cfun_less
huffman@25904
   392
apply (erule upper_le_induct, safe)
huffman@27289
   393
apply (simp add: monofun_cfun)
huffman@25904
   394
apply (simp add: trans_less [OF upper_plus_less1])
huffman@25904
   395
apply (simp add: upper_less_plus_iff)
huffman@25904
   396
done
huffman@25904
   397
huffman@25904
   398
definition
huffman@25904
   399
  upper_bind :: "'a upper_pd \<rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where
huffman@25904
   400
  "upper_bind = upper_pd.basis_fun upper_bind_basis"
huffman@25904
   401
huffman@25904
   402
lemma upper_bind_principal [simp]:
huffman@25904
   403
  "upper_bind\<cdot>(upper_principal t) = upper_bind_basis t"
huffman@25904
   404
unfolding upper_bind_def
huffman@25904
   405
apply (rule upper_pd.basis_fun_principal)
huffman@25904
   406
apply (erule upper_bind_basis_mono)
huffman@25904
   407
done
huffman@25904
   408
huffman@25904
   409
lemma upper_bind_unit [simp]:
huffman@26927
   410
  "upper_bind\<cdot>{x}\<sharp>\<cdot>f = f\<cdot>x"
huffman@27289
   411
by (induct x rule: compact_basis.principal_induct, simp, simp)
huffman@25904
   412
huffman@25904
   413
lemma upper_bind_plus [simp]:
huffman@26927
   414
  "upper_bind\<cdot>(xs +\<sharp> ys)\<cdot>f = upper_bind\<cdot>xs\<cdot>f +\<sharp> upper_bind\<cdot>ys\<cdot>f"
huffman@27289
   415
by (induct xs ys rule: upper_pd.principal_induct2, simp, simp, simp)
huffman@25904
   416
huffman@25904
   417
lemma upper_bind_strict [simp]: "upper_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>"
huffman@25904
   418
unfolding upper_unit_strict [symmetric] by (rule upper_bind_unit)
huffman@25904
   419
huffman@25904
   420
huffman@25904
   421
subsection {* Map and join *}
huffman@25904
   422
huffman@25904
   423
definition
huffman@25904
   424
  upper_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a upper_pd \<rightarrow> 'b upper_pd" where
huffman@26927
   425
  "upper_map = (\<Lambda> f xs. upper_bind\<cdot>xs\<cdot>(\<Lambda> x. {f\<cdot>x}\<sharp>))"
huffman@25904
   426
huffman@25904
   427
definition
huffman@25904
   428
  upper_join :: "'a upper_pd upper_pd \<rightarrow> 'a upper_pd" where
huffman@25904
   429
  "upper_join = (\<Lambda> xss. upper_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))"
huffman@25904
   430
huffman@25904
   431
lemma upper_map_unit [simp]:
huffman@26927
   432
  "upper_map\<cdot>f\<cdot>{x}\<sharp> = {f\<cdot>x}\<sharp>"
huffman@25904
   433
unfolding upper_map_def by simp
huffman@25904
   434
huffman@25904
   435
lemma upper_map_plus [simp]:
huffman@26927
   436
  "upper_map\<cdot>f\<cdot>(xs +\<sharp> ys) = upper_map\<cdot>f\<cdot>xs +\<sharp> upper_map\<cdot>f\<cdot>ys"
huffman@25904
   437
unfolding upper_map_def by simp
huffman@25904
   438
huffman@25904
   439
lemma upper_join_unit [simp]:
huffman@26927
   440
  "upper_join\<cdot>{xs}\<sharp> = xs"
huffman@25904
   441
unfolding upper_join_def by simp
huffman@25904
   442
huffman@25904
   443
lemma upper_join_plus [simp]:
huffman@26927
   444
  "upper_join\<cdot>(xss +\<sharp> yss) = upper_join\<cdot>xss +\<sharp> upper_join\<cdot>yss"
huffman@25904
   445
unfolding upper_join_def by simp
huffman@25904
   446
huffman@25904
   447
lemma upper_map_ident: "upper_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs"
huffman@25904
   448
by (induct xs rule: upper_pd_induct, simp_all)
huffman@25904
   449
huffman@25904
   450
lemma upper_map_map:
huffman@25904
   451
  "upper_map\<cdot>f\<cdot>(upper_map\<cdot>g\<cdot>xs) = upper_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs"
huffman@25904
   452
by (induct xs rule: upper_pd_induct, simp_all)
huffman@25904
   453
huffman@25904
   454
lemma upper_join_map_unit:
huffman@25904
   455
  "upper_join\<cdot>(upper_map\<cdot>upper_unit\<cdot>xs) = xs"
huffman@25904
   456
by (induct xs rule: upper_pd_induct, simp_all)
huffman@25904
   457
huffman@25904
   458
lemma upper_join_map_join:
huffman@25904
   459
  "upper_join\<cdot>(upper_map\<cdot>upper_join\<cdot>xsss) = upper_join\<cdot>(upper_join\<cdot>xsss)"
huffman@25904
   460
by (induct xsss rule: upper_pd_induct, simp_all)
huffman@25904
   461
huffman@25904
   462
lemma upper_join_map_map:
huffman@25904
   463
  "upper_join\<cdot>(upper_map\<cdot>(upper_map\<cdot>f)\<cdot>xss) =
huffman@25904
   464
   upper_map\<cdot>f\<cdot>(upper_join\<cdot>xss)"
huffman@25904
   465
by (induct xss rule: upper_pd_induct, simp_all)
huffman@25904
   466
huffman@25904
   467
lemma upper_map_approx: "upper_map\<cdot>(approx n)\<cdot>xs = approx n\<cdot>xs"
huffman@25904
   468
by (induct xs rule: upper_pd_induct, simp_all)
huffman@25904
   469
huffman@25904
   470
end