src/HOL/Data_Structures/Tree234_Map.thy
author nipkow
Sun Oct 25 17:31:14 2015 +0100 (2015-10-25)
changeset 61515 c64628dbac00
child 61581 00d9682e8dd7
permissions -rw-r--r--
added 234-trees (slow)
nipkow@61515
     1
(* Author: Tobias Nipkow *)
nipkow@61515
     2
nipkow@61515
     3
section \<open>A 2-3-4 Tree Implementation of Maps\<close>
nipkow@61515
     4
nipkow@61515
     5
theory Tree234_Map
nipkow@61515
     6
imports
nipkow@61515
     7
  Tree234_Set
nipkow@61515
     8
  "../Data_Structures/Map_by_Ordered"
nipkow@61515
     9
begin
nipkow@61515
    10
nipkow@61515
    11
subsection \<open>Map operations on 2-3-4 trees\<close>
nipkow@61515
    12
nipkow@61515
    13
fun lookup :: "('a::linorder * 'b) tree234 \<Rightarrow> 'a \<Rightarrow> 'b option" where
nipkow@61515
    14
"lookup Leaf x = None" |
nipkow@61515
    15
"lookup (Node2 l (a,b) r) x =
nipkow@61515
    16
  (if x < a then lookup l x else
nipkow@61515
    17
  if a < x then lookup r x else Some b)" |
nipkow@61515
    18
"lookup (Node3 l (a1,b1) m (a2,b2) r) x =
nipkow@61515
    19
  (if x < a1 then lookup l x else
nipkow@61515
    20
   if x = a1 then Some b1 else
nipkow@61515
    21
   if x < a2 then lookup m x else
nipkow@61515
    22
   if x = a2 then Some b2
nipkow@61515
    23
   else lookup r x)" |
nipkow@61515
    24
"lookup (Node4 l (a1,b1) m (a2,b2) n (a3,b3) r) x =
nipkow@61515
    25
  (if x < a2 then
nipkow@61515
    26
     if x = a1 then Some b1 else
nipkow@61515
    27
     if x < a1 then lookup l x else lookup m x
nipkow@61515
    28
   else
nipkow@61515
    29
     if x = a2 then Some b2 else
nipkow@61515
    30
     if x = a3 then Some b3 else
nipkow@61515
    31
     if x < a3 then lookup n x
nipkow@61515
    32
     else lookup r x)"
nipkow@61515
    33
nipkow@61515
    34
fun upd :: "'a::linorder \<Rightarrow> 'b \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) up\<^sub>i" where
nipkow@61515
    35
"upd x y Leaf = Up\<^sub>i Leaf (x,y) Leaf" |
nipkow@61515
    36
"upd x y (Node2 l ab r) =
nipkow@61515
    37
   (if x < fst ab then
nipkow@61515
    38
        (case upd x y l of
nipkow@61515
    39
           T\<^sub>i l' => T\<^sub>i (Node2 l' ab r)
nipkow@61515
    40
         | Up\<^sub>i l1 q l2 => T\<^sub>i (Node3 l1 q l2 ab r))
nipkow@61515
    41
    else if x = fst ab then T\<^sub>i (Node2 l (x,y) r)
nipkow@61515
    42
    else
nipkow@61515
    43
        (case upd x y r of
nipkow@61515
    44
           T\<^sub>i r' => T\<^sub>i (Node2 l ab r')
nipkow@61515
    45
         | Up\<^sub>i r1 q r2 => T\<^sub>i (Node3 l ab r1 q r2)))" |
nipkow@61515
    46
"upd x y (Node3 l ab1 m ab2 r) =
nipkow@61515
    47
   (if x < fst ab1 then
nipkow@61515
    48
        (case upd x y l of
nipkow@61515
    49
           T\<^sub>i l' => T\<^sub>i (Node3 l' ab1 m ab2 r)
nipkow@61515
    50
         | Up\<^sub>i l1 q l2 => Up\<^sub>i (Node2 l1 q l2) ab1 (Node2 m ab2 r))
nipkow@61515
    51
    else if x = fst ab1 then T\<^sub>i (Node3 l (x,y) m ab2 r)
nipkow@61515
    52
    else if x < fst ab2 then
nipkow@61515
    53
             (case upd x y m of
nipkow@61515
    54
                T\<^sub>i m' => T\<^sub>i (Node3 l ab1 m' ab2 r)
nipkow@61515
    55
              | Up\<^sub>i m1 q m2 => Up\<^sub>i (Node2 l ab1 m1) q (Node2 m2 ab2 r))
nipkow@61515
    56
         else if x = fst ab2 then T\<^sub>i (Node3 l ab1 m (x,y) r)
nipkow@61515
    57
         else
nipkow@61515
    58
             (case upd x y r of
nipkow@61515
    59
                T\<^sub>i r' => T\<^sub>i (Node3 l ab1 m ab2 r')
nipkow@61515
    60
              | Up\<^sub>i r1 q r2 => Up\<^sub>i (Node2 l ab1 m) ab2 (Node2 r1 q r2)))" |
nipkow@61515
    61
"upd x y (Node4 l ab1 m ab2 n ab3 r) =
nipkow@61515
    62
   (if x < fst ab2 then
nipkow@61515
    63
      if x < fst ab1 then
nipkow@61515
    64
        (case upd x y l of
nipkow@61515
    65
           T\<^sub>i l' => T\<^sub>i (Node4 l' ab1 m ab2 n ab3 r)
nipkow@61515
    66
         | Up\<^sub>i l1 q l2 => Up\<^sub>i (Node2 l1 q l2) ab1 (Node3 m ab2 n ab3 r))
nipkow@61515
    67
      else
nipkow@61515
    68
      if x = fst ab1 then T\<^sub>i (Node4 l (x,y) m ab2 n ab3 r)
nipkow@61515
    69
      else
nipkow@61515
    70
        (case upd x y m of
nipkow@61515
    71
           T\<^sub>i m' => T\<^sub>i (Node4 l ab1 m' ab2 n ab3 r)
nipkow@61515
    72
         | Up\<^sub>i m1 q m2 => Up\<^sub>i (Node2 l ab1 m1) q (Node3 m2 ab2 n ab3 r))
nipkow@61515
    73
    else
nipkow@61515
    74
    if x = fst ab2 then T\<^sub>i (Node4 l ab1 m (x,y) n ab3 r) else
nipkow@61515
    75
    if x < fst ab3 then
nipkow@61515
    76
      (case upd x y n of
nipkow@61515
    77
         T\<^sub>i n' => T\<^sub>i (Node4 l ab1 m ab2 n' ab3 r)
nipkow@61515
    78
       | Up\<^sub>i n1 q n2 => Up\<^sub>i (Node2 l ab1 m) ab2(*q*) (Node3 n1 q n2 ab3 r))
nipkow@61515
    79
    else
nipkow@61515
    80
    if x = fst ab3 then T\<^sub>i (Node4 l ab1 m ab2 n (x,y) r)
nipkow@61515
    81
    else
nipkow@61515
    82
      (case upd x y r of
nipkow@61515
    83
         T\<^sub>i r' => T\<^sub>i (Node4 l ab1 m ab2 n ab3 r')
nipkow@61515
    84
       | Up\<^sub>i r1 q r2 => Up\<^sub>i (Node2 l ab1 m) ab2 (Node3 n ab3 r1 q r2)))"
nipkow@61515
    85
nipkow@61515
    86
definition update :: "'a::linorder \<Rightarrow> 'b \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) tree234" where
nipkow@61515
    87
"update a b t = tree\<^sub>i(upd a b t)"
nipkow@61515
    88
nipkow@61515
    89
fun del :: "'a::linorder \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) up\<^sub>d"
nipkow@61515
    90
where
nipkow@61515
    91
"del k Leaf = T\<^sub>d Leaf" |
nipkow@61515
    92
"del k (Node2 Leaf p Leaf) = (if k=fst p then Up\<^sub>d Leaf else T\<^sub>d(Node2 Leaf p Leaf))" |
nipkow@61515
    93
"del k (Node3 Leaf p Leaf q Leaf) =
nipkow@61515
    94
  T\<^sub>d(if k=fst p then Node2 Leaf q Leaf else
nipkow@61515
    95
     if k=fst q then Node2 Leaf p Leaf
nipkow@61515
    96
     else Node3 Leaf p Leaf q Leaf)" |
nipkow@61515
    97
"del k (Node4 Leaf ab1 Leaf ab2 Leaf ab3 Leaf) =
nipkow@61515
    98
  T\<^sub>d(if k=fst ab1 then Node3 Leaf ab2 Leaf ab3 Leaf else
nipkow@61515
    99
     if k=fst ab2 then Node3 Leaf ab1 Leaf ab3 Leaf else
nipkow@61515
   100
     if k=fst ab3 then Node3 Leaf ab1 Leaf ab2 Leaf
nipkow@61515
   101
     else Node4 Leaf ab1 Leaf ab2 Leaf ab3 Leaf)" |
nipkow@61515
   102
"del k (Node2 l a r) =
nipkow@61515
   103
  (if k<fst a then node21 (del k l) a r else
nipkow@61515
   104
   if k > fst a then node22 l a (del k r)
nipkow@61515
   105
   else let (a',t) = del_min r in node22 l a' t)" |
nipkow@61515
   106
"del k (Node3 l a m b r) =
nipkow@61515
   107
  (if k<fst a then node31 (del k l) a m b r else
nipkow@61515
   108
   if k = fst a then let (a',m') = del_min m in node32 l a' m' b r else
nipkow@61515
   109
   if k < fst b then node32 l a (del k m) b r else
nipkow@61515
   110
   if k = fst b then let (b',r') = del_min r in node33 l a m b' r'
nipkow@61515
   111
   else node33 l a m b (del k r))" |
nipkow@61515
   112
"del x (Node4 l ab1 m ab2 n ab3 r) =
nipkow@61515
   113
  (if x < fst ab2 then
nipkow@61515
   114
     if x < fst ab1 then node41 (del x l) ab1 m ab2 n ab3 r else
nipkow@61515
   115
     if x = fst ab1 then let (ab',m') = del_min m in node42 l ab' m' ab2 n ab3 r
nipkow@61515
   116
     else node42 l ab1 (del x m) ab2 n ab3 r
nipkow@61515
   117
   else
nipkow@61515
   118
     if x = fst ab2 then let (ab',n') = del_min n in node43 l ab1 m ab' n' ab3 r else
nipkow@61515
   119
     if x < fst ab3 then node43 l ab1 m ab2 (del x n) ab3 r else
nipkow@61515
   120
     if x = fst ab3 then let (ab',r') = del_min r in node44 l ab1 m ab2 n ab' r'
nipkow@61515
   121
     else node44 l ab1 m ab2 n ab3 (del x r))"
nipkow@61515
   122
nipkow@61515
   123
definition delete :: "'a::linorder \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) tree234" where
nipkow@61515
   124
"delete k t = tree\<^sub>d(del k t)"
nipkow@61515
   125
nipkow@61515
   126
nipkow@61515
   127
subsection "Functional correctness"
nipkow@61515
   128
nipkow@61515
   129
lemma lookup: "sorted1(inorder t) \<Longrightarrow> lookup t x = map_of (inorder t) x"
nipkow@61515
   130
by (induction t) (auto simp: map_of_simps split: option.split)
nipkow@61515
   131
nipkow@61515
   132
nipkow@61515
   133
lemma inorder_upd:
nipkow@61515
   134
  "sorted1(inorder t) \<Longrightarrow> inorder(tree\<^sub>i(upd a b t)) = upd_list a b (inorder t)"
nipkow@61515
   135
by(induction t)
nipkow@61515
   136
  (auto simp: upd_list_simps, auto simp: upd_list_simps split: up\<^sub>i.splits)
nipkow@61515
   137
nipkow@61515
   138
lemma inorder_update:
nipkow@61515
   139
  "sorted1(inorder t) \<Longrightarrow> inorder(update a b t) = upd_list a b (inorder t)"
nipkow@61515
   140
by(simp add: update_def inorder_upd)
nipkow@61515
   141
nipkow@61515
   142
nipkow@61515
   143
lemma inorder_del: "\<lbrakk> bal t ; sorted1(inorder t) \<rbrakk> \<Longrightarrow>
nipkow@61515
   144
  inorder(tree\<^sub>d (del x t)) = del_list x (inorder t)"
nipkow@61515
   145
by(induction t rule: del.induct)
nipkow@61515
   146
  ((auto simp: del_list_simps inorder_nodes del_minD split: prod.splits)[1])+
nipkow@61515
   147
(* 290 secs (2015) *)
nipkow@61515
   148
nipkow@61515
   149
lemma inorder_delete: "\<lbrakk> bal t ; sorted1(inorder t) \<rbrakk> \<Longrightarrow>
nipkow@61515
   150
  inorder(delete x t) = del_list x (inorder t)"
nipkow@61515
   151
by(simp add: delete_def inorder_del)
nipkow@61515
   152
nipkow@61515
   153
nipkow@61515
   154
subsection \<open>Balancedness\<close>
nipkow@61515
   155
nipkow@61515
   156
lemma bal_upd: "bal t \<Longrightarrow> bal (tree\<^sub>i(upd x y t)) \<and> height(upd x y t) = height t"
nipkow@61515
   157
by (induct t) (auto, auto split: up\<^sub>i.split) (* 33 secs (2015) *)
nipkow@61515
   158
nipkow@61515
   159
lemma bal_update: "bal t \<Longrightarrow> bal (update x y t)"
nipkow@61515
   160
by (simp add: update_def bal_upd)
nipkow@61515
   161
nipkow@61515
   162
nipkow@61515
   163
lemma height_del: "bal t \<Longrightarrow> height(del x t) = height t"
nipkow@61515
   164
by(induction x t rule: del.induct)
nipkow@61515
   165
  (auto simp add: heights height_del_min split: prod.split)
nipkow@61515
   166
nipkow@61515
   167
lemma bal_tree\<^sub>d_del: "bal t \<Longrightarrow> bal(tree\<^sub>d(del x t))"
nipkow@61515
   168
by(induction x t rule: del.induct)
nipkow@61515
   169
  (auto simp: bals bal_del_min height_del height_del_min split: prod.split)
nipkow@61515
   170
(* 110 secs (2015) *)
nipkow@61515
   171
nipkow@61515
   172
corollary bal_delete: "bal t \<Longrightarrow> bal(delete x t)"
nipkow@61515
   173
by(simp add: delete_def bal_tree\<^sub>d_del)
nipkow@61515
   174
nipkow@61515
   175
nipkow@61515
   176
subsection \<open>Overall Correctness\<close>
nipkow@61515
   177
nipkow@61515
   178
interpretation T234_Map: Map_by_Ordered
nipkow@61515
   179
where empty = Leaf and lookup = lookup and update = update and delete = delete
nipkow@61515
   180
and inorder = inorder and wf = bal
nipkow@61515
   181
proof (standard, goal_cases)
nipkow@61515
   182
  case 2 thus ?case by(simp add: lookup)
nipkow@61515
   183
next
nipkow@61515
   184
  case 3 thus ?case by(simp add: inorder_update)
nipkow@61515
   185
next
nipkow@61515
   186
  case 4 thus ?case by(simp add: inorder_delete)
nipkow@61515
   187
next
nipkow@61515
   188
  case 6 thus ?case by(simp add: bal_update)
nipkow@61515
   189
next
nipkow@61515
   190
  case 7 thus ?case by(simp add: bal_delete)
nipkow@61515
   191
qed simp+
nipkow@61515
   192
nipkow@61515
   193
end