src/HOL/Tools/meson.ML
author paulson
Fri Aug 25 18:47:36 2006 +0200 (2006-08-25)
changeset 20417 c611b1412056
parent 20361 1aaf9ebe248d
child 20524 1493053fc111
permissions -rw-r--r--
better skolemization, using first-order resolution rather than hoping for the right result
wenzelm@9869
     1
(*  Title:      HOL/Tools/meson.ML
paulson@9840
     2
    ID:         $Id$
paulson@9840
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@9840
     4
    Copyright   1992  University of Cambridge
paulson@9840
     5
wenzelm@9869
     6
The MESON resolution proof procedure for HOL.
paulson@9840
     7
paulson@9840
     8
When making clauses, avoids using the rewriter -- instead uses RS recursively
paulson@9840
     9
paulson@9840
    10
NEED TO SORT LITERALS BY # OF VARS, USING ==>I/E.  ELIMINATES NEED FOR
paulson@9840
    11
FUNCTION nodups -- if done to goal clauses too!
paulson@9840
    12
*)
paulson@9840
    13
paulson@15579
    14
signature BASIC_MESON =
paulson@15579
    15
sig
paulson@15579
    16
  val size_of_subgoals	: thm -> int
paulson@15998
    17
  val make_cnf		: thm list -> thm -> thm list
paulson@20417
    18
  val finish_cnf	: thm list -> thm list
paulson@15579
    19
  val make_nnf		: thm -> thm
paulson@17849
    20
  val make_nnf1		: thm -> thm
paulson@15579
    21
  val skolemize		: thm -> thm
paulson@15579
    22
  val make_clauses	: thm list -> thm list
paulson@15579
    23
  val make_horns	: thm list -> thm list
paulson@15579
    24
  val best_prolog_tac	: (thm -> int) -> thm list -> tactic
paulson@15579
    25
  val depth_prolog_tac	: thm list -> tactic
paulson@15579
    26
  val gocls		: thm list -> thm list
paulson@15579
    27
  val skolemize_prems_tac	: thm list -> int -> tactic
paulson@15579
    28
  val MESON		: (thm list -> tactic) -> int -> tactic
paulson@15579
    29
  val best_meson_tac	: (thm -> int) -> int -> tactic
paulson@15579
    30
  val safe_best_meson_tac	: int -> tactic
paulson@15579
    31
  val depth_meson_tac	: int -> tactic
paulson@15579
    32
  val prolog_step_tac'	: thm list -> int -> tactic
paulson@15579
    33
  val iter_deepen_prolog_tac	: thm list -> tactic
paulson@16563
    34
  val iter_deepen_meson_tac	: thm list -> int -> tactic
paulson@15579
    35
  val meson_tac		: int -> tactic
paulson@15579
    36
  val negate_head	: thm -> thm
paulson@15579
    37
  val select_literal	: int -> thm -> thm
paulson@15579
    38
  val skolemize_tac	: int -> tactic
paulson@15579
    39
  val make_clauses_tac	: int -> tactic
paulson@15579
    40
end
paulson@9840
    41
paulson@9840
    42
paulson@15579
    43
structure Meson =
paulson@15579
    44
struct
paulson@9840
    45
paulson@15579
    46
val not_conjD = thm "meson_not_conjD";
paulson@15579
    47
val not_disjD = thm "meson_not_disjD";
paulson@15579
    48
val not_notD = thm "meson_not_notD";
paulson@15579
    49
val not_allD = thm "meson_not_allD";
paulson@15579
    50
val not_exD = thm "meson_not_exD";
paulson@15579
    51
val imp_to_disjD = thm "meson_imp_to_disjD";
paulson@15579
    52
val not_impD = thm "meson_not_impD";
paulson@15579
    53
val iff_to_disjD = thm "meson_iff_to_disjD";
paulson@15579
    54
val not_iffD = thm "meson_not_iffD";
paulson@15579
    55
val conj_exD1 = thm "meson_conj_exD1";
paulson@15579
    56
val conj_exD2 = thm "meson_conj_exD2";
paulson@15579
    57
val disj_exD = thm "meson_disj_exD";
paulson@15579
    58
val disj_exD1 = thm "meson_disj_exD1";
paulson@15579
    59
val disj_exD2 = thm "meson_disj_exD2";
paulson@15579
    60
val disj_assoc = thm "meson_disj_assoc";
paulson@15579
    61
val disj_comm = thm "meson_disj_comm";
paulson@15579
    62
val disj_FalseD1 = thm "meson_disj_FalseD1";
paulson@15579
    63
val disj_FalseD2 = thm "meson_disj_FalseD2";
paulson@9840
    64
paulson@16563
    65
val depth_limit = ref 2000;
paulson@9840
    66
paulson@15579
    67
(**** Operators for forward proof ****)
paulson@15579
    68
paulson@20417
    69
paulson@20417
    70
(** First-order Resolution **)
paulson@20417
    71
paulson@20417
    72
fun typ_pair_of (ix, (sort,ty)) = (TVar (ix,sort), ty);
paulson@20417
    73
fun term_pair_of (ix, (ty,t)) = (Var (ix,ty), t);
paulson@20417
    74
paulson@20417
    75
val Envir.Envir {asol = tenv0, iTs = tyenv0, ...} = Envir.empty 0
paulson@20417
    76
paulson@20417
    77
(*FIXME: currently does not "rename variables apart"*)
paulson@20417
    78
fun first_order_resolve thA thB =
paulson@20417
    79
  let val thy = theory_of_thm thA
paulson@20417
    80
      val tmA = concl_of thA
paulson@20417
    81
      fun match pat = Pattern.first_order_match thy (pat,tmA) (tyenv0,tenv0)
paulson@20417
    82
      val Const("==>",_) $ tmB $ _ = prop_of thB
paulson@20417
    83
      val (tyenv,tenv) = match tmB
paulson@20417
    84
      val ct_pairs = map (pairself (cterm_of thy) o term_pair_of) (Vartab.dest tenv)
paulson@20417
    85
  in  thA RS (cterm_instantiate ct_pairs thB)  end
paulson@20417
    86
  handle _ => raise THM ("first_order_resolve", 0, [thA,thB]);
paulson@18175
    87
paulson@15579
    88
(*raises exception if no rules apply -- unlike RL*)
paulson@18141
    89
fun tryres (th, rls) = 
paulson@18141
    90
  let fun tryall [] = raise THM("tryres", 0, th::rls)
paulson@20417
    91
        | tryall (rl::rls) = (th RS rl handle THM _ => tryall rls)
paulson@18141
    92
  in  tryall rls  end;
paulson@18141
    93
  
paulson@15579
    94
(*Permits forward proof from rules that discharge assumptions*)
paulson@15579
    95
fun forward_res nf st =
paulson@15579
    96
  case Seq.pull (ALLGOALS (METAHYPS (fn [prem] => rtac (nf prem) 1)) st)
paulson@15579
    97
  of SOME(th,_) => th
paulson@15579
    98
   | NONE => raise THM("forward_res", 0, [st]);
paulson@15579
    99
paulson@15579
   100
paulson@20134
   101
(*Are any of the logical connectives in "bs" present in the term?*)
paulson@20134
   102
fun has_conns bs =
paulson@20134
   103
  let fun has (Const(a,_)) = false
paulson@20134
   104
        | has (Const("Trueprop",_) $ p) = has p
paulson@20134
   105
        | has (Const("Not",_) $ p) = has p
paulson@20134
   106
        | has (Const("op |",_) $ p $ q) = member (op =) bs "op |" orelse has p orelse has q
paulson@20134
   107
        | has (Const("op &",_) $ p $ q) = member (op =) bs "op &" orelse has p orelse has q
paulson@20134
   108
        | has (Const("All",_) $ Abs(_,_,p)) = member (op =) bs "All" orelse has p
paulson@20134
   109
        | has (Const("Ex",_) $ Abs(_,_,p)) = member (op =) bs "Ex" orelse has p
paulson@15579
   110
	| has _ = false
paulson@15579
   111
  in  has  end;
paulson@17716
   112
  
paulson@9840
   113
paulson@15579
   114
(**** Clause handling ****)
paulson@9840
   115
paulson@15579
   116
fun literals (Const("Trueprop",_) $ P) = literals P
paulson@15579
   117
  | literals (Const("op |",_) $ P $ Q) = literals P @ literals Q
paulson@15579
   118
  | literals (Const("Not",_) $ P) = [(false,P)]
paulson@15579
   119
  | literals P = [(true,P)];
paulson@9840
   120
paulson@15579
   121
(*number of literals in a term*)
paulson@15579
   122
val nliterals = length o literals;
paulson@9840
   123
paulson@18389
   124
paulson@18389
   125
(*** Tautology Checking ***)
paulson@18389
   126
paulson@18389
   127
fun signed_lits_aux (Const ("op |", _) $ P $ Q) (poslits, neglits) = 
paulson@18389
   128
      signed_lits_aux Q (signed_lits_aux P (poslits, neglits))
paulson@18389
   129
  | signed_lits_aux (Const("Not",_) $ P) (poslits, neglits) = (poslits, P::neglits)
paulson@18389
   130
  | signed_lits_aux P (poslits, neglits) = (P::poslits, neglits);
paulson@18389
   131
  
paulson@18389
   132
fun signed_lits th = signed_lits_aux (HOLogic.dest_Trueprop (concl_of th)) ([],[]);
paulson@18389
   133
paulson@18389
   134
(*Literals like X=X are tautologous*)
paulson@18389
   135
fun taut_poslit (Const("op =",_) $ t $ u) = t aconv u
paulson@18389
   136
  | taut_poslit (Const("True",_)) = true
paulson@18389
   137
  | taut_poslit _ = false;
paulson@18389
   138
paulson@18389
   139
fun is_taut th =
paulson@18389
   140
  let val (poslits,neglits) = signed_lits th
paulson@18389
   141
  in  exists taut_poslit poslits
paulson@18389
   142
      orelse
wenzelm@20073
   143
      exists (member (op aconv) neglits) (HOLogic.false_const :: poslits)
paulson@19894
   144
  end
paulson@19894
   145
  handle TERM _ => false;	(*probably dest_Trueprop on a weird theorem*)		      
paulson@18389
   146
paulson@18389
   147
paulson@18389
   148
(*** To remove trivial negated equality literals from clauses ***)
paulson@18389
   149
paulson@18389
   150
(*They are typically functional reflexivity axioms and are the converses of
paulson@18389
   151
  injectivity equivalences*)
paulson@18389
   152
  
paulson@18389
   153
val not_refl_disj_D = thm"meson_not_refl_disj_D";
paulson@18389
   154
paulson@20119
   155
(*Is either term a Var that does not properly occur in the other term?*)
paulson@20119
   156
fun eliminable (t as Var _, u) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   157
  | eliminable (u, t as Var _) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   158
  | eliminable _ = false;
paulson@20119
   159
paulson@18389
   160
fun refl_clause_aux 0 th = th
paulson@18389
   161
  | refl_clause_aux n th =
paulson@18389
   162
       case HOLogic.dest_Trueprop (concl_of th) of
paulson@18389
   163
	  (Const ("op |", _) $ (Const ("op |", _) $ _ $ _) $ _) => 
paulson@18389
   164
            refl_clause_aux n (th RS disj_assoc)    (*isolate an atom as first disjunct*)
paulson@18389
   165
	| (Const ("op |", _) $ (Const("Not",_) $ (Const("op =",_) $ t $ u)) $ _) => 
paulson@20119
   166
	    if eliminable(t,u) 
paulson@20119
   167
	    then refl_clause_aux (n-1) (th RS not_refl_disj_D)  (*Var inequation: delete*)
paulson@18389
   168
	    else refl_clause_aux (n-1) (th RS disj_comm)  (*not between Vars: ignore*)
paulson@18389
   169
	| (Const ("op |", _) $ _ $ _) => refl_clause_aux n (th RS disj_comm)
paulson@18752
   170
	| _ => (*not a disjunction*) th;
paulson@18389
   171
paulson@18389
   172
fun notequal_lits_count (Const ("op |", _) $ P $ Q) = 
paulson@18389
   173
      notequal_lits_count P + notequal_lits_count Q
paulson@18389
   174
  | notequal_lits_count (Const("Not",_) $ (Const("op =",_) $ _ $ _)) = 1
paulson@18389
   175
  | notequal_lits_count _ = 0;
paulson@18389
   176
paulson@18389
   177
(*Simplify a clause by applying reflexivity to its negated equality literals*)
paulson@18389
   178
fun refl_clause th = 
paulson@18389
   179
  let val neqs = notequal_lits_count (HOLogic.dest_Trueprop (concl_of th))
paulson@19894
   180
  in  zero_var_indexes (refl_clause_aux neqs th)  end
paulson@19894
   181
  handle TERM _ => th;	(*probably dest_Trueprop on a weird theorem*)		      
paulson@18389
   182
paulson@18389
   183
paulson@18389
   184
(*** The basic CNF transformation ***)
paulson@18389
   185
paulson@19894
   186
(*Estimate the number of clauses in order to detect infeasible theorems*)
paulson@19894
   187
fun nclauses (Const("Trueprop",_) $ t) = nclauses t
paulson@19894
   188
  | nclauses (Const("op &",_) $ t $ u) = nclauses t + nclauses u
paulson@19894
   189
  | nclauses (Const("Ex", _) $ Abs (_,_,t)) = nclauses t
paulson@19894
   190
  | nclauses (Const("All",_) $ Abs (_,_,t)) = nclauses t
paulson@19894
   191
  | nclauses (Const("op |",_) $ t $ u) = nclauses t * nclauses u
paulson@19894
   192
  | nclauses _ = 1; (* literal *)
paulson@19894
   193
paulson@15579
   194
(*Replaces universally quantified variables by FREE variables -- because
paulson@15579
   195
  assumptions may not contain scheme variables.  Later, call "generalize". *)
paulson@15579
   196
fun freeze_spec th =
paulson@20361
   197
  let val newname = gensym "mes_"
paulson@19154
   198
      val spec' = read_instantiate [("x", newname)] spec
paulson@19154
   199
  in  th RS spec'  end;
paulson@9840
   200
paulson@15998
   201
(*Used with METAHYPS below. There is one assumption, which gets bound to prem
paulson@15998
   202
  and then normalized via function nf. The normal form is given to resolve_tac,
paulson@15998
   203
  presumably to instantiate a Boolean variable.*)
paulson@15579
   204
fun resop nf [prem] = resolve_tac (nf prem) 1;
paulson@9840
   205
paulson@18389
   206
val has_meta_conn = 
paulson@18389
   207
    exists_Const (fn (c,_) => c mem_string ["==", "==>", "all", "prop"]);
paulson@20417
   208
paulson@20417
   209
fun apply_skolem_ths (th, rls) = 
paulson@20417
   210
  let fun tryall [] = raise THM("apply_skolem_ths", 0, th::rls)
paulson@20417
   211
        | tryall (rl::rls) = (first_order_resolve th rl handle THM _ => tryall rls)
paulson@20417
   212
  in  tryall rls  end;
paulson@18389
   213
  
paulson@15998
   214
(*Conjunctive normal form, adding clauses from th in front of ths (for foldr).
paulson@15998
   215
  Strips universal quantifiers and breaks up conjunctions.
paulson@15998
   216
  Eliminates existential quantifiers using skoths: Skolemization theorems.*)
paulson@15998
   217
fun cnf skoths (th,ths) =
paulson@18389
   218
  let fun cnf_aux (th,ths) =
paulson@19894
   219
  	if has_meta_conn (prop_of th) then ths (*meta-level: ignore*)
paulson@20134
   220
        else if not (has_conns ["All","Ex","op &"] (prop_of th))  
paulson@15998
   221
	then th::ths (*no work to do, terminate*)
paulson@16588
   222
	else case head_of (HOLogic.dest_Trueprop (concl_of th)) of
paulson@16588
   223
	    Const ("op &", _) => (*conjunction*)
paulson@20417
   224
		cnf_aux (th RS conjunct1, cnf_aux (th RS conjunct2, ths))
paulson@16588
   225
	  | Const ("All", _) => (*universal quantifier*)
paulson@18389
   226
	        cnf_aux (freeze_spec th,  ths)
paulson@16588
   227
	  | Const ("Ex", _) => 
paulson@16588
   228
	      (*existential quantifier: Insert Skolem functions*)
paulson@20417
   229
	      cnf_aux (apply_skolem_ths (th,skoths), ths)
paulson@16588
   230
	  | Const ("op |", _) => (*disjunction*)
paulson@16588
   231
	      let val tac =
paulson@18389
   232
		  (METAHYPS (resop cnf_nil) 1) THEN
paulson@19154
   233
		   (fn st' => st' |> METAHYPS (resop cnf_nil) 1)
paulson@16588
   234
	      in  Seq.list_of (tac (th RS disj_forward)) @ ths  end 
paulson@16588
   235
	  | _ => (*no work to do*) th::ths 
paulson@19154
   236
      and cnf_nil th = cnf_aux (th,[])
paulson@15998
   237
  in 
paulson@19894
   238
    if nclauses (concl_of th) > 20 
paulson@19894
   239
    then (Output.debug ("cnf is ignoring: " ^ string_of_thm th); ths)
paulson@19894
   240
    else cnf_aux (th,ths)
paulson@15998
   241
  end;
paulson@9840
   242
paulson@16012
   243
(*Convert all suitable free variables to schematic variables, 
paulson@16012
   244
  but don't discharge assumptions.*)
paulson@16173
   245
fun generalize th = Thm.varifyT (forall_elim_vars 0 (forall_intr_frees th));
paulson@16012
   246
paulson@20417
   247
fun make_cnf skoths th = cnf skoths (th, []);
paulson@20417
   248
paulson@20417
   249
(*Generalization, removal of redundant equalities, removal of tautologies.*)
paulson@20417
   250
fun finish_cnf ths = filter (not o is_taut) (map (refl_clause o generalize) ths);
paulson@15998
   251
paulson@9840
   252
paulson@15579
   253
(**** Removal of duplicate literals ****)
paulson@9840
   254
paulson@15579
   255
(*Forward proof, passing extra assumptions as theorems to the tactic*)
paulson@15579
   256
fun forward_res2 nf hyps st =
paulson@15579
   257
  case Seq.pull
paulson@15579
   258
	(REPEAT
paulson@15579
   259
	 (METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
paulson@15579
   260
	 st)
paulson@15579
   261
  of SOME(th,_) => th
paulson@15579
   262
   | NONE => raise THM("forward_res2", 0, [st]);
paulson@9840
   263
paulson@15579
   264
(*Remove duplicates in P|Q by assuming ~P in Q
paulson@15579
   265
  rls (initially []) accumulates assumptions of the form P==>False*)
paulson@15579
   266
fun nodups_aux rls th = nodups_aux rls (th RS disj_assoc)
paulson@15579
   267
    handle THM _ => tryres(th,rls)
paulson@15579
   268
    handle THM _ => tryres(forward_res2 nodups_aux rls (th RS disj_forward2),
paulson@15579
   269
			   [disj_FalseD1, disj_FalseD2, asm_rl])
paulson@15579
   270
    handle THM _ => th;
paulson@9840
   271
paulson@15579
   272
(*Remove duplicate literals, if there are any*)
paulson@15579
   273
fun nodups th =
paulson@15579
   274
    if null(findrep(literals(prop_of th))) then th
paulson@15579
   275
    else nodups_aux [] th;
paulson@9840
   276
paulson@9840
   277
paulson@15579
   278
(**** Generation of contrapositives ****)
paulson@9840
   279
paulson@15579
   280
(*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
paulson@15579
   281
fun assoc_right th = assoc_right (th RS disj_assoc)
paulson@15579
   282
	handle THM _ => th;
paulson@9840
   283
paulson@15579
   284
(*Must check for negative literal first!*)
paulson@15579
   285
val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
paulson@9840
   286
paulson@15579
   287
(*For ordinary resolution. *)
paulson@15579
   288
val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
paulson@9840
   289
paulson@15579
   290
(*Create a goal or support clause, conclusing False*)
paulson@15579
   291
fun make_goal th =   (*Must check for negative literal first!*)
paulson@15579
   292
    make_goal (tryres(th, clause_rules))
paulson@15579
   293
  handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
paulson@9840
   294
paulson@15579
   295
(*Sort clauses by number of literals*)
paulson@15579
   296
fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
paulson@9840
   297
paulson@18389
   298
fun sort_clauses ths = sort (make_ord fewerlits) ths;
paulson@9840
   299
paulson@15581
   300
(*True if the given type contains bool anywhere*)
paulson@15581
   301
fun has_bool (Type("bool",_)) = true
paulson@15581
   302
  | has_bool (Type(_, Ts)) = exists has_bool Ts
paulson@15581
   303
  | has_bool _ = false;
paulson@15581
   304
  
paulson@15613
   305
(*Is the string the name of a connective? It doesn't matter if this list is
paulson@15613
   306
  incomplete, since when actually called, the only connectives likely to
paulson@15613
   307
  remain are & | Not.*)  
wenzelm@19875
   308
val is_conn = member (op =)
paulson@20018
   309
    ["Trueprop", "op &", "op |", "op -->", "op =", "Not", 
paulson@15613
   310
     "All", "Ex", "Ball", "Bex"];
paulson@15613
   311
paulson@15613
   312
(*True if the term contains a function where the type of any argument contains
paulson@15613
   313
  bool.*)
paulson@15613
   314
val has_bool_arg_const = 
paulson@15613
   315
    exists_Const
paulson@15613
   316
      (fn (c,T) => not(is_conn c) andalso exists (has_bool) (binder_types T));
paulson@15908
   317
      
paulson@16588
   318
(*Raises an exception if any Vars in the theorem mention type bool; they
paulson@16588
   319
  could cause make_horn to loop! Also rejects functions whose arguments are 
paulson@16588
   320
  Booleans or other functions.*)
paulson@19204
   321
fun is_fol_term t =
paulson@19204
   322
    not (exists (has_bool o fastype_of) (term_vars t)  orelse
paulson@19204
   323
	 not (Term.is_first_order ["all","All","Ex"] t) orelse
paulson@19204
   324
	 has_bool_arg_const t  orelse  
paulson@19204
   325
	 has_meta_conn t);
paulson@19204
   326
paulson@15579
   327
(*Create a meta-level Horn clause*)
paulson@15579
   328
fun make_horn crules th = make_horn crules (tryres(th,crules))
paulson@15579
   329
			  handle THM _ => th;
paulson@9840
   330
paulson@16563
   331
(*Generate Horn clauses for all contrapositives of a clause. The input, th,
paulson@16563
   332
  is a HOL disjunction.*)
paulson@15579
   333
fun add_contras crules (th,hcs) =
paulson@15579
   334
  let fun rots (0,th) = hcs
paulson@15579
   335
	| rots (k,th) = zero_var_indexes (make_horn crules th) ::
paulson@15579
   336
			rots(k-1, assoc_right (th RS disj_comm))
paulson@15862
   337
  in case nliterals(prop_of th) of
paulson@15579
   338
	1 => th::hcs
paulson@15579
   339
      | n => rots(n, assoc_right th)
paulson@15579
   340
  end;
paulson@9840
   341
paulson@15579
   342
(*Use "theorem naming" to label the clauses*)
paulson@15579
   343
fun name_thms label =
paulson@15579
   344
    let fun name1 (th, (k,ths)) =
paulson@15579
   345
	  (k-1, Thm.name_thm (label ^ string_of_int k, th) :: ths)
paulson@9840
   346
paulson@15579
   347
    in  fn ths => #2 (foldr name1 (length ths, []) ths)  end;
paulson@9840
   348
paulson@16563
   349
(*Is the given disjunction an all-negative support clause?*)
paulson@15579
   350
fun is_negative th = forall (not o #1) (literals (prop_of th));
paulson@9840
   351
paulson@15579
   352
val neg_clauses = List.filter is_negative;
paulson@9840
   353
paulson@9840
   354
paulson@15579
   355
(***** MESON PROOF PROCEDURE *****)
paulson@9840
   356
paulson@15579
   357
fun rhyps (Const("==>",_) $ (Const("Trueprop",_) $ A) $ phi,
paulson@15579
   358
	   As) = rhyps(phi, A::As)
paulson@15579
   359
  | rhyps (_, As) = As;
paulson@9840
   360
paulson@15579
   361
(** Detecting repeated assumptions in a subgoal **)
paulson@9840
   362
paulson@15579
   363
(*The stringtree detects repeated assumptions.*)
wenzelm@16801
   364
fun ins_term (net,t) = Net.insert_term (op aconv) (t,t) net;
paulson@9840
   365
paulson@15579
   366
(*detects repetitions in a list of terms*)
paulson@15579
   367
fun has_reps [] = false
paulson@15579
   368
  | has_reps [_] = false
paulson@15579
   369
  | has_reps [t,u] = (t aconv u)
paulson@15579
   370
  | has_reps ts = (Library.foldl ins_term (Net.empty, ts);  false)
wenzelm@19875
   371
		  handle Net.INSERT => true;
paulson@9840
   372
paulson@15579
   373
(*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
paulson@18508
   374
fun TRYING_eq_assume_tac 0 st = Seq.single st
paulson@18508
   375
  | TRYING_eq_assume_tac i st =
paulson@18508
   376
       TRYING_eq_assume_tac (i-1) (eq_assumption i st)
paulson@18508
   377
       handle THM _ => TRYING_eq_assume_tac (i-1) st;
paulson@18508
   378
paulson@18508
   379
fun TRYALL_eq_assume_tac st = TRYING_eq_assume_tac (nprems_of st) st;
paulson@9840
   380
paulson@15579
   381
(*Loop checking: FAIL if trying to prove the same thing twice
paulson@15579
   382
  -- if *ANY* subgoal has repeated literals*)
paulson@15579
   383
fun check_tac st =
paulson@15579
   384
  if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
paulson@15579
   385
  then  Seq.empty  else  Seq.single st;
paulson@9840
   386
paulson@9840
   387
paulson@15579
   388
(* net_resolve_tac actually made it slower... *)
paulson@15579
   389
fun prolog_step_tac horns i =
paulson@15579
   390
    (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
paulson@18508
   391
    TRYALL_eq_assume_tac;
paulson@9840
   392
paulson@9840
   393
(*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
paulson@15579
   394
fun addconcl(prem,sz) = size_of_term(Logic.strip_assums_concl prem) + sz
paulson@15579
   395
paulson@15579
   396
fun size_of_subgoals st = foldr addconcl 0 (prems_of st);
paulson@15579
   397
paulson@9840
   398
paulson@9840
   399
(*Negation Normal Form*)
paulson@9840
   400
val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
wenzelm@9869
   401
               not_impD, not_iffD, not_allD, not_exD, not_notD];
paulson@15581
   402
paulson@15581
   403
fun make_nnf1 th = make_nnf1 (tryres(th, nnf_rls))
wenzelm@9869
   404
    handle THM _ =>
paulson@15581
   405
        forward_res make_nnf1
wenzelm@9869
   406
           (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
paulson@9840
   407
    handle THM _ => th;
paulson@9840
   408
paulson@20018
   409
(*The simplification removes defined quantifiers and occurrences of True and False. 
paulson@20018
   410
  nnf_ss also includes the one-point simprocs,
paulson@18405
   411
  which are needed to avoid the various one-point theorems from generating junk clauses.*)
paulson@19894
   412
val nnf_simps =
paulson@20018
   413
     [simp_implies_def, Ex1_def, Ball_def, Bex_def, if_True, 
paulson@19894
   414
      if_False, if_cancel, if_eq_cancel, cases_simp];
paulson@19894
   415
val nnf_extra_simps =
paulson@19894
   416
      thms"split_ifs" @ ex_simps @ all_simps @ simp_thms;
paulson@18405
   417
paulson@18405
   418
val nnf_ss =
paulson@19894
   419
    HOL_basic_ss addsimps nnf_extra_simps 
paulson@19894
   420
                 addsimprocs [defALL_regroup,defEX_regroup,neq_simproc,let_simproc];
paulson@15872
   421
paulson@19894
   422
fun make_nnf th = th |> rewrite_rule (map safe_mk_meta_eq nnf_simps)
paulson@19894
   423
                     |> simplify nnf_ss  (*But this doesn't simplify premises...*)
mengj@18194
   424
                     |> make_nnf1
paulson@15581
   425
paulson@15965
   426
(*Pull existential quantifiers to front. This accomplishes Skolemization for
paulson@15965
   427
  clauses that arise from a subgoal.*)
wenzelm@9869
   428
fun skolemize th =
paulson@20134
   429
  if not (has_conns ["Ex"] (prop_of th)) then th
quigley@15773
   430
  else (skolemize (tryres(th, [choice, conj_exD1, conj_exD2,
quigley@15679
   431
                              disj_exD, disj_exD1, disj_exD2])))
wenzelm@9869
   432
    handle THM _ =>
wenzelm@9869
   433
        skolemize (forward_res skolemize
wenzelm@9869
   434
                   (tryres (th, [conj_forward, disj_forward, all_forward])))
paulson@9840
   435
    handle THM _ => forward_res skolemize (th RS ex_forward);
paulson@9840
   436
paulson@9840
   437
paulson@9840
   438
(*Make clauses from a list of theorems, previously Skolemized and put into nnf.
paulson@9840
   439
  The resulting clauses are HOL disjunctions.*)
wenzelm@9869
   440
fun make_clauses ths =
paulson@15998
   441
    (sort_clauses (map (generalize o nodups) (foldr (cnf[]) [] ths)));
quigley@15773
   442
paulson@16563
   443
(*Convert a list of clauses (disjunctions) to Horn clauses (contrapositives)*)
wenzelm@9869
   444
fun make_horns ths =
paulson@9840
   445
    name_thms "Horn#"
wenzelm@19046
   446
      (distinct Drule.eq_thm_prop (foldr (add_contras clause_rules) [] ths));
paulson@9840
   447
paulson@9840
   448
(*Could simply use nprems_of, which would count remaining subgoals -- no
paulson@9840
   449
  discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
paulson@9840
   450
wenzelm@9869
   451
fun best_prolog_tac sizef horns =
paulson@9840
   452
    BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
paulson@9840
   453
wenzelm@9869
   454
fun depth_prolog_tac horns =
paulson@9840
   455
    DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
paulson@9840
   456
paulson@9840
   457
(*Return all negative clauses, as possible goal clauses*)
paulson@9840
   458
fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
paulson@9840
   459
paulson@15008
   460
fun skolemize_prems_tac prems =
paulson@9840
   461
    cut_facts_tac (map (skolemize o make_nnf) prems)  THEN'
paulson@9840
   462
    REPEAT o (etac exE);
paulson@9840
   463
paulson@18141
   464
(*Expand all definitions (presumably of Skolem functions) in a proof state.*)
paulson@18141
   465
fun expand_defs_tac st =
paulson@18141
   466
  let val defs = filter (can dest_equals) (#hyps (crep_thm st))
wenzelm@20288
   467
  in  PRIMITIVE (LocalDefs.def_export false defs) st  end;
paulson@18141
   468
paulson@16588
   469
(*Basis of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions*)
paulson@16588
   470
fun MESON cltac i st = 
paulson@16588
   471
  SELECT_GOAL
paulson@18141
   472
    (EVERY [rtac ccontr 1,
paulson@16588
   473
	    METAHYPS (fn negs =>
paulson@16588
   474
		      EVERY1 [skolemize_prems_tac negs,
paulson@18141
   475
			      METAHYPS (cltac o make_clauses)]) 1,
paulson@18141
   476
            expand_defs_tac]) i st
paulson@20417
   477
  handle THM _ => no_tac st;	(*probably from make_meta_clause, not first-order*)		      
paulson@9840
   478
paulson@9840
   479
(** Best-first search versions **)
paulson@9840
   480
paulson@16563
   481
(*ths is a list of additional clauses (HOL disjunctions) to use.*)
wenzelm@9869
   482
fun best_meson_tac sizef =
wenzelm@9869
   483
  MESON (fn cls =>
paulson@9840
   484
         THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
paulson@9840
   485
                         (has_fewer_prems 1, sizef)
paulson@9840
   486
                         (prolog_step_tac (make_horns cls) 1));
paulson@9840
   487
paulson@9840
   488
(*First, breaks the goal into independent units*)
paulson@9840
   489
val safe_best_meson_tac =
wenzelm@9869
   490
     SELECT_GOAL (TRY Safe_tac THEN
paulson@9840
   491
                  TRYALL (best_meson_tac size_of_subgoals));
paulson@9840
   492
paulson@9840
   493
(** Depth-first search version **)
paulson@9840
   494
paulson@9840
   495
val depth_meson_tac =
wenzelm@9869
   496
     MESON (fn cls => EVERY [resolve_tac (gocls cls) 1,
paulson@9840
   497
                             depth_prolog_tac (make_horns cls)]);
paulson@9840
   498
paulson@9840
   499
paulson@9840
   500
(** Iterative deepening version **)
paulson@9840
   501
paulson@9840
   502
(*This version does only one inference per call;
paulson@9840
   503
  having only one eq_assume_tac speeds it up!*)
wenzelm@9869
   504
fun prolog_step_tac' horns =
paulson@9840
   505
    let val (horn0s, hornps) = (*0 subgoals vs 1 or more*)
paulson@9840
   506
            take_prefix Thm.no_prems horns
paulson@9840
   507
        val nrtac = net_resolve_tac horns
paulson@9840
   508
    in  fn i => eq_assume_tac i ORELSE
paulson@9840
   509
                match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
paulson@9840
   510
                ((assume_tac i APPEND nrtac i) THEN check_tac)
paulson@9840
   511
    end;
paulson@9840
   512
wenzelm@9869
   513
fun iter_deepen_prolog_tac horns =
paulson@9840
   514
    ITER_DEEPEN (has_fewer_prems 1) (prolog_step_tac' horns);
paulson@9840
   515
paulson@16563
   516
fun iter_deepen_meson_tac ths =
wenzelm@9869
   517
  MESON (fn cls =>
paulson@16563
   518
           case (gocls (cls@ths)) of
paulson@16563
   519
           	[] => no_tac  (*no goal clauses*)
paulson@16563
   520
              | goes => 
paulson@16563
   521
		 (THEN_ITER_DEEPEN (resolve_tac goes 1)
paulson@16563
   522
				   (has_fewer_prems 1)
paulson@16563
   523
				   (prolog_step_tac' (make_horns (cls@ths)))));
paulson@9840
   524
paulson@16563
   525
fun meson_claset_tac ths cs =
paulson@16563
   526
  SELECT_GOAL (TRY (safe_tac cs) THEN TRYALL (iter_deepen_meson_tac ths));
wenzelm@9869
   527
paulson@16563
   528
val meson_tac = CLASET' (meson_claset_tac []);
wenzelm@9869
   529
wenzelm@9869
   530
paulson@14813
   531
(**** Code to support ordinary resolution, rather than Model Elimination ****)
paulson@14744
   532
paulson@15008
   533
(*Convert a list of clauses (disjunctions) to meta-level clauses (==>), 
paulson@15008
   534
  with no contrapositives, for ordinary resolution.*)
paulson@14744
   535
paulson@14744
   536
(*Rules to convert the head literal into a negated assumption. If the head
paulson@14744
   537
  literal is already negated, then using notEfalse instead of notEfalse'
paulson@14744
   538
  prevents a double negation.*)
paulson@14744
   539
val notEfalse = read_instantiate [("R","False")] notE;
paulson@14744
   540
val notEfalse' = rotate_prems 1 notEfalse;
paulson@14744
   541
paulson@15448
   542
fun negated_asm_of_head th = 
paulson@14744
   543
    th RS notEfalse handle THM _ => th RS notEfalse';
paulson@14744
   544
paulson@14744
   545
(*Converting one clause*)
paulson@15581
   546
fun make_meta_clause th = 
paulson@20417
   547
  if is_fol_term (prop_of th) 
paulson@20417
   548
  then negated_asm_of_head (make_horn resolution_clause_rules th)
paulson@20417
   549
  else raise THM("make_meta_clause", 0, [th]);
paulson@14744
   550
paulson@14744
   551
fun make_meta_clauses ths =
paulson@14744
   552
    name_thms "MClause#"
wenzelm@19046
   553
      (distinct Drule.eq_thm_prop (map make_meta_clause ths));
paulson@14744
   554
paulson@14744
   555
(*Permute a rule's premises to move the i-th premise to the last position.*)
paulson@14744
   556
fun make_last i th =
paulson@14744
   557
  let val n = nprems_of th 
paulson@14744
   558
  in  if 1 <= i andalso i <= n 
paulson@14744
   559
      then Thm.permute_prems (i-1) 1 th
paulson@15118
   560
      else raise THM("select_literal", i, [th])
paulson@14744
   561
  end;
paulson@14744
   562
paulson@14744
   563
(*Maps a rule that ends "... ==> P ==> False" to "... ==> ~P" while suppressing
paulson@14744
   564
  double-negations.*)
paulson@14744
   565
val negate_head = rewrite_rule [atomize_not, not_not RS eq_reflection];
paulson@14744
   566
paulson@14744
   567
(*Maps the clause  [P1,...Pn]==>False to [P1,...,P(i-1),P(i+1),...Pn] ==> ~P*)
paulson@14744
   568
fun select_literal i cl = negate_head (make_last i cl);
paulson@14744
   569
paulson@18508
   570
paulson@14813
   571
(*Top-level Skolemization. Allows part of the conversion to clauses to be
paulson@14813
   572
  expressed as a tactic (or Isar method).  Each assumption of the selected 
paulson@14813
   573
  goal is converted to NNF and then its existential quantifiers are pulled
paulson@14813
   574
  to the front. Finally, all existential quantifiers are eliminated, 
paulson@14813
   575
  leaving !!-quantified variables. Perhaps Safe_tac should follow, but it
paulson@14813
   576
  might generate many subgoals.*)
mengj@18194
   577
paulson@19204
   578
fun skolemize_tac i st = 
paulson@19204
   579
  let val ts = Logic.strip_assums_hyp (List.nth (prems_of st, i-1))
paulson@19204
   580
  in 
paulson@19204
   581
     EVERY' [METAHYPS
quigley@15773
   582
	    (fn hyps => (cut_facts_tac (map (skolemize o make_nnf) hyps) 1
paulson@14813
   583
                         THEN REPEAT (etac exE 1))),
paulson@19204
   584
            REPEAT_DETERM_N (length ts) o (etac thin_rl)] i st
paulson@19204
   585
  end
paulson@19204
   586
  handle Subscript => Seq.empty;
mengj@18194
   587
paulson@15118
   588
(*Top-level conversion to meta-level clauses. Each clause has  
paulson@15118
   589
  leading !!-bound universal variables, to express generality. To get 
paulson@15118
   590
  disjunctions instead of meta-clauses, remove "make_meta_clauses" below.*)
paulson@15008
   591
val make_clauses_tac = 
paulson@15008
   592
  SUBGOAL
paulson@15008
   593
    (fn (prop,_) =>
paulson@15008
   594
     let val ts = Logic.strip_assums_hyp prop
paulson@15008
   595
     in EVERY1 
paulson@15008
   596
	 [METAHYPS
paulson@15008
   597
	    (fn hyps => 
paulson@15151
   598
              (Method.insert_tac
paulson@15118
   599
                (map forall_intr_vars 
paulson@15118
   600
                  (make_meta_clauses (make_clauses hyps))) 1)),
paulson@15008
   601
	  REPEAT_DETERM_N (length ts) o (etac thin_rl)]
paulson@15008
   602
     end);
paulson@16563
   603
     
paulson@16563
   604
     
paulson@16563
   605
(*** setup the special skoklemization methods ***)
wenzelm@9869
   606
paulson@16563
   607
(*No CHANGED_PROP here, since these always appear in the preamble*)
wenzelm@9869
   608
paulson@16563
   609
val skolemize_meth = Method.SIMPLE_METHOD' HEADGOAL skolemize_tac;
paulson@16563
   610
paulson@16563
   611
val make_clauses_meth = Method.SIMPLE_METHOD' HEADGOAL make_clauses_tac;
paulson@14890
   612
paulson@16563
   613
val skolemize_setup =
wenzelm@18708
   614
  Method.add_methods
wenzelm@18708
   615
    [("skolemize", Method.no_args skolemize_meth, 
wenzelm@18708
   616
      "Skolemization into existential quantifiers"),
wenzelm@18708
   617
     ("make_clauses", Method.no_args make_clauses_meth, 
wenzelm@18708
   618
      "Conversion to !!-quantified meta-level clauses")];
paulson@9840
   619
paulson@9840
   620
end;
wenzelm@9869
   621
paulson@15579
   622
structure BasicMeson: BASIC_MESON = Meson;
paulson@15579
   623
open BasicMeson;