src/HOL/Library/Polynomial_Factorial.thy
author haftmann
Mon Jan 09 18:53:06 2017 +0100 (2017-01-09)
changeset 64848 c50db2128048
parent 64795 8e7db8df16a0
child 64850 fc9265882329
permissions -rw-r--r--
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
wenzelm@63764
     1
(*  Title:      HOL/Library/Polynomial_Factorial.thy
wenzelm@63764
     2
    Author:     Brian Huffman
wenzelm@63764
     3
    Author:     Clemens Ballarin
wenzelm@63764
     4
    Author:     Amine Chaieb
wenzelm@63764
     5
    Author:     Florian Haftmann
wenzelm@63764
     6
    Author:     Manuel Eberl
wenzelm@63764
     7
*)
wenzelm@63764
     8
eberlm@63498
     9
theory Polynomial_Factorial
eberlm@63498
    10
imports 
eberlm@63498
    11
  Complex_Main
eberlm@63498
    12
  "~~/src/HOL/Library/Polynomial"
eberlm@63500
    13
  "~~/src/HOL/Library/Normalized_Fraction"
haftmann@64591
    14
  "~~/src/HOL/Library/Field_as_Ring"
eberlm@63498
    15
begin
eberlm@63498
    16
haftmann@64591
    17
subsection \<open>Various facts about polynomials\<close>
eberlm@63498
    18
haftmann@64591
    19
lemma prod_mset_const_poly: "prod_mset (image_mset (\<lambda>x. [:f x:]) A) = [:prod_mset (image_mset f A):]"
haftmann@64591
    20
  by (induction A) (simp_all add: one_poly_def mult_ac)
eberlm@63498
    21
haftmann@64591
    22
lemma irreducible_const_poly_iff:
haftmann@64591
    23
  fixes c :: "'a :: {comm_semiring_1,semiring_no_zero_divisors}"
haftmann@64591
    24
  shows "irreducible [:c:] \<longleftrightarrow> irreducible c"
haftmann@64591
    25
proof
haftmann@64591
    26
  assume A: "irreducible c"
haftmann@64591
    27
  show "irreducible [:c:]"
haftmann@64591
    28
  proof (rule irreducibleI)
haftmann@64591
    29
    fix a b assume ab: "[:c:] = a * b"
haftmann@64591
    30
    hence "degree [:c:] = degree (a * b)" by (simp only: )
haftmann@64591
    31
    also from A ab have "a \<noteq> 0" "b \<noteq> 0" by auto
haftmann@64591
    32
    hence "degree (a * b) = degree a + degree b" by (simp add: degree_mult_eq)
haftmann@64591
    33
    finally have "degree a = 0" "degree b = 0" by auto
haftmann@64591
    34
    then obtain a' b' where ab': "a = [:a':]" "b = [:b':]" by (auto elim!: degree_eq_zeroE)
haftmann@64591
    35
    from ab have "coeff [:c:] 0 = coeff (a * b) 0" by (simp only: )
haftmann@64591
    36
    hence "c = a' * b'" by (simp add: ab' mult_ac)
haftmann@64591
    37
    from A and this have "a' dvd 1 \<or> b' dvd 1" by (rule irreducibleD)
haftmann@64591
    38
    with ab' show "a dvd 1 \<or> b dvd 1" by (auto simp: one_poly_def)
haftmann@64591
    39
  qed (insert A, auto simp: irreducible_def is_unit_poly_iff)
haftmann@64591
    40
next
haftmann@64591
    41
  assume A: "irreducible [:c:]"
haftmann@64591
    42
  show "irreducible c"
haftmann@64591
    43
  proof (rule irreducibleI)
haftmann@64591
    44
    fix a b assume ab: "c = a * b"
haftmann@64591
    45
    hence "[:c:] = [:a:] * [:b:]" by (simp add: mult_ac)
haftmann@64591
    46
    from A and this have "[:a:] dvd 1 \<or> [:b:] dvd 1" by (rule irreducibleD)
haftmann@64591
    47
    thus "a dvd 1 \<or> b dvd 1" by (simp add: one_poly_def)
haftmann@64591
    48
  qed (insert A, auto simp: irreducible_def one_poly_def)
haftmann@64591
    49
qed
eberlm@63498
    50
eberlm@63498
    51
eberlm@63498
    52
subsection \<open>Lifting elements into the field of fractions\<close>
eberlm@63498
    53
eberlm@63498
    54
definition to_fract :: "'a :: idom \<Rightarrow> 'a fract" where "to_fract x = Fract x 1"
haftmann@64591
    55
  -- \<open>FIXME: name \<open>of_idom\<close>, abbreviation\<close>
eberlm@63498
    56
eberlm@63498
    57
lemma to_fract_0 [simp]: "to_fract 0 = 0"
eberlm@63498
    58
  by (simp add: to_fract_def eq_fract Zero_fract_def)
eberlm@63498
    59
eberlm@63498
    60
lemma to_fract_1 [simp]: "to_fract 1 = 1"
eberlm@63498
    61
  by (simp add: to_fract_def eq_fract One_fract_def)
eberlm@63498
    62
eberlm@63498
    63
lemma to_fract_add [simp]: "to_fract (x + y) = to_fract x + to_fract y"
eberlm@63498
    64
  by (simp add: to_fract_def)
eberlm@63498
    65
eberlm@63498
    66
lemma to_fract_diff [simp]: "to_fract (x - y) = to_fract x - to_fract y"
eberlm@63498
    67
  by (simp add: to_fract_def)
eberlm@63498
    68
  
eberlm@63498
    69
lemma to_fract_uminus [simp]: "to_fract (-x) = -to_fract x"
eberlm@63498
    70
  by (simp add: to_fract_def)
eberlm@63498
    71
  
eberlm@63498
    72
lemma to_fract_mult [simp]: "to_fract (x * y) = to_fract x * to_fract y"
eberlm@63498
    73
  by (simp add: to_fract_def)
eberlm@63498
    74
eberlm@63498
    75
lemma to_fract_eq_iff [simp]: "to_fract x = to_fract y \<longleftrightarrow> x = y"
eberlm@63498
    76
  by (simp add: to_fract_def eq_fract)
eberlm@63498
    77
  
eberlm@63498
    78
lemma to_fract_eq_0_iff [simp]: "to_fract x = 0 \<longleftrightarrow> x = 0"
eberlm@63498
    79
  by (simp add: to_fract_def Zero_fract_def eq_fract)
eberlm@63498
    80
eberlm@63498
    81
lemma snd_quot_of_fract_nonzero [simp]: "snd (quot_of_fract x) \<noteq> 0"
eberlm@63498
    82
  by transfer simp
eberlm@63498
    83
eberlm@63498
    84
lemma Fract_quot_of_fract [simp]: "Fract (fst (quot_of_fract x)) (snd (quot_of_fract x)) = x"
eberlm@63498
    85
  by transfer (simp del: fractrel_iff, subst fractrel_normalize_quot_left, simp)
eberlm@63498
    86
eberlm@63498
    87
lemma to_fract_quot_of_fract:
eberlm@63498
    88
  assumes "snd (quot_of_fract x) = 1"
eberlm@63498
    89
  shows   "to_fract (fst (quot_of_fract x)) = x"
eberlm@63498
    90
proof -
eberlm@63498
    91
  have "x = Fract (fst (quot_of_fract x)) (snd (quot_of_fract x))" by simp
eberlm@63498
    92
  also note assms
eberlm@63498
    93
  finally show ?thesis by (simp add: to_fract_def)
eberlm@63498
    94
qed
eberlm@63498
    95
eberlm@63498
    96
lemma snd_quot_of_fract_Fract_whole:
eberlm@63498
    97
  assumes "y dvd x"
eberlm@63498
    98
  shows   "snd (quot_of_fract (Fract x y)) = 1"
eberlm@63498
    99
  using assms by transfer (auto simp: normalize_quot_def Let_def gcd_proj2_if_dvd)
eberlm@63498
   100
  
eberlm@63498
   101
lemma Fract_conv_to_fract: "Fract a b = to_fract a / to_fract b"
eberlm@63498
   102
  by (simp add: to_fract_def)
eberlm@63498
   103
eberlm@63498
   104
lemma quot_of_fract_to_fract [simp]: "quot_of_fract (to_fract x) = (x, 1)"
eberlm@63498
   105
  unfolding to_fract_def by transfer (simp add: normalize_quot_def)
eberlm@63498
   106
eberlm@63498
   107
lemma fst_quot_of_fract_eq_0_iff [simp]: "fst (quot_of_fract x) = 0 \<longleftrightarrow> x = 0"
eberlm@63498
   108
  by transfer simp
eberlm@63498
   109
 
eberlm@63498
   110
lemma snd_quot_of_fract_to_fract [simp]: "snd (quot_of_fract (to_fract x)) = 1"
eberlm@63498
   111
  unfolding to_fract_def by (rule snd_quot_of_fract_Fract_whole) simp_all
eberlm@63498
   112
eberlm@63498
   113
lemma coprime_quot_of_fract:
eberlm@63498
   114
  "coprime (fst (quot_of_fract x)) (snd (quot_of_fract x))"
eberlm@63498
   115
  by transfer (simp add: coprime_normalize_quot)
eberlm@63498
   116
eberlm@63498
   117
lemma unit_factor_snd_quot_of_fract: "unit_factor (snd (quot_of_fract x)) = 1"
eberlm@63498
   118
  using quot_of_fract_in_normalized_fracts[of x] 
eberlm@63498
   119
  by (simp add: normalized_fracts_def case_prod_unfold)  
eberlm@63498
   120
eberlm@63498
   121
lemma unit_factor_1_imp_normalized: "unit_factor x = 1 \<Longrightarrow> normalize x = x"
eberlm@63498
   122
  by (subst (2) normalize_mult_unit_factor [symmetric, of x])
eberlm@63498
   123
     (simp del: normalize_mult_unit_factor)
eberlm@63498
   124
  
eberlm@63498
   125
lemma normalize_snd_quot_of_fract: "normalize (snd (quot_of_fract x)) = snd (quot_of_fract x)"
eberlm@63498
   126
  by (intro unit_factor_1_imp_normalized unit_factor_snd_quot_of_fract)
eberlm@63498
   127
eberlm@63498
   128
eberlm@63498
   129
subsection \<open>Lifting polynomial coefficients to the field of fractions\<close>
eberlm@63498
   130
eberlm@63498
   131
abbreviation (input) fract_poly 
eberlm@63498
   132
  where "fract_poly \<equiv> map_poly to_fract"
eberlm@63498
   133
eberlm@63498
   134
abbreviation (input) unfract_poly 
eberlm@63498
   135
  where "unfract_poly \<equiv> map_poly (fst \<circ> quot_of_fract)"
eberlm@63498
   136
  
eberlm@63498
   137
lemma fract_poly_smult [simp]: "fract_poly (smult c p) = smult (to_fract c) (fract_poly p)"
eberlm@63498
   138
  by (simp add: smult_conv_map_poly map_poly_map_poly o_def)
eberlm@63498
   139
eberlm@63498
   140
lemma fract_poly_0 [simp]: "fract_poly 0 = 0"
eberlm@63498
   141
  by (simp add: poly_eqI coeff_map_poly)
eberlm@63498
   142
eberlm@63498
   143
lemma fract_poly_1 [simp]: "fract_poly 1 = 1"
eberlm@63498
   144
  by (simp add: one_poly_def map_poly_pCons)
eberlm@63498
   145
eberlm@63498
   146
lemma fract_poly_add [simp]:
eberlm@63498
   147
  "fract_poly (p + q) = fract_poly p + fract_poly q"
eberlm@63498
   148
  by (intro poly_eqI) (simp_all add: coeff_map_poly)
eberlm@63498
   149
eberlm@63498
   150
lemma fract_poly_diff [simp]:
eberlm@63498
   151
  "fract_poly (p - q) = fract_poly p - fract_poly q"
eberlm@63498
   152
  by (intro poly_eqI) (simp_all add: coeff_map_poly)
eberlm@63498
   153
nipkow@64267
   154
lemma to_fract_sum [simp]: "to_fract (sum f A) = sum (\<lambda>x. to_fract (f x)) A"
eberlm@63498
   155
  by (cases "finite A", induction A rule: finite_induct) simp_all 
eberlm@63498
   156
eberlm@63498
   157
lemma fract_poly_mult [simp]:
eberlm@63498
   158
  "fract_poly (p * q) = fract_poly p * fract_poly q"
eberlm@63498
   159
  by (intro poly_eqI) (simp_all add: coeff_map_poly coeff_mult)
eberlm@63498
   160
eberlm@63498
   161
lemma fract_poly_eq_iff [simp]: "fract_poly p = fract_poly q \<longleftrightarrow> p = q"
eberlm@63498
   162
  by (auto simp: poly_eq_iff coeff_map_poly)
eberlm@63498
   163
eberlm@63498
   164
lemma fract_poly_eq_0_iff [simp]: "fract_poly p = 0 \<longleftrightarrow> p = 0"
eberlm@63498
   165
  using fract_poly_eq_iff[of p 0] by (simp del: fract_poly_eq_iff)
eberlm@63498
   166
eberlm@63498
   167
lemma fract_poly_dvd: "p dvd q \<Longrightarrow> fract_poly p dvd fract_poly q"
eberlm@63498
   168
  by (auto elim!: dvdE)
eberlm@63498
   169
nipkow@63830
   170
lemma prod_mset_fract_poly: 
nipkow@63830
   171
  "prod_mset (image_mset (\<lambda>x. fract_poly (f x)) A) = fract_poly (prod_mset (image_mset f A))"
eberlm@63498
   172
  by (induction A) (simp_all add: mult_ac)
eberlm@63498
   173
  
eberlm@63498
   174
lemma is_unit_fract_poly_iff:
eberlm@63498
   175
  "p dvd 1 \<longleftrightarrow> fract_poly p dvd 1 \<and> content p = 1"
eberlm@63498
   176
proof safe
eberlm@63498
   177
  assume A: "p dvd 1"
eberlm@63498
   178
  with fract_poly_dvd[of p 1] show "is_unit (fract_poly p)" by simp
eberlm@63498
   179
  from A show "content p = 1"
eberlm@63498
   180
    by (auto simp: is_unit_poly_iff normalize_1_iff)
eberlm@63498
   181
next
eberlm@63498
   182
  assume A: "fract_poly p dvd 1" and B: "content p = 1"
eberlm@63498
   183
  from A obtain c where c: "fract_poly p = [:c:]" by (auto simp: is_unit_poly_iff)
eberlm@63498
   184
  {
eberlm@63498
   185
    fix n :: nat assume "n > 0"
eberlm@63498
   186
    have "to_fract (coeff p n) = coeff (fract_poly p) n" by (simp add: coeff_map_poly)
eberlm@63498
   187
    also note c
eberlm@63498
   188
    also from \<open>n > 0\<close> have "coeff [:c:] n = 0" by (simp add: coeff_pCons split: nat.splits)
eberlm@63498
   189
    finally have "coeff p n = 0" by simp
eberlm@63498
   190
  }
eberlm@63498
   191
  hence "degree p \<le> 0" by (intro degree_le) simp_all
eberlm@63498
   192
  with B show "p dvd 1" by (auto simp: is_unit_poly_iff normalize_1_iff elim!: degree_eq_zeroE)
eberlm@63498
   193
qed
eberlm@63498
   194
  
eberlm@63498
   195
lemma fract_poly_is_unit: "p dvd 1 \<Longrightarrow> fract_poly p dvd 1"
eberlm@63498
   196
  using fract_poly_dvd[of p 1] by simp
eberlm@63498
   197
eberlm@63498
   198
lemma fract_poly_smult_eqE:
eberlm@63498
   199
  fixes c :: "'a :: {idom_divide,ring_gcd} fract"
eberlm@63498
   200
  assumes "fract_poly p = smult c (fract_poly q)"
eberlm@63498
   201
  obtains a b 
eberlm@63498
   202
    where "c = to_fract b / to_fract a" "smult a p = smult b q" "coprime a b" "normalize a = a"
eberlm@63498
   203
proof -
eberlm@63498
   204
  define a b where "a = fst (quot_of_fract c)" and "b = snd (quot_of_fract c)"
eberlm@63498
   205
  have "smult (to_fract a) (fract_poly q) = smult (to_fract b) (fract_poly p)"
eberlm@63498
   206
    by (subst smult_eq_iff) (simp_all add: a_def b_def Fract_conv_to_fract [symmetric] assms)
eberlm@63498
   207
  hence "fract_poly (smult a q) = fract_poly (smult b p)" by (simp del: fract_poly_eq_iff)
eberlm@63498
   208
  hence "smult b p = smult a q" by (simp only: fract_poly_eq_iff)
eberlm@63498
   209
  moreover have "c = to_fract a / to_fract b" "coprime b a" "normalize b = b"
eberlm@63498
   210
    by (simp_all add: a_def b_def coprime_quot_of_fract gcd.commute
eberlm@63498
   211
          normalize_snd_quot_of_fract Fract_conv_to_fract [symmetric])
eberlm@63498
   212
  ultimately show ?thesis by (intro that[of a b])
eberlm@63498
   213
qed
eberlm@63498
   214
eberlm@63498
   215
eberlm@63498
   216
subsection \<open>Fractional content\<close>
eberlm@63498
   217
eberlm@63498
   218
abbreviation (input) Lcm_coeff_denoms 
eberlm@63498
   219
    :: "'a :: {semiring_Gcd,idom_divide,ring_gcd} fract poly \<Rightarrow> 'a"
eberlm@63498
   220
  where "Lcm_coeff_denoms p \<equiv> Lcm (snd ` quot_of_fract ` set (coeffs p))"
eberlm@63498
   221
  
eberlm@63498
   222
definition fract_content :: 
eberlm@63498
   223
      "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} fract poly \<Rightarrow> 'a fract" where
eberlm@63498
   224
  "fract_content p = 
eberlm@63498
   225
     (let d = Lcm_coeff_denoms p in Fract (content (unfract_poly (smult (to_fract d) p))) d)" 
eberlm@63498
   226
eberlm@63498
   227
definition primitive_part_fract :: 
eberlm@63498
   228
      "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} fract poly \<Rightarrow> 'a poly" where
eberlm@63498
   229
  "primitive_part_fract p = 
eberlm@63498
   230
     primitive_part (unfract_poly (smult (to_fract (Lcm_coeff_denoms p)) p))"
eberlm@63498
   231
eberlm@63498
   232
lemma primitive_part_fract_0 [simp]: "primitive_part_fract 0 = 0"
eberlm@63498
   233
  by (simp add: primitive_part_fract_def)
eberlm@63498
   234
eberlm@63498
   235
lemma fract_content_eq_0_iff [simp]:
eberlm@63498
   236
  "fract_content p = 0 \<longleftrightarrow> p = 0"
eberlm@63498
   237
  unfolding fract_content_def Let_def Zero_fract_def
eberlm@63498
   238
  by (subst eq_fract) (auto simp: Lcm_0_iff map_poly_eq_0_iff)
eberlm@63498
   239
eberlm@63498
   240
lemma content_primitive_part_fract [simp]: "p \<noteq> 0 \<Longrightarrow> content (primitive_part_fract p) = 1"
eberlm@63498
   241
  unfolding primitive_part_fract_def
eberlm@63498
   242
  by (rule content_primitive_part)
eberlm@63498
   243
     (auto simp: primitive_part_fract_def map_poly_eq_0_iff Lcm_0_iff)  
eberlm@63498
   244
eberlm@63498
   245
lemma content_times_primitive_part_fract:
eberlm@63498
   246
  "smult (fract_content p) (fract_poly (primitive_part_fract p)) = p"
eberlm@63498
   247
proof -
eberlm@63498
   248
  define p' where "p' = unfract_poly (smult (to_fract (Lcm_coeff_denoms p)) p)"
eberlm@63498
   249
  have "fract_poly p' = 
eberlm@63498
   250
          map_poly (to_fract \<circ> fst \<circ> quot_of_fract) (smult (to_fract (Lcm_coeff_denoms p)) p)"
eberlm@63498
   251
    unfolding primitive_part_fract_def p'_def 
eberlm@63498
   252
    by (subst map_poly_map_poly) (simp_all add: o_assoc)
eberlm@63498
   253
  also have "\<dots> = smult (to_fract (Lcm_coeff_denoms p)) p"
eberlm@63498
   254
  proof (intro map_poly_idI, unfold o_apply)
eberlm@63498
   255
    fix c assume "c \<in> set (coeffs (smult (to_fract (Lcm_coeff_denoms p)) p))"
eberlm@63498
   256
    then obtain c' where c: "c' \<in> set (coeffs p)" "c = to_fract (Lcm_coeff_denoms p) * c'"
eberlm@63498
   257
      by (auto simp add: Lcm_0_iff coeffs_smult split: if_splits)
eberlm@63498
   258
    note c(2)
eberlm@63498
   259
    also have "c' = Fract (fst (quot_of_fract c')) (snd (quot_of_fract c'))"
eberlm@63498
   260
      by simp
eberlm@63498
   261
    also have "to_fract (Lcm_coeff_denoms p) * \<dots> = 
eberlm@63498
   262
                 Fract (Lcm_coeff_denoms p * fst (quot_of_fract c')) (snd (quot_of_fract c'))"
eberlm@63498
   263
      unfolding to_fract_def by (subst mult_fract) simp_all
eberlm@63498
   264
    also have "snd (quot_of_fract \<dots>) = 1"
eberlm@63498
   265
      by (intro snd_quot_of_fract_Fract_whole dvd_mult2 dvd_Lcm) (insert c(1), auto)
eberlm@63498
   266
    finally show "to_fract (fst (quot_of_fract c)) = c"
eberlm@63498
   267
      by (rule to_fract_quot_of_fract)
eberlm@63498
   268
  qed
eberlm@63498
   269
  also have "p' = smult (content p') (primitive_part p')" 
eberlm@63498
   270
    by (rule content_times_primitive_part [symmetric])
eberlm@63498
   271
  also have "primitive_part p' = primitive_part_fract p"
eberlm@63498
   272
    by (simp add: primitive_part_fract_def p'_def)
eberlm@63498
   273
  also have "fract_poly (smult (content p') (primitive_part_fract p)) = 
eberlm@63498
   274
               smult (to_fract (content p')) (fract_poly (primitive_part_fract p))" by simp
eberlm@63498
   275
  finally have "smult (to_fract (content p')) (fract_poly (primitive_part_fract p)) =
eberlm@63498
   276
                      smult (to_fract (Lcm_coeff_denoms p)) p" .
eberlm@63498
   277
  thus ?thesis
eberlm@63498
   278
    by (subst (asm) smult_eq_iff)
eberlm@63498
   279
       (auto simp add: Let_def p'_def Fract_conv_to_fract field_simps Lcm_0_iff fract_content_def)
eberlm@63498
   280
qed
eberlm@63498
   281
eberlm@63498
   282
lemma fract_content_fract_poly [simp]: "fract_content (fract_poly p) = to_fract (content p)"
eberlm@63498
   283
proof -
eberlm@63498
   284
  have "Lcm_coeff_denoms (fract_poly p) = 1"
haftmann@63905
   285
    by (auto simp: set_coeffs_map_poly)
eberlm@63498
   286
  hence "fract_content (fract_poly p) = 
eberlm@63498
   287
           to_fract (content (map_poly (fst \<circ> quot_of_fract \<circ> to_fract) p))"
eberlm@63498
   288
    by (simp add: fract_content_def to_fract_def fract_collapse map_poly_map_poly del: Lcm_1_iff)
eberlm@63498
   289
  also have "map_poly (fst \<circ> quot_of_fract \<circ> to_fract) p = p"
eberlm@63498
   290
    by (intro map_poly_idI) simp_all
eberlm@63498
   291
  finally show ?thesis .
eberlm@63498
   292
qed
eberlm@63498
   293
eberlm@63498
   294
lemma content_decompose_fract:
eberlm@63498
   295
  fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} fract poly"
eberlm@63498
   296
  obtains c p' where "p = smult c (map_poly to_fract p')" "content p' = 1"
eberlm@63498
   297
proof (cases "p = 0")
eberlm@63498
   298
  case True
eberlm@63498
   299
  hence "p = smult 0 (map_poly to_fract 1)" "content 1 = 1" by simp_all
eberlm@63498
   300
  thus ?thesis ..
eberlm@63498
   301
next
eberlm@63498
   302
  case False
eberlm@63498
   303
  thus ?thesis
eberlm@63498
   304
    by (rule that[OF content_times_primitive_part_fract [symmetric] content_primitive_part_fract])
eberlm@63498
   305
qed
eberlm@63498
   306
eberlm@63498
   307
eberlm@63498
   308
subsection \<open>More properties of content and primitive part\<close>
eberlm@63498
   309
eberlm@63498
   310
lemma lift_prime_elem_poly:
eberlm@63633
   311
  assumes "prime_elem (c :: 'a :: semidom)"
eberlm@63633
   312
  shows   "prime_elem [:c:]"
eberlm@63633
   313
proof (rule prime_elemI)
eberlm@63498
   314
  fix a b assume *: "[:c:] dvd a * b"
eberlm@63498
   315
  from * have dvd: "c dvd coeff (a * b) n" for n
eberlm@63498
   316
    by (subst (asm) const_poly_dvd_iff) blast
eberlm@63498
   317
  {
eberlm@63498
   318
    define m where "m = (GREATEST m. \<not>c dvd coeff b m)"
eberlm@63498
   319
    assume "\<not>[:c:] dvd b"
eberlm@63498
   320
    hence A: "\<exists>i. \<not>c dvd coeff b i" by (subst (asm) const_poly_dvd_iff) blast
eberlm@63498
   321
    have B: "\<forall>i. \<not>c dvd coeff b i \<longrightarrow> i < Suc (degree b)"
eberlm@63498
   322
      by (auto intro: le_degree simp: less_Suc_eq_le)
eberlm@63498
   323
    have coeff_m: "\<not>c dvd coeff b m" unfolding m_def by (rule GreatestI_ex[OF A B])
eberlm@63498
   324
    have "i \<le> m" if "\<not>c dvd coeff b i" for i
eberlm@63498
   325
      unfolding m_def by (rule Greatest_le[OF that B])
eberlm@63498
   326
    hence dvd_b: "c dvd coeff b i" if "i > m" for i using that by force
eberlm@63498
   327
eberlm@63498
   328
    have "c dvd coeff a i" for i
eberlm@63498
   329
    proof (induction i rule: nat_descend_induct[of "degree a"])
eberlm@63498
   330
      case (base i)
eberlm@63498
   331
      thus ?case by (simp add: coeff_eq_0)
eberlm@63498
   332
    next
eberlm@63498
   333
      case (descend i)
eberlm@63498
   334
      let ?A = "{..i+m} - {i}"
eberlm@63498
   335
      have "c dvd coeff (a * b) (i + m)" by (rule dvd)
eberlm@63498
   336
      also have "coeff (a * b) (i + m) = (\<Sum>k\<le>i + m. coeff a k * coeff b (i + m - k))"
eberlm@63498
   337
        by (simp add: coeff_mult)
eberlm@63498
   338
      also have "{..i+m} = insert i ?A" by auto
eberlm@63498
   339
      also have "(\<Sum>k\<in>\<dots>. coeff a k * coeff b (i + m - k)) =
eberlm@63498
   340
                   coeff a i * coeff b m + (\<Sum>k\<in>?A. coeff a k * coeff b (i + m - k))"
eberlm@63498
   341
        (is "_ = _ + ?S")
nipkow@64267
   342
        by (subst sum.insert) simp_all
eberlm@63498
   343
      finally have eq: "c dvd coeff a i * coeff b m + ?S" .
eberlm@63498
   344
      moreover have "c dvd ?S"
nipkow@64267
   345
      proof (rule dvd_sum)
eberlm@63498
   346
        fix k assume k: "k \<in> {..i+m} - {i}"
eberlm@63498
   347
        show "c dvd coeff a k * coeff b (i + m - k)"
eberlm@63498
   348
        proof (cases "k < i")
eberlm@63498
   349
          case False
eberlm@63498
   350
          with k have "c dvd coeff a k" by (intro descend.IH) simp
eberlm@63498
   351
          thus ?thesis by simp
eberlm@63498
   352
        next
eberlm@63498
   353
          case True
eberlm@63498
   354
          hence "c dvd coeff b (i + m - k)" by (intro dvd_b) simp
eberlm@63498
   355
          thus ?thesis by simp
eberlm@63498
   356
        qed
eberlm@63498
   357
      qed
eberlm@63498
   358
      ultimately have "c dvd coeff a i * coeff b m"
eberlm@63498
   359
        by (simp add: dvd_add_left_iff)
eberlm@63498
   360
      with assms coeff_m show "c dvd coeff a i"
eberlm@63633
   361
        by (simp add: prime_elem_dvd_mult_iff)
eberlm@63498
   362
    qed
eberlm@63498
   363
    hence "[:c:] dvd a" by (subst const_poly_dvd_iff) blast
eberlm@63498
   364
  }
eberlm@63498
   365
  thus "[:c:] dvd a \<or> [:c:] dvd b" by blast
eberlm@63633
   366
qed (insert assms, simp_all add: prime_elem_def one_poly_def)
eberlm@63498
   367
eberlm@63498
   368
lemma prime_elem_const_poly_iff:
eberlm@63498
   369
  fixes c :: "'a :: semidom"
eberlm@63633
   370
  shows   "prime_elem [:c:] \<longleftrightarrow> prime_elem c"
eberlm@63498
   371
proof
eberlm@63633
   372
  assume A: "prime_elem [:c:]"
eberlm@63633
   373
  show "prime_elem c"
eberlm@63633
   374
  proof (rule prime_elemI)
eberlm@63498
   375
    fix a b assume "c dvd a * b"
eberlm@63498
   376
    hence "[:c:] dvd [:a:] * [:b:]" by (simp add: mult_ac)
eberlm@63633
   377
    from A and this have "[:c:] dvd [:a:] \<or> [:c:] dvd [:b:]" by (rule prime_elem_dvd_multD)
eberlm@63498
   378
    thus "c dvd a \<or> c dvd b" by simp
eberlm@63633
   379
  qed (insert A, auto simp: prime_elem_def is_unit_poly_iff)
eberlm@63498
   380
qed (auto intro: lift_prime_elem_poly)
eberlm@63498
   381
eberlm@63498
   382
context
eberlm@63498
   383
begin
eberlm@63498
   384
eberlm@63498
   385
private lemma content_1_mult:
eberlm@63498
   386
  fixes f g :: "'a :: {semiring_Gcd,factorial_semiring} poly"
eberlm@63498
   387
  assumes "content f = 1" "content g = 1"
eberlm@63498
   388
  shows   "content (f * g) = 1"
eberlm@63498
   389
proof (cases "f * g = 0")
eberlm@63498
   390
  case False
eberlm@63498
   391
  from assms have "f \<noteq> 0" "g \<noteq> 0" by auto
eberlm@63498
   392
eberlm@63498
   393
  hence "f * g \<noteq> 0" by auto
eberlm@63498
   394
  {
eberlm@63498
   395
    assume "\<not>is_unit (content (f * g))"
eberlm@63633
   396
    with False have "\<exists>p. p dvd content (f * g) \<and> prime p"
eberlm@63498
   397
      by (intro prime_divisor_exists) simp_all
eberlm@63633
   398
    then obtain p where "p dvd content (f * g)" "prime p" by blast
eberlm@63498
   399
    from \<open>p dvd content (f * g)\<close> have "[:p:] dvd f * g"
eberlm@63498
   400
      by (simp add: const_poly_dvd_iff_dvd_content)
eberlm@63633
   401
    moreover from \<open>prime p\<close> have "prime_elem [:p:]" by (simp add: lift_prime_elem_poly)
eberlm@63498
   402
    ultimately have "[:p:] dvd f \<or> [:p:] dvd g"
eberlm@63633
   403
      by (simp add: prime_elem_dvd_mult_iff)
eberlm@63498
   404
    with assms have "is_unit p" by (simp add: const_poly_dvd_iff_dvd_content)
eberlm@63633
   405
    with \<open>prime p\<close> have False by simp
eberlm@63498
   406
  }
eberlm@63498
   407
  hence "is_unit (content (f * g))" by blast
eberlm@63498
   408
  hence "normalize (content (f * g)) = 1" by (simp add: is_unit_normalize del: normalize_content)
eberlm@63498
   409
  thus ?thesis by simp
eberlm@63498
   410
qed (insert assms, auto)
eberlm@63498
   411
eberlm@63498
   412
lemma content_mult:
eberlm@63498
   413
  fixes p q :: "'a :: {factorial_semiring, semiring_Gcd} poly"
eberlm@63498
   414
  shows "content (p * q) = content p * content q"
eberlm@63498
   415
proof -
eberlm@63498
   416
  from content_decompose[of p] guess p' . note p = this
eberlm@63498
   417
  from content_decompose[of q] guess q' . note q = this
eberlm@63498
   418
  have "content (p * q) = content p * content q * content (p' * q')"
eberlm@63498
   419
    by (subst p, subst q) (simp add: mult_ac normalize_mult)
eberlm@63498
   420
  also from p q have "content (p' * q') = 1" by (intro content_1_mult)
eberlm@63498
   421
  finally show ?thesis by simp
eberlm@63498
   422
qed
eberlm@63498
   423
eberlm@63498
   424
lemma primitive_part_mult:
eberlm@63498
   425
  fixes p q :: "'a :: {factorial_semiring, semiring_Gcd, ring_gcd, idom_divide} poly"
eberlm@63498
   426
  shows "primitive_part (p * q) = primitive_part p * primitive_part q"
eberlm@63498
   427
proof -
eberlm@63498
   428
  have "primitive_part (p * q) = p * q div [:content (p * q):]"
eberlm@63498
   429
    by (simp add: primitive_part_def div_const_poly_conv_map_poly)
eberlm@63498
   430
  also have "\<dots> = (p div [:content p:]) * (q div [:content q:])"
eberlm@63498
   431
    by (subst div_mult_div_if_dvd) (simp_all add: content_mult mult_ac)
eberlm@63498
   432
  also have "\<dots> = primitive_part p * primitive_part q"
eberlm@63498
   433
    by (simp add: primitive_part_def div_const_poly_conv_map_poly)
eberlm@63498
   434
  finally show ?thesis .
eberlm@63498
   435
qed
eberlm@63498
   436
eberlm@63498
   437
lemma primitive_part_smult:
eberlm@63498
   438
  fixes p :: "'a :: {factorial_semiring, semiring_Gcd, ring_gcd, idom_divide} poly"
eberlm@63498
   439
  shows "primitive_part (smult a p) = smult (unit_factor a) (primitive_part p)"
eberlm@63498
   440
proof -
eberlm@63498
   441
  have "smult a p = [:a:] * p" by simp
eberlm@63498
   442
  also have "primitive_part \<dots> = smult (unit_factor a) (primitive_part p)"
eberlm@63498
   443
    by (subst primitive_part_mult) simp_all
eberlm@63498
   444
  finally show ?thesis .
eberlm@63498
   445
qed  
eberlm@63498
   446
eberlm@63498
   447
lemma primitive_part_dvd_primitive_partI [intro]:
eberlm@63498
   448
  fixes p q :: "'a :: {factorial_semiring, semiring_Gcd, ring_gcd, idom_divide} poly"
eberlm@63498
   449
  shows "p dvd q \<Longrightarrow> primitive_part p dvd primitive_part q"
eberlm@63498
   450
  by (auto elim!: dvdE simp: primitive_part_mult)
eberlm@63498
   451
nipkow@63830
   452
lemma content_prod_mset: 
eberlm@63498
   453
  fixes A :: "'a :: {factorial_semiring, semiring_Gcd} poly multiset"
nipkow@63830
   454
  shows "content (prod_mset A) = prod_mset (image_mset content A)"
eberlm@63498
   455
  by (induction A) (simp_all add: content_mult mult_ac)
eberlm@63498
   456
eberlm@63498
   457
lemma fract_poly_dvdD:
eberlm@63498
   458
  fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
eberlm@63498
   459
  assumes "fract_poly p dvd fract_poly q" "content p = 1"
eberlm@63498
   460
  shows   "p dvd q"
eberlm@63498
   461
proof -
eberlm@63498
   462
  from assms(1) obtain r where r: "fract_poly q = fract_poly p * r" by (erule dvdE)
eberlm@63498
   463
  from content_decompose_fract[of r] guess c r' . note r' = this
eberlm@63498
   464
  from r r' have eq: "fract_poly q = smult c (fract_poly (p * r'))" by simp  
eberlm@63498
   465
  from fract_poly_smult_eqE[OF this] guess a b . note ab = this
eberlm@63498
   466
  have "content (smult a q) = content (smult b (p * r'))" by (simp only: ab(2))
eberlm@63498
   467
  hence eq': "normalize b = a * content q" by (simp add: assms content_mult r' ab(4))
eberlm@63498
   468
  have "1 = gcd a (normalize b)" by (simp add: ab)
eberlm@63498
   469
  also note eq'
eberlm@63498
   470
  also have "gcd a (a * content q) = a" by (simp add: gcd_proj1_if_dvd ab(4))
eberlm@63498
   471
  finally have [simp]: "a = 1" by simp
eberlm@63498
   472
  from eq ab have "q = p * ([:b:] * r')" by simp
eberlm@63498
   473
  thus ?thesis by (rule dvdI)
eberlm@63498
   474
qed
eberlm@63498
   475
eberlm@63498
   476
lemma content_prod_eq_1_iff: 
eberlm@63498
   477
  fixes p q :: "'a :: {factorial_semiring, semiring_Gcd} poly"
eberlm@63498
   478
  shows "content (p * q) = 1 \<longleftrightarrow> content p = 1 \<and> content q = 1"
eberlm@63498
   479
proof safe
eberlm@63498
   480
  assume A: "content (p * q) = 1"
eberlm@63498
   481
  {
eberlm@63498
   482
    fix p q :: "'a poly" assume "content p * content q = 1"
eberlm@63498
   483
    hence "1 = content p * content q" by simp
eberlm@63498
   484
    hence "content p dvd 1" by (rule dvdI)
eberlm@63498
   485
    hence "content p = 1" by simp
eberlm@63498
   486
  } note B = this
eberlm@63498
   487
  from A B[of p q] B [of q p] show "content p = 1" "content q = 1" 
eberlm@63498
   488
    by (simp_all add: content_mult mult_ac)
eberlm@63498
   489
qed (auto simp: content_mult)
eberlm@63498
   490
eberlm@63498
   491
end
eberlm@63498
   492
eberlm@63498
   493
eberlm@63498
   494
subsection \<open>Polynomials over a field are a Euclidean ring\<close>
eberlm@63498
   495
eberlm@63722
   496
definition unit_factor_field_poly :: "'a :: field poly \<Rightarrow> 'a poly" where
eberlm@63498
   497
  "unit_factor_field_poly p = [:lead_coeff p:]"
eberlm@63498
   498
eberlm@63722
   499
definition normalize_field_poly :: "'a :: field poly \<Rightarrow> 'a poly" where
eberlm@63498
   500
  "normalize_field_poly p = smult (inverse (lead_coeff p)) p"
eberlm@63498
   501
eberlm@63722
   502
definition euclidean_size_field_poly :: "'a :: field poly \<Rightarrow> nat" where
eberlm@63498
   503
  "euclidean_size_field_poly p = (if p = 0 then 0 else 2 ^ degree p)" 
eberlm@63498
   504
eberlm@63722
   505
lemma dvd_field_poly: "dvd.dvd (op * :: 'a :: field poly \<Rightarrow> _) = op dvd"
haftmann@64784
   506
  by (intro ext) (simp_all add: dvd.dvd_def dvd_def)
eberlm@63498
   507
eberlm@63498
   508
interpretation field_poly: 
haftmann@64784
   509
  unique_euclidean_ring where zero = "0 :: 'a :: field poly"
haftmann@64164
   510
    and one = 1 and plus = plus and uminus = uminus and minus = minus
haftmann@64164
   511
    and times = times
haftmann@64164
   512
    and normalize = normalize_field_poly and unit_factor = unit_factor_field_poly
haftmann@64164
   513
    and euclidean_size = euclidean_size_field_poly
haftmann@64784
   514
    and uniqueness_constraint = top
haftmann@64164
   515
    and divide = divide and modulo = modulo
eberlm@63498
   516
proof (standard, unfold dvd_field_poly)
eberlm@63498
   517
  fix p :: "'a poly"
eberlm@63498
   518
  show "unit_factor_field_poly p * normalize_field_poly p = p"
eberlm@63498
   519
    by (cases "p = 0") 
haftmann@64794
   520
       (simp_all add: unit_factor_field_poly_def normalize_field_poly_def)
eberlm@63498
   521
next
eberlm@63498
   522
  fix p :: "'a poly" assume "is_unit p"
haftmann@64848
   523
  then show "unit_factor_field_poly p = p"
haftmann@64848
   524
    by (elim is_unit_polyE) (auto simp: unit_factor_field_poly_def monom_0 one_poly_def field_simps)
eberlm@63498
   525
next
eberlm@63498
   526
  fix p :: "'a poly" assume "p \<noteq> 0"
eberlm@63498
   527
  thus "is_unit (unit_factor_field_poly p)"
haftmann@64794
   528
    by (simp add: unit_factor_field_poly_def is_unit_pCons_iff)
haftmann@64784
   529
next
haftmann@64784
   530
  fix p q s :: "'a poly" assume "s \<noteq> 0"
haftmann@64784
   531
  moreover assume "euclidean_size_field_poly p < euclidean_size_field_poly q"
haftmann@64784
   532
  ultimately show "euclidean_size_field_poly (p * s) < euclidean_size_field_poly (q * s)"
haftmann@64784
   533
    by (auto simp add: euclidean_size_field_poly_def degree_mult_eq)
haftmann@64784
   534
next
haftmann@64784
   535
  fix p q r :: "'a poly" assume "p \<noteq> 0"
haftmann@64784
   536
  moreover assume "euclidean_size_field_poly r < euclidean_size_field_poly p"
haftmann@64784
   537
  ultimately show "(q * p + r) div p = q"
haftmann@64784
   538
    by (cases "r = 0")
haftmann@64784
   539
      (auto simp add: unit_factor_field_poly_def euclidean_size_field_poly_def div_poly_less)
eberlm@63498
   540
qed (auto simp: unit_factor_field_poly_def normalize_field_poly_def lead_coeff_mult 
haftmann@64242
   541
       euclidean_size_field_poly_def Rings.div_mult_mod_eq intro!: degree_mod_less' degree_mult_right_le)
eberlm@63498
   542
eberlm@63722
   543
lemma field_poly_irreducible_imp_prime:
eberlm@63498
   544
  assumes "irreducible (p :: 'a :: field poly)"
eberlm@63633
   545
  shows   "prime_elem p"
eberlm@63498
   546
proof -
eberlm@63498
   547
  have A: "class.comm_semiring_1 op * 1 op + (0 :: 'a poly)" ..
eberlm@63633
   548
  from field_poly.irreducible_imp_prime_elem[of p] assms
eberlm@63633
   549
    show ?thesis unfolding irreducible_def prime_elem_def dvd_field_poly
eberlm@63633
   550
      comm_semiring_1.irreducible_def[OF A] comm_semiring_1.prime_elem_def[OF A] by blast
eberlm@63498
   551
qed
eberlm@63498
   552
nipkow@63830
   553
lemma field_poly_prod_mset_prime_factorization:
eberlm@63498
   554
  assumes "(x :: 'a :: field poly) \<noteq> 0"
nipkow@63830
   555
  shows   "prod_mset (field_poly.prime_factorization x) = normalize_field_poly x"
eberlm@63498
   556
proof -
eberlm@63498
   557
  have A: "class.comm_monoid_mult op * (1 :: 'a poly)" ..
nipkow@63830
   558
  have "comm_monoid_mult.prod_mset op * (1 :: 'a poly) = prod_mset"
nipkow@63830
   559
    by (intro ext) (simp add: comm_monoid_mult.prod_mset_def[OF A] prod_mset_def)
nipkow@63830
   560
  with field_poly.prod_mset_prime_factorization[OF assms] show ?thesis by simp
eberlm@63498
   561
qed
eberlm@63498
   562
eberlm@63722
   563
lemma field_poly_in_prime_factorization_imp_prime:
eberlm@63498
   564
  assumes "(p :: 'a :: field poly) \<in># field_poly.prime_factorization x"
eberlm@63633
   565
  shows   "prime_elem p"
eberlm@63498
   566
proof -
eberlm@63498
   567
  have A: "class.comm_semiring_1 op * 1 op + (0 :: 'a poly)" ..
eberlm@63498
   568
  have B: "class.normalization_semidom op div op + op - (0 :: 'a poly) op * 1 
haftmann@64848
   569
             unit_factor_field_poly normalize_field_poly" ..
haftmann@63905
   570
  from field_poly.in_prime_factors_imp_prime [of p x] assms
eberlm@63633
   571
    show ?thesis unfolding prime_elem_def dvd_field_poly
eberlm@63633
   572
      comm_semiring_1.prime_elem_def[OF A] normalization_semidom.prime_def[OF B] by blast
eberlm@63498
   573
qed
eberlm@63498
   574
eberlm@63498
   575
eberlm@63498
   576
subsection \<open>Primality and irreducibility in polynomial rings\<close>
eberlm@63498
   577
eberlm@63498
   578
lemma nonconst_poly_irreducible_iff:
eberlm@63498
   579
  fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
eberlm@63498
   580
  assumes "degree p \<noteq> 0"
eberlm@63498
   581
  shows   "irreducible p \<longleftrightarrow> irreducible (fract_poly p) \<and> content p = 1"
eberlm@63498
   582
proof safe
eberlm@63498
   583
  assume p: "irreducible p"
eberlm@63498
   584
eberlm@63498
   585
  from content_decompose[of p] guess p' . note p' = this
eberlm@63498
   586
  hence "p = [:content p:] * p'" by simp
eberlm@63498
   587
  from p this have "[:content p:] dvd 1 \<or> p' dvd 1" by (rule irreducibleD)
eberlm@63498
   588
  moreover have "\<not>p' dvd 1"
eberlm@63498
   589
  proof
eberlm@63498
   590
    assume "p' dvd 1"
eberlm@63498
   591
    hence "degree p = 0" by (subst p') (auto simp: is_unit_poly_iff)
eberlm@63498
   592
    with assms show False by contradiction
eberlm@63498
   593
  qed
eberlm@63498
   594
  ultimately show [simp]: "content p = 1" by (simp add: is_unit_const_poly_iff)
eberlm@63498
   595
  
eberlm@63498
   596
  show "irreducible (map_poly to_fract p)"
eberlm@63498
   597
  proof (rule irreducibleI)
eberlm@63498
   598
    have "fract_poly p = 0 \<longleftrightarrow> p = 0" by (intro map_poly_eq_0_iff) auto
eberlm@63498
   599
    with assms show "map_poly to_fract p \<noteq> 0" by auto
eberlm@63498
   600
  next
eberlm@63498
   601
    show "\<not>is_unit (fract_poly p)"
eberlm@63498
   602
    proof
eberlm@63498
   603
      assume "is_unit (map_poly to_fract p)"
eberlm@63498
   604
      hence "degree (map_poly to_fract p) = 0"
eberlm@63498
   605
        by (auto simp: is_unit_poly_iff)
eberlm@63498
   606
      hence "degree p = 0" by (simp add: degree_map_poly)
eberlm@63498
   607
      with assms show False by contradiction
eberlm@63498
   608
   qed
eberlm@63498
   609
 next
eberlm@63498
   610
   fix q r assume qr: "fract_poly p = q * r"
eberlm@63498
   611
   from content_decompose_fract[of q] guess cg q' . note q = this
eberlm@63498
   612
   from content_decompose_fract[of r] guess cr r' . note r = this
eberlm@63498
   613
   from qr q r p have nz: "cg \<noteq> 0" "cr \<noteq> 0" by auto
eberlm@63498
   614
   from qr have eq: "fract_poly p = smult (cr * cg) (fract_poly (q' * r'))"
eberlm@63498
   615
     by (simp add: q r)
eberlm@63498
   616
   from fract_poly_smult_eqE[OF this] guess a b . note ab = this
eberlm@63498
   617
   hence "content (smult a p) = content (smult b (q' * r'))" by (simp only:)
eberlm@63498
   618
   with ab(4) have a: "a = normalize b" by (simp add: content_mult q r)
eberlm@63498
   619
   hence "normalize b = gcd a b" by simp
eberlm@63498
   620
   also from ab(3) have "\<dots> = 1" .
eberlm@63498
   621
   finally have "a = 1" "is_unit b" by (simp_all add: a normalize_1_iff)
eberlm@63498
   622
   
eberlm@63498
   623
   note eq
eberlm@63498
   624
   also from ab(1) \<open>a = 1\<close> have "cr * cg = to_fract b" by simp
eberlm@63498
   625
   also have "smult \<dots> (fract_poly (q' * r')) = fract_poly (smult b (q' * r'))" by simp
eberlm@63498
   626
   finally have "p = ([:b:] * q') * r'" by (simp del: fract_poly_smult)
eberlm@63498
   627
   from p and this have "([:b:] * q') dvd 1 \<or> r' dvd 1" by (rule irreducibleD)
eberlm@63498
   628
   hence "q' dvd 1 \<or> r' dvd 1" by (auto dest: dvd_mult_right simp del: mult_pCons_left)
eberlm@63498
   629
   hence "fract_poly q' dvd 1 \<or> fract_poly r' dvd 1" by (auto simp: fract_poly_is_unit)
eberlm@63498
   630
   with q r show "is_unit q \<or> is_unit r"
eberlm@63498
   631
     by (auto simp add: is_unit_smult_iff dvd_field_iff nz)
eberlm@63498
   632
 qed
eberlm@63498
   633
eberlm@63498
   634
next
eberlm@63498
   635
eberlm@63498
   636
  assume irred: "irreducible (fract_poly p)" and primitive: "content p = 1"
eberlm@63498
   637
  show "irreducible p"
eberlm@63498
   638
  proof (rule irreducibleI)
eberlm@63498
   639
    from irred show "p \<noteq> 0" by auto
eberlm@63498
   640
  next
eberlm@63498
   641
    from irred show "\<not>p dvd 1"
eberlm@63498
   642
      by (auto simp: irreducible_def dest: fract_poly_is_unit)
eberlm@63498
   643
  next
eberlm@63498
   644
    fix q r assume qr: "p = q * r"
eberlm@63498
   645
    hence "fract_poly p = fract_poly q * fract_poly r" by simp
eberlm@63498
   646
    from irred and this have "fract_poly q dvd 1 \<or> fract_poly r dvd 1" 
eberlm@63498
   647
      by (rule irreducibleD)
eberlm@63498
   648
    with primitive qr show "q dvd 1 \<or> r dvd 1"
eberlm@63498
   649
      by (auto simp:  content_prod_eq_1_iff is_unit_fract_poly_iff)
eberlm@63498
   650
  qed
eberlm@63498
   651
qed
eberlm@63498
   652
eberlm@63722
   653
context
eberlm@63722
   654
begin
eberlm@63722
   655
eberlm@63498
   656
private lemma irreducible_imp_prime_poly:
eberlm@63498
   657
  fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
eberlm@63498
   658
  assumes "irreducible p"
eberlm@63633
   659
  shows   "prime_elem p"
eberlm@63498
   660
proof (cases "degree p = 0")
eberlm@63498
   661
  case True
eberlm@63498
   662
  with assms show ?thesis
eberlm@63498
   663
    by (auto simp: prime_elem_const_poly_iff irreducible_const_poly_iff
eberlm@63633
   664
             intro!: irreducible_imp_prime_elem elim!: degree_eq_zeroE)
eberlm@63498
   665
next
eberlm@63498
   666
  case False
eberlm@63498
   667
  from assms False have irred: "irreducible (fract_poly p)" and primitive: "content p = 1"
eberlm@63498
   668
    by (simp_all add: nonconst_poly_irreducible_iff)
eberlm@63633
   669
  from irred have prime: "prime_elem (fract_poly p)" by (rule field_poly_irreducible_imp_prime)
eberlm@63498
   670
  show ?thesis
eberlm@63633
   671
  proof (rule prime_elemI)
eberlm@63498
   672
    fix q r assume "p dvd q * r"
eberlm@63498
   673
    hence "fract_poly p dvd fract_poly (q * r)" by (rule fract_poly_dvd)
eberlm@63498
   674
    hence "fract_poly p dvd fract_poly q * fract_poly r" by simp
eberlm@63498
   675
    from prime and this have "fract_poly p dvd fract_poly q \<or> fract_poly p dvd fract_poly r"
eberlm@63633
   676
      by (rule prime_elem_dvd_multD)
eberlm@63498
   677
    with primitive show "p dvd q \<or> p dvd r" by (auto dest: fract_poly_dvdD)
eberlm@63498
   678
  qed (insert assms, auto simp: irreducible_def)
eberlm@63498
   679
qed
eberlm@63498
   680
eberlm@63498
   681
eberlm@63498
   682
lemma degree_primitive_part_fract [simp]:
eberlm@63498
   683
  "degree (primitive_part_fract p) = degree p"
eberlm@63498
   684
proof -
eberlm@63498
   685
  have "p = smult (fract_content p) (fract_poly (primitive_part_fract p))"
eberlm@63498
   686
    by (simp add: content_times_primitive_part_fract)
eberlm@63498
   687
  also have "degree \<dots> = degree (primitive_part_fract p)"
eberlm@63498
   688
    by (auto simp: degree_map_poly)
eberlm@63498
   689
  finally show ?thesis ..
eberlm@63498
   690
qed
eberlm@63498
   691
eberlm@63498
   692
lemma irreducible_primitive_part_fract:
eberlm@63498
   693
  fixes p :: "'a :: {idom_divide, ring_gcd, factorial_semiring, semiring_Gcd} fract poly"
eberlm@63498
   694
  assumes "irreducible p"
eberlm@63498
   695
  shows   "irreducible (primitive_part_fract p)"
eberlm@63498
   696
proof -
eberlm@63498
   697
  from assms have deg: "degree (primitive_part_fract p) \<noteq> 0"
eberlm@63498
   698
    by (intro notI) 
eberlm@63498
   699
       (auto elim!: degree_eq_zeroE simp: irreducible_def is_unit_poly_iff dvd_field_iff)
eberlm@63498
   700
  hence [simp]: "p \<noteq> 0" by auto
eberlm@63498
   701
eberlm@63498
   702
  note \<open>irreducible p\<close>
eberlm@63498
   703
  also have "p = [:fract_content p:] * fract_poly (primitive_part_fract p)" 
eberlm@63498
   704
    by (simp add: content_times_primitive_part_fract)
eberlm@63498
   705
  also have "irreducible \<dots> \<longleftrightarrow> irreducible (fract_poly (primitive_part_fract p))"
eberlm@63498
   706
    by (intro irreducible_mult_unit_left) (simp_all add: is_unit_poly_iff dvd_field_iff)
eberlm@63498
   707
  finally show ?thesis using deg
eberlm@63498
   708
    by (simp add: nonconst_poly_irreducible_iff)
eberlm@63498
   709
qed
eberlm@63498
   710
eberlm@63633
   711
lemma prime_elem_primitive_part_fract:
eberlm@63498
   712
  fixes p :: "'a :: {idom_divide, ring_gcd, factorial_semiring, semiring_Gcd} fract poly"
eberlm@63633
   713
  shows "irreducible p \<Longrightarrow> prime_elem (primitive_part_fract p)"
eberlm@63498
   714
  by (intro irreducible_imp_prime_poly irreducible_primitive_part_fract)
eberlm@63498
   715
eberlm@63498
   716
lemma irreducible_linear_field_poly:
eberlm@63498
   717
  fixes a b :: "'a::field"
eberlm@63498
   718
  assumes "b \<noteq> 0"
eberlm@63498
   719
  shows "irreducible [:a,b:]"
eberlm@63498
   720
proof (rule irreducibleI)
eberlm@63498
   721
  fix p q assume pq: "[:a,b:] = p * q"
wenzelm@63539
   722
  also from pq assms have "degree \<dots> = degree p + degree q" 
eberlm@63498
   723
    by (intro degree_mult_eq) auto
eberlm@63498
   724
  finally have "degree p = 0 \<or> degree q = 0" using assms by auto
eberlm@63498
   725
  with assms pq show "is_unit p \<or> is_unit q"
eberlm@63498
   726
    by (auto simp: is_unit_const_poly_iff dvd_field_iff elim!: degree_eq_zeroE)
eberlm@63498
   727
qed (insert assms, auto simp: is_unit_poly_iff)
eberlm@63498
   728
eberlm@63633
   729
lemma prime_elem_linear_field_poly:
eberlm@63633
   730
  "(b :: 'a :: field) \<noteq> 0 \<Longrightarrow> prime_elem [:a,b:]"
eberlm@63498
   731
  by (rule field_poly_irreducible_imp_prime, rule irreducible_linear_field_poly)
eberlm@63498
   732
eberlm@63498
   733
lemma irreducible_linear_poly:
eberlm@63498
   734
  fixes a b :: "'a::{idom_divide,ring_gcd,factorial_semiring,semiring_Gcd}"
eberlm@63498
   735
  shows "b \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> irreducible [:a,b:]"
eberlm@63498
   736
  by (auto intro!: irreducible_linear_field_poly 
eberlm@63498
   737
           simp:   nonconst_poly_irreducible_iff content_def map_poly_pCons)
eberlm@63498
   738
eberlm@63633
   739
lemma prime_elem_linear_poly:
eberlm@63498
   740
  fixes a b :: "'a::{idom_divide,ring_gcd,factorial_semiring,semiring_Gcd}"
eberlm@63633
   741
  shows "b \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> prime_elem [:a,b:]"
eberlm@63498
   742
  by (rule irreducible_imp_prime_poly, rule irreducible_linear_poly)
eberlm@63498
   743
eberlm@63722
   744
end
eberlm@63722
   745
haftmann@64591
   746
 
eberlm@63498
   747
subsection \<open>Prime factorisation of polynomials\<close>   
eberlm@63498
   748
eberlm@63722
   749
context
eberlm@63722
   750
begin 
eberlm@63722
   751
eberlm@63498
   752
private lemma poly_prime_factorization_exists_content_1:
eberlm@63498
   753
  fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
eberlm@63498
   754
  assumes "p \<noteq> 0" "content p = 1"
nipkow@63830
   755
  shows   "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> prod_mset A = normalize p"
eberlm@63498
   756
proof -
eberlm@63498
   757
  let ?P = "field_poly.prime_factorization (fract_poly p)"
nipkow@63830
   758
  define c where "c = prod_mset (image_mset fract_content ?P)"
eberlm@63498
   759
  define c' where "c' = c * to_fract (lead_coeff p)"
nipkow@63830
   760
  define e where "e = prod_mset (image_mset primitive_part_fract ?P)"
eberlm@63498
   761
  define A where "A = image_mset (normalize \<circ> primitive_part_fract) ?P"
eberlm@63498
   762
  have "content e = (\<Prod>x\<in>#field_poly.prime_factorization (map_poly to_fract p). 
eberlm@63498
   763
                      content (primitive_part_fract x))"
nipkow@63830
   764
    by (simp add: e_def content_prod_mset multiset.map_comp o_def)
eberlm@63498
   765
  also have "image_mset (\<lambda>x. content (primitive_part_fract x)) ?P = image_mset (\<lambda>_. 1) ?P"
eberlm@63498
   766
    by (intro image_mset_cong content_primitive_part_fract) auto
haftmann@64591
   767
  finally have content_e: "content e = 1"
haftmann@64591
   768
    by simp    
eberlm@63498
   769
  
eberlm@63498
   770
  have "fract_poly p = unit_factor_field_poly (fract_poly p) * 
eberlm@63498
   771
          normalize_field_poly (fract_poly p)" by simp
eberlm@63498
   772
  also have "unit_factor_field_poly (fract_poly p) = [:to_fract (lead_coeff p):]" 
haftmann@64794
   773
    by (simp add: unit_factor_field_poly_def monom_0 degree_map_poly coeff_map_poly)
nipkow@63830
   774
  also from assms have "normalize_field_poly (fract_poly p) = prod_mset ?P" 
nipkow@63830
   775
    by (subst field_poly_prod_mset_prime_factorization) simp_all
nipkow@63830
   776
  also have "\<dots> = prod_mset (image_mset id ?P)" by simp
eberlm@63498
   777
  also have "image_mset id ?P = 
eberlm@63498
   778
               image_mset (\<lambda>x. [:fract_content x:] * fract_poly (primitive_part_fract x)) ?P"
eberlm@63498
   779
    by (intro image_mset_cong) (auto simp: content_times_primitive_part_fract)
nipkow@63830
   780
  also have "prod_mset \<dots> = smult c (fract_poly e)"
haftmann@64591
   781
    by (subst prod_mset.distrib) (simp_all add: prod_mset_fract_poly prod_mset_const_poly c_def e_def)
eberlm@63498
   782
  also have "[:to_fract (lead_coeff p):] * \<dots> = smult c' (fract_poly e)"
eberlm@63498
   783
    by (simp add: c'_def)
eberlm@63498
   784
  finally have eq: "fract_poly p = smult c' (fract_poly e)" .
eberlm@63498
   785
  also obtain b where b: "c' = to_fract b" "is_unit b"
eberlm@63498
   786
  proof -
eberlm@63498
   787
    from fract_poly_smult_eqE[OF eq] guess a b . note ab = this
eberlm@63498
   788
    from ab(2) have "content (smult a p) = content (smult b e)" by (simp only: )
eberlm@63498
   789
    with assms content_e have "a = normalize b" by (simp add: ab(4))
eberlm@63498
   790
    with ab have ab': "a = 1" "is_unit b" by (simp_all add: normalize_1_iff)
eberlm@63498
   791
    with ab ab' have "c' = to_fract b" by auto
eberlm@63498
   792
    from this and \<open>is_unit b\<close> show ?thesis by (rule that)
eberlm@63498
   793
  qed
eberlm@63498
   794
  hence "smult c' (fract_poly e) = fract_poly (smult b e)" by simp
eberlm@63498
   795
  finally have "p = smult b e" by (simp only: fract_poly_eq_iff)
eberlm@63498
   796
  hence "p = [:b:] * e" by simp
eberlm@63498
   797
  with b have "normalize p = normalize e" 
eberlm@63498
   798
    by (simp only: normalize_mult) (simp add: is_unit_normalize is_unit_poly_iff)
nipkow@63830
   799
  also have "normalize e = prod_mset A"
nipkow@63830
   800
    by (simp add: multiset.map_comp e_def A_def normalize_prod_mset)
nipkow@63830
   801
  finally have "prod_mset A = normalize p" ..
eberlm@63498
   802
  
eberlm@63633
   803
  have "prime_elem p" if "p \<in># A" for p
eberlm@63633
   804
    using that by (auto simp: A_def prime_elem_primitive_part_fract prime_elem_imp_irreducible 
eberlm@63498
   805
                        dest!: field_poly_in_prime_factorization_imp_prime )
nipkow@63830
   806
  from this and \<open>prod_mset A = normalize p\<close> show ?thesis
eberlm@63498
   807
    by (intro exI[of _ A]) blast
eberlm@63498
   808
qed
eberlm@63498
   809
eberlm@63498
   810
lemma poly_prime_factorization_exists:
eberlm@63498
   811
  fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide} poly"
eberlm@63498
   812
  assumes "p \<noteq> 0"
nipkow@63830
   813
  shows   "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> prod_mset A = normalize p"
eberlm@63498
   814
proof -
eberlm@63498
   815
  define B where "B = image_mset (\<lambda>x. [:x:]) (prime_factorization (content p))"
nipkow@63830
   816
  have "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> prod_mset A = normalize (primitive_part p)"
eberlm@63498
   817
    by (rule poly_prime_factorization_exists_content_1) (insert assms, simp_all)
eberlm@63498
   818
  then guess A by (elim exE conjE) note A = this
nipkow@63830
   819
  moreover from assms have "prod_mset B = [:content p:]"
nipkow@63830
   820
    by (simp add: B_def prod_mset_const_poly prod_mset_prime_factorization)
eberlm@63633
   821
  moreover have "\<forall>p. p \<in># B \<longrightarrow> prime_elem p"
haftmann@63905
   822
    by (auto simp: B_def intro!: lift_prime_elem_poly dest: in_prime_factors_imp_prime)
eberlm@63498
   823
  ultimately show ?thesis by (intro exI[of _ "B + A"]) auto
eberlm@63498
   824
qed
eberlm@63498
   825
eberlm@63498
   826
end
eberlm@63498
   827
eberlm@63498
   828
eberlm@63498
   829
subsection \<open>Typeclass instances\<close>
eberlm@63498
   830
eberlm@63498
   831
instance poly :: (factorial_ring_gcd) factorial_semiring
eberlm@63498
   832
  by standard (rule poly_prime_factorization_exists)  
eberlm@63498
   833
eberlm@63498
   834
instantiation poly :: (factorial_ring_gcd) factorial_ring_gcd
eberlm@63498
   835
begin
eberlm@63498
   836
eberlm@63498
   837
definition gcd_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where
eberlm@63498
   838
  [code del]: "gcd_poly = gcd_factorial"
eberlm@63498
   839
eberlm@63498
   840
definition lcm_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where
eberlm@63498
   841
  [code del]: "lcm_poly = lcm_factorial"
eberlm@63498
   842
  
eberlm@63498
   843
definition Gcd_poly :: "'a poly set \<Rightarrow> 'a poly" where
eberlm@63498
   844
 [code del]: "Gcd_poly = Gcd_factorial"
eberlm@63498
   845
eberlm@63498
   846
definition Lcm_poly :: "'a poly set \<Rightarrow> 'a poly" where
eberlm@63498
   847
 [code del]: "Lcm_poly = Lcm_factorial"
eberlm@63498
   848
 
eberlm@63498
   849
instance by standard (simp_all add: gcd_poly_def lcm_poly_def Gcd_poly_def Lcm_poly_def)
eberlm@63498
   850
eberlm@63498
   851
end
eberlm@63498
   852
haftmann@64784
   853
instantiation poly :: ("{field,factorial_ring_gcd}") unique_euclidean_ring
eberlm@63498
   854
begin
eberlm@63498
   855
haftmann@64784
   856
definition euclidean_size_poly :: "'a poly \<Rightarrow> nat"
haftmann@64784
   857
  where "euclidean_size_poly p = (if p = 0 then 0 else 2 ^ degree p)"
haftmann@64784
   858
haftmann@64784
   859
definition uniqueness_constraint_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> bool"
haftmann@64784
   860
  where [simp]: "uniqueness_constraint_poly = top"
eberlm@63498
   861
eberlm@63498
   862
instance 
haftmann@64784
   863
  by standard
haftmann@64784
   864
   (auto simp: euclidean_size_poly_def Rings.div_mult_mod_eq div_poly_less degree_mult_eq intro!: degree_mod_less' degree_mult_right_le
haftmann@64784
   865
    split: if_splits)
haftmann@64784
   866
eberlm@63498
   867
end
eberlm@63498
   868
eberlm@63498
   869
instance poly :: ("{field,factorial_ring_gcd}") euclidean_ring_gcd
haftmann@64786
   870
  by (rule euclidean_ring_gcd_class.intro, rule factorial_euclidean_semiring_gcdI)
haftmann@64786
   871
    standard
eberlm@63498
   872
eberlm@63498
   873
  
eberlm@63498
   874
subsection \<open>Polynomial GCD\<close>
eberlm@63498
   875
eberlm@63498
   876
lemma gcd_poly_decompose:
eberlm@63498
   877
  fixes p q :: "'a :: factorial_ring_gcd poly"
eberlm@63498
   878
  shows "gcd p q = 
eberlm@63498
   879
           smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q))"
eberlm@63498
   880
proof (rule sym, rule gcdI)
eberlm@63498
   881
  have "[:gcd (content p) (content q):] * gcd (primitive_part p) (primitive_part q) dvd
eberlm@63498
   882
          [:content p:] * primitive_part p" by (intro mult_dvd_mono) simp_all
eberlm@63498
   883
  thus "smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q)) dvd p"
eberlm@63498
   884
    by simp
eberlm@63498
   885
next
eberlm@63498
   886
  have "[:gcd (content p) (content q):] * gcd (primitive_part p) (primitive_part q) dvd
eberlm@63498
   887
          [:content q:] * primitive_part q" by (intro mult_dvd_mono) simp_all
eberlm@63498
   888
  thus "smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q)) dvd q"
eberlm@63498
   889
    by simp
eberlm@63498
   890
next
eberlm@63498
   891
  fix d assume "d dvd p" "d dvd q"
eberlm@63498
   892
  hence "[:content d:] * primitive_part d dvd 
eberlm@63498
   893
           [:gcd (content p) (content q):] * gcd (primitive_part p) (primitive_part q)"
eberlm@63498
   894
    by (intro mult_dvd_mono) auto
eberlm@63498
   895
  thus "d dvd smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q))"
eberlm@63498
   896
    by simp
eberlm@63498
   897
qed (auto simp: normalize_smult)
eberlm@63498
   898
  
eberlm@63498
   899
eberlm@63498
   900
lemma gcd_poly_pseudo_mod:
eberlm@63498
   901
  fixes p q :: "'a :: factorial_ring_gcd poly"
eberlm@63498
   902
  assumes nz: "q \<noteq> 0" and prim: "content p = 1" "content q = 1"
eberlm@63498
   903
  shows   "gcd p q = gcd q (primitive_part (pseudo_mod p q))"
eberlm@63498
   904
proof -
eberlm@63498
   905
  define r s where "r = fst (pseudo_divmod p q)" and "s = snd (pseudo_divmod p q)"
eberlm@63498
   906
  define a where "a = [:coeff q (degree q) ^ (Suc (degree p) - degree q):]"
eberlm@63498
   907
  have [simp]: "primitive_part a = unit_factor a"
eberlm@63498
   908
    by (simp add: a_def unit_factor_poly_def unit_factor_power monom_0)
eberlm@63498
   909
  from nz have [simp]: "a \<noteq> 0" by (auto simp: a_def)
eberlm@63498
   910
  
eberlm@63498
   911
  have rs: "pseudo_divmod p q = (r, s)" by (simp add: r_def s_def)
eberlm@63498
   912
  have "gcd (q * r + s) q = gcd q s"
eberlm@63498
   913
    using gcd_add_mult[of q r s] by (simp add: gcd.commute add_ac mult_ac)
eberlm@63498
   914
  with pseudo_divmod(1)[OF nz rs]
eberlm@63498
   915
    have "gcd (p * a) q = gcd q s" by (simp add: a_def)
eberlm@63498
   916
  also from prim have "gcd (p * a) q = gcd p q"
eberlm@63498
   917
    by (subst gcd_poly_decompose)
eberlm@63498
   918
       (auto simp: primitive_part_mult gcd_mult_unit1 primitive_part_prim 
eberlm@63498
   919
             simp del: mult_pCons_right )
eberlm@63498
   920
  also from prim have "gcd q s = gcd q (primitive_part s)"
eberlm@63498
   921
    by (subst gcd_poly_decompose) (simp_all add: primitive_part_prim)
eberlm@63498
   922
  also have "s = pseudo_mod p q" by (simp add: s_def pseudo_mod_def)
eberlm@63498
   923
  finally show ?thesis .
eberlm@63498
   924
qed
eberlm@63498
   925
eberlm@63498
   926
lemma degree_pseudo_mod_less:
eberlm@63498
   927
  assumes "q \<noteq> 0" "pseudo_mod p q \<noteq> 0"
eberlm@63498
   928
  shows   "degree (pseudo_mod p q) < degree q"
eberlm@63498
   929
  using pseudo_mod(2)[of q p] assms by auto
eberlm@63498
   930
eberlm@63498
   931
function gcd_poly_code_aux :: "'a :: factorial_ring_gcd poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where
eberlm@63498
   932
  "gcd_poly_code_aux p q = 
eberlm@63498
   933
     (if q = 0 then normalize p else gcd_poly_code_aux q (primitive_part (pseudo_mod p q)))" 
eberlm@63498
   934
by auto
eberlm@63498
   935
termination
eberlm@63498
   936
  by (relation "measure ((\<lambda>p. if p = 0 then 0 else Suc (degree p)) \<circ> snd)")
haftmann@64164
   937
     (auto simp: degree_pseudo_mod_less)
eberlm@63498
   938
eberlm@63498
   939
declare gcd_poly_code_aux.simps [simp del]
eberlm@63498
   940
eberlm@63498
   941
lemma gcd_poly_code_aux_correct:
eberlm@63498
   942
  assumes "content p = 1" "q = 0 \<or> content q = 1"
eberlm@63498
   943
  shows   "gcd_poly_code_aux p q = gcd p q"
eberlm@63498
   944
  using assms
eberlm@63498
   945
proof (induction p q rule: gcd_poly_code_aux.induct)
eberlm@63498
   946
  case (1 p q)
eberlm@63498
   947
  show ?case
eberlm@63498
   948
  proof (cases "q = 0")
eberlm@63498
   949
    case True
eberlm@63498
   950
    thus ?thesis by (subst gcd_poly_code_aux.simps) auto
eberlm@63498
   951
  next
eberlm@63498
   952
    case False
eberlm@63498
   953
    hence "gcd_poly_code_aux p q = gcd_poly_code_aux q (primitive_part (pseudo_mod p q))"
eberlm@63498
   954
      by (subst gcd_poly_code_aux.simps) simp_all
eberlm@63498
   955
    also from "1.prems" False 
eberlm@63498
   956
      have "primitive_part (pseudo_mod p q) = 0 \<or> 
eberlm@63498
   957
              content (primitive_part (pseudo_mod p q)) = 1"
eberlm@63498
   958
      by (cases "pseudo_mod p q = 0") auto
eberlm@63498
   959
    with "1.prems" False 
eberlm@63498
   960
      have "gcd_poly_code_aux q (primitive_part (pseudo_mod p q)) = 
eberlm@63498
   961
              gcd q (primitive_part (pseudo_mod p q))"
eberlm@63498
   962
      by (intro 1) simp_all
eberlm@63498
   963
    also from "1.prems" False 
eberlm@63498
   964
      have "\<dots> = gcd p q" by (intro gcd_poly_pseudo_mod [symmetric]) auto
eberlm@63498
   965
    finally show ?thesis .
eberlm@63498
   966
  qed
eberlm@63498
   967
qed
eberlm@63498
   968
eberlm@63498
   969
definition gcd_poly_code 
eberlm@63498
   970
    :: "'a :: factorial_ring_gcd poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" 
eberlm@63498
   971
  where "gcd_poly_code p q = 
eberlm@63498
   972
           (if p = 0 then normalize q else if q = 0 then normalize p else
eberlm@63498
   973
              smult (gcd (content p) (content q)) 
eberlm@63498
   974
                (gcd_poly_code_aux (primitive_part p) (primitive_part q)))"
eberlm@63498
   975
haftmann@64591
   976
lemma gcd_poly_code [code]: "gcd p q = gcd_poly_code p q"
haftmann@64591
   977
  by (simp add: gcd_poly_code_def gcd_poly_code_aux_correct gcd_poly_decompose [symmetric])
haftmann@64591
   978
eberlm@63498
   979
lemma lcm_poly_code [code]: 
eberlm@63498
   980
  fixes p q :: "'a :: factorial_ring_gcd poly"
eberlm@63498
   981
  shows "lcm p q = normalize (p * q) div gcd p q"
haftmann@64591
   982
  by (fact lcm_gcd)
eberlm@63498
   983
eberlm@63498
   984
declare Gcd_set
eberlm@63498
   985
  [where ?'a = "'a :: factorial_ring_gcd poly", code]
eberlm@63498
   986
eberlm@63498
   987
declare Lcm_set
eberlm@63498
   988
  [where ?'a = "'a :: factorial_ring_gcd poly", code]
haftmann@64591
   989
haftmann@64591
   990
text \<open>Example:
haftmann@64591
   991
  @{lemma "Lcm {[:1, 2, 3:], [:2, 3, 4:]} = [:[:2:], [:7:], [:16:], [:17:], [:12 :: int:]:]" by eval}
haftmann@64591
   992
\<close>
eberlm@63498
   993
  
wenzelm@63764
   994
end