src/HOL/Hyperreal/Series.thy
author nipkow
Mon Aug 16 14:22:27 2004 +0200 (2004-08-16)
changeset 15131 c69542757a4d
parent 15085 5693a977a767
child 15140 322485b816ac
permissions -rw-r--r--
New theory header syntax.
paulson@10751
     1
(*  Title       : Series.thy
paulson@10751
     2
    Author      : Jacques D. Fleuriot
paulson@10751
     3
    Copyright   : 1998  University of Cambridge
paulson@14416
     4
paulson@14416
     5
Converted to Isar and polished by lcp
paulson@10751
     6
*) 
paulson@10751
     7
paulson@14416
     8
header{*Finite Summation and Infinite Series*}
paulson@10751
     9
nipkow@15131
    10
theory Series
nipkow@15131
    11
import SEQ Lim
nipkow@15131
    12
begin
paulson@10751
    13
paulson@15047
    14
syntax sumr :: "[nat,nat,(nat=>real)] => real"
paulson@15047
    15
translations
paulson@15047
    16
  "sumr m n f" => "setsum (f::nat=>real) (atLeastLessThan m n)"
paulson@10751
    17
paulson@10751
    18
constdefs
paulson@14416
    19
   sums  :: "[nat=>real,real] => bool"     (infixr "sums" 80)
paulson@10751
    20
   "f sums s  == (%n. sumr 0 n f) ----> s"
paulson@10751
    21
paulson@14416
    22
   summable :: "(nat=>real) => bool"
paulson@14416
    23
   "summable f == (\<exists>s. f sums s)"
paulson@14416
    24
paulson@14416
    25
   suminf   :: "(nat=>real) => real"
paulson@14416
    26
   "suminf f == (@s. f sums s)"
paulson@14416
    27
paulson@14416
    28
paulson@15047
    29
lemma sumr_Suc [simp]:
paulson@15047
    30
     "sumr m (Suc n) f = (if n < m then 0 else sumr m n f + f(n))"
paulson@15047
    31
by (simp add: atLeastLessThanSuc)
paulson@14416
    32
paulson@14416
    33
lemma sumr_add: "sumr m n f + sumr m n g = sumr m n (%n. f n + g n)"
paulson@15047
    34
by (simp add: setsum_addf)
paulson@14416
    35
paulson@15047
    36
lemma sumr_mult: "r * sumr m n (f::nat=>real) = sumr m n (%n. r * f n)"
paulson@15047
    37
by (simp add: setsum_mult)
paulson@14416
    38
paulson@14416
    39
lemma sumr_split_add [rule_format]:
paulson@15047
    40
     "n < p --> sumr 0 n f + sumr n p f = sumr 0 p (f::nat=>real)"
paulson@14416
    41
apply (induct_tac "p", auto)
paulson@14416
    42
apply (rename_tac k) 
paulson@14416
    43
apply (subgoal_tac "n=k", auto) 
paulson@14416
    44
done
paulson@14416
    45
paulson@15047
    46
lemma sumr_split_add_minus:
paulson@15047
    47
     "n < p ==> sumr 0 p f + - sumr 0 n f = sumr n p (f::nat=>real)"
paulson@14416
    48
apply (drule_tac f1 = f in sumr_split_add [symmetric])
paulson@14416
    49
apply (simp add: add_ac)
paulson@14416
    50
done
paulson@14416
    51
paulson@15047
    52
lemma sumr_rabs: "abs(sumr m n  (f::nat=>real)) \<le> sumr m n (%i. abs(f i))"
paulson@15047
    53
by (simp add: setsum_abs)
paulson@14416
    54
paulson@15047
    55
lemma sumr_rabs_ge_zero [iff]: "0 \<le> sumr m n (%n. abs (f n))"
paulson@15047
    56
by (simp add: setsum_abs_ge_zero)
paulson@14416
    57
paulson@15047
    58
text{*Just a congruence rule*}
paulson@15047
    59
lemma sumr_fun_eq:
paulson@15047
    60
     "(\<forall>r. m \<le> r & r < n --> f r = g r) ==> sumr m n f = sumr m n g"
paulson@15047
    61
by (auto intro: setsum_cong) 
paulson@14416
    62
paulson@14416
    63
lemma sumr_diff_mult_const: "sumr 0 n f - (real n*r) = sumr 0 n (%i. f i - r)"
paulson@15047
    64
by (simp add: diff_minus setsum_addf real_of_nat_def)
paulson@14416
    65
paulson@15047
    66
lemma sumr_less_bounds_zero [simp]: "n < m ==> sumr m n f = 0"
paulson@15047
    67
by (simp add: atLeastLessThan_empty)
paulson@14416
    68
paulson@14416
    69
lemma sumr_minus: "sumr m n (%i. - f i) = - sumr m n f"
paulson@15047
    70
by (simp add: Finite_Set.setsum_negf)
paulson@14416
    71
paulson@14416
    72
lemma sumr_shift_bounds: "sumr (m+k) (n+k) f = sumr m n (%i. f(i + k))"
paulson@14416
    73
by (induct_tac "n", auto)
paulson@14416
    74
paulson@14416
    75
lemma sumr_minus_one_realpow_zero [simp]: "sumr 0 (2*n) (%i. (-1) ^ Suc i) = 0"
paulson@14416
    76
by (induct_tac "n", auto)
paulson@14416
    77
paulson@14416
    78
lemma sumr_interval_const [rule_format (no_asm)]:
paulson@14416
    79
     "(\<forall>n. m \<le> Suc n --> f n = r) --> m \<le> k --> sumr m k f = (real(k-m) * r)"
paulson@14416
    80
apply (induct_tac "k", auto) 
paulson@14416
    81
apply (drule_tac x = n in spec)
paulson@14416
    82
apply (auto dest!: le_imp_less_or_eq)
paulson@15047
    83
apply (simp add: left_distrib real_of_nat_Suc split: nat_diff_split)
paulson@14416
    84
done
paulson@14416
    85
paulson@14416
    86
lemma sumr_interval_const2 [rule_format (no_asm)]:
paulson@14416
    87
     "(\<forall>n. m \<le> n --> f n = r) --> m \<le> k  
paulson@14416
    88
      --> sumr m k f = (real (k - m) * r)"
paulson@14416
    89
apply (induct_tac "k", auto) 
paulson@14416
    90
apply (drule_tac x = n in spec)
paulson@14416
    91
apply (auto dest!: le_imp_less_or_eq)
paulson@15047
    92
apply (simp add: left_distrib real_of_nat_Suc split: nat_diff_split)
paulson@14416
    93
done
paulson@14416
    94
paulson@15047
    95
paulson@14416
    96
lemma sumr_le [rule_format (no_asm)]:
paulson@14416
    97
     "(\<forall>n. m \<le> n --> 0 \<le> f n) --> m < k --> sumr 0 m f \<le> sumr 0 k f"
paulson@14416
    98
apply (induct_tac "k")
paulson@14416
    99
apply (auto simp add: less_Suc_eq_le)
paulson@14416
   100
apply (drule_tac [!] x = n in spec, safe)
paulson@14416
   101
apply (drule le_imp_less_or_eq, safe)
paulson@15047
   102
apply (arith) 
paulson@14416
   103
apply (drule_tac a = "sumr 0 m f" in order_refl [THEN add_mono], auto)
paulson@14416
   104
done
paulson@14416
   105
paulson@14416
   106
lemma sumr_le2 [rule_format (no_asm)]:
paulson@14416
   107
     "(\<forall>r. m \<le> r & r < n --> f r \<le> g r) --> sumr m n f \<le> sumr m n g"
paulson@14416
   108
apply (induct_tac "n")
paulson@14416
   109
apply (auto intro: add_mono simp add: le_def)
paulson@14416
   110
done
paulson@14416
   111
paulson@14416
   112
lemma sumr_ge_zero [rule_format (no_asm)]: "(\<forall>n. 0 \<le> f n) --> 0 \<le> sumr m n f"
paulson@14416
   113
apply (induct_tac "n", auto)
paulson@14416
   114
apply (drule_tac x = n in spec, arith)
paulson@14416
   115
done
paulson@14416
   116
paulson@14416
   117
lemma sumr_ge_zero2 [rule_format (no_asm)]:
paulson@14416
   118
     "(\<forall>n. m \<le> n --> 0 \<le> f n) --> 0 \<le> sumr m n f"
paulson@14416
   119
apply (induct_tac "n", auto)
paulson@14416
   120
apply (drule_tac x = n in spec, arith)
paulson@14416
   121
done
paulson@14416
   122
paulson@14416
   123
lemma rabs_sumr_rabs_cancel [simp]:
paulson@14416
   124
     "abs (sumr m n (%n. abs (f n))) = (sumr m n (%n. abs (f n)))"
paulson@14416
   125
apply (induct_tac "n")
paulson@14416
   126
apply (auto, arith)
paulson@14416
   127
done
paulson@14416
   128
paulson@14416
   129
lemma sumr_zero [rule_format]:
paulson@14416
   130
     "\<forall>n. N \<le> n --> f n = 0 ==> N \<le> m --> sumr m n f = 0"
paulson@14416
   131
by (induct_tac "n", auto)
paulson@14416
   132
paulson@14416
   133
lemma Suc_le_imp_diff_ge2:
paulson@14416
   134
     "[|\<forall>n. N \<le> n --> f (Suc n) = 0; Suc N \<le> m|] ==> sumr m n f = 0"
paulson@14416
   135
apply (rule sumr_zero) 
paulson@14416
   136
apply (case_tac "n", auto)
paulson@14416
   137
done
paulson@14416
   138
paulson@14416
   139
lemma sumr_one_lb_realpow_zero [simp]: "sumr (Suc 0) n (%n. f(n) * 0 ^ n) = 0"
paulson@14416
   140
apply (induct_tac "n")
paulson@14416
   141
apply (case_tac [2] "n", auto)
paulson@14416
   142
done
paulson@14416
   143
paulson@14416
   144
lemma sumr_diff: "sumr m n f - sumr m n g = sumr m n (%n. f n - g n)"
paulson@14416
   145
by (simp add: diff_minus sumr_add [symmetric] sumr_minus)
paulson@14416
   146
paulson@14416
   147
lemma sumr_subst [rule_format (no_asm)]:
paulson@14416
   148
     "(\<forall>p. m \<le> p & p < m+n --> (f p = g p)) --> sumr m n f = sumr m n g"
paulson@14416
   149
by (induct_tac "n", auto)
paulson@14416
   150
paulson@14416
   151
lemma sumr_bound [rule_format (no_asm)]:
paulson@14416
   152
     "(\<forall>p. m \<le> p & p < m + n --> (f(p) \<le> K))  
paulson@14416
   153
      --> (sumr m (m + n) f \<le> (real n * K))"
paulson@14416
   154
apply (induct_tac "n")
paulson@14416
   155
apply (auto intro: add_mono simp add: left_distrib real_of_nat_Suc)
paulson@14416
   156
done
paulson@14416
   157
paulson@14416
   158
lemma sumr_bound2 [rule_format (no_asm)]:
paulson@14416
   159
     "(\<forall>p. 0 \<le> p & p < n --> (f(p) \<le> K))  
paulson@14416
   160
      --> (sumr 0 n f \<le> (real n * K))"
paulson@14416
   161
apply (induct_tac "n")
paulson@15047
   162
apply (auto intro: add_mono simp add: left_distrib real_of_nat_Suc add_commute)
paulson@14416
   163
done
paulson@14416
   164
paulson@14416
   165
lemma sumr_group [simp]:
paulson@14416
   166
     "sumr 0 n (%m. sumr (m * k) (m*k + k) f) = sumr 0 (n * k) f"
paulson@14416
   167
apply (subgoal_tac "k = 0 | 0 < k", auto)
paulson@14416
   168
apply (induct_tac "n")
paulson@14416
   169
apply (simp_all add: sumr_split_add add_commute)
paulson@14416
   170
done
paulson@14416
   171
paulson@14416
   172
subsection{* Infinite Sums, by the Properties of Limits*}
paulson@14416
   173
paulson@14416
   174
(*----------------------
paulson@14416
   175
   suminf is the sum   
paulson@14416
   176
 ---------------------*)
paulson@14416
   177
lemma sums_summable: "f sums l ==> summable f"
paulson@14416
   178
by (simp add: sums_def summable_def, blast)
paulson@14416
   179
paulson@14416
   180
lemma summable_sums: "summable f ==> f sums (suminf f)"
paulson@14416
   181
apply (simp add: summable_def suminf_def)
paulson@14416
   182
apply (blast intro: someI2)
paulson@14416
   183
done
paulson@14416
   184
paulson@14416
   185
lemma summable_sumr_LIMSEQ_suminf: 
paulson@14416
   186
     "summable f ==> (%n. sumr 0 n f) ----> (suminf f)"
paulson@14416
   187
apply (simp add: summable_def suminf_def sums_def)
paulson@14416
   188
apply (blast intro: someI2)
paulson@14416
   189
done
paulson@14416
   190
paulson@14416
   191
(*-------------------
paulson@14416
   192
    sum is unique                    
paulson@14416
   193
 ------------------*)
paulson@14416
   194
lemma sums_unique: "f sums s ==> (s = suminf f)"
paulson@14416
   195
apply (frule sums_summable [THEN summable_sums])
paulson@14416
   196
apply (auto intro!: LIMSEQ_unique simp add: sums_def)
paulson@14416
   197
done
paulson@14416
   198
paulson@14416
   199
(*
paulson@14416
   200
Goalw [sums_def,LIMSEQ_def] 
paulson@14416
   201
     "(\<forall>m. n \<le> Suc m --> f(m) = 0) ==> f sums (sumr 0 n f)"
paulson@14416
   202
by safe
paulson@14416
   203
by (res_inst_tac [("x","n")] exI 1);
paulson@14416
   204
by (safe THEN ftac le_imp_less_or_eq 1)
paulson@14416
   205
by safe
paulson@14416
   206
by (dres_inst_tac [("f","f")] sumr_split_add_minus 1);
paulson@14416
   207
by (ALLGOALS (Asm_simp_tac));
paulson@14416
   208
by (dtac (conjI RS sumr_interval_const) 1);
paulson@14416
   209
by Auto_tac
paulson@14416
   210
qed "series_zero";
paulson@14416
   211
next one was called series_zero2
paulson@14416
   212
**********************)
paulson@14416
   213
paulson@14416
   214
lemma series_zero: 
paulson@14416
   215
     "(\<forall>m. n \<le> m --> f(m) = 0) ==> f sums (sumr 0 n f)"
paulson@14416
   216
apply (simp add: sums_def LIMSEQ_def, safe)
paulson@14416
   217
apply (rule_tac x = n in exI)
paulson@14416
   218
apply (safe, frule le_imp_less_or_eq, safe)
paulson@14416
   219
apply (drule_tac f = f in sumr_split_add_minus, simp_all)
paulson@14416
   220
apply (drule sumr_interval_const2, auto)
paulson@14416
   221
done
paulson@14416
   222
paulson@14416
   223
lemma sums_mult: "x sums x0 ==> (%n. c * x(n)) sums (c * x0)"
paulson@14416
   224
by (auto simp add: sums_def sumr_mult [symmetric]
paulson@14416
   225
         intro!: LIMSEQ_mult intro: LIMSEQ_const)
paulson@14416
   226
paulson@14416
   227
lemma sums_divide: "x sums x' ==> (%n. x(n)/c) sums (x'/c)"
paulson@14416
   228
by (simp add: real_divide_def sums_mult mult_commute [of _ "inverse c"])
paulson@14416
   229
paulson@14416
   230
lemma sums_diff: "[| x sums x0; y sums y0 |] ==> (%n. x n - y n) sums (x0-y0)"
paulson@14416
   231
by (auto simp add: sums_def sumr_diff [symmetric] intro: LIMSEQ_diff)
paulson@14416
   232
paulson@14416
   233
lemma suminf_mult: "summable f ==> suminf f * c = suminf(%n. f n * c)"
paulson@14416
   234
by (auto intro!: sums_unique sums_mult summable_sums simp add: mult_commute)
paulson@14416
   235
paulson@14416
   236
lemma suminf_mult2: "summable f ==> c * suminf f  = suminf(%n. c * f n)"
paulson@14416
   237
by (auto intro!: sums_unique sums_mult summable_sums)
paulson@14416
   238
paulson@14416
   239
lemma suminf_diff:
paulson@14416
   240
     "[| summable f; summable g |]   
paulson@14416
   241
      ==> suminf f - suminf g  = suminf(%n. f n - g n)"
paulson@14416
   242
by (auto intro!: sums_diff sums_unique summable_sums)
paulson@14416
   243
paulson@14416
   244
lemma sums_minus: "x sums x0 ==> (%n. - x n) sums - x0"
paulson@14416
   245
by (auto simp add: sums_def intro!: LIMSEQ_minus simp add: sumr_minus)
paulson@14416
   246
paulson@14416
   247
lemma sums_group:
paulson@14416
   248
     "[|summable f; 0 < k |] ==> (%n. sumr (n*k) (n*k + k) f) sums (suminf f)"
paulson@14416
   249
apply (drule summable_sums)
paulson@14416
   250
apply (auto simp add: sums_def LIMSEQ_def)
paulson@14416
   251
apply (drule_tac x = r in spec, safe)
paulson@14416
   252
apply (rule_tac x = no in exI, safe)
paulson@14416
   253
apply (drule_tac x = "n*k" in spec)
paulson@14416
   254
apply (auto dest!: not_leE)
paulson@14416
   255
apply (drule_tac j = no in less_le_trans, auto)
paulson@14416
   256
done
paulson@14416
   257
paulson@14416
   258
lemma sumr_pos_lt_pair_lemma:
paulson@14416
   259
     "[|\<forall>d. - f (n + (d + d)) < f (Suc (n + (d + d)))|]
paulson@14416
   260
      ==> sumr 0 (n + Suc (Suc 0)) f \<le> sumr 0 (Suc (Suc 0) * Suc no + n) f"
paulson@14416
   261
apply (induct_tac "no", simp)
paulson@14416
   262
apply (rule_tac y = "sumr 0 (Suc (Suc 0) * (Suc na) +n) f" in order_trans)
paulson@14416
   263
apply assumption
paulson@14416
   264
apply (drule_tac x = "Suc na" in spec)
paulson@14416
   265
apply (simp add: add_ac) 
paulson@14416
   266
done
paulson@10751
   267
paulson@10751
   268
paulson@14416
   269
lemma sumr_pos_lt_pair:
paulson@14416
   270
     "[|summable f; \<forall>d. 0 < (f(n + (Suc(Suc 0) * d))) + f(n + ((Suc(Suc 0) * d) + 1))|]  
paulson@14416
   271
      ==> sumr 0 n f < suminf f"
paulson@14416
   272
apply (drule summable_sums)
paulson@14416
   273
apply (auto simp add: sums_def LIMSEQ_def)
paulson@14416
   274
apply (drule_tac x = "f (n) + f (n + 1) " in spec)
paulson@15085
   275
apply (auto iff: real_0_less_add_iff)
paulson@15085
   276
   --{*legacy proof: not necessarily better!*}
paulson@14416
   277
apply (rule_tac [2] ccontr, drule_tac [2] linorder_not_less [THEN iffD1])
paulson@14416
   278
apply (frule_tac [2] no=no in sumr_pos_lt_pair_lemma) 
paulson@14416
   279
apply (drule_tac x = 0 in spec, simp)
paulson@14416
   280
apply (rotate_tac 1, drule_tac x = "Suc (Suc 0) * (Suc no) + n" in spec)
paulson@14416
   281
apply (safe, simp)
paulson@14416
   282
apply (subgoal_tac "suminf f + (f (n) + f (n + 1)) \<le> sumr 0 (Suc (Suc 0) * (Suc no) + n) f")
paulson@14416
   283
apply (rule_tac [2] y = "sumr 0 (n+ Suc (Suc 0)) f" in order_trans)
paulson@14416
   284
prefer 3 apply assumption
paulson@14416
   285
apply (rule_tac [2] y = "sumr 0 n f + (f (n) + f (n + 1))" in order_trans)
paulson@14416
   286
apply simp_all 
paulson@14416
   287
apply (subgoal_tac "suminf f \<le> sumr 0 (Suc (Suc 0) * (Suc no) + n) f")
paulson@14416
   288
apply (rule_tac [2] y = "suminf f + (f (n) + f (n + 1))" in order_trans)
paulson@14416
   289
prefer 3 apply simp 
paulson@14416
   290
apply (drule_tac [2] x = 0 in spec)
paulson@14416
   291
 prefer 2 apply simp 
paulson@14416
   292
apply (subgoal_tac "0 \<le> sumr 0 (Suc (Suc 0) * Suc no + n) f + - suminf f")
paulson@14416
   293
apply (simp add: abs_if) 
paulson@14416
   294
apply (auto simp add: linorder_not_less [symmetric])
paulson@14416
   295
done
paulson@14416
   296
paulson@15085
   297
text{*A summable series of positive terms has limit that is at least as
paulson@15085
   298
great as any partial sum.*}
paulson@14416
   299
paulson@14416
   300
lemma series_pos_le: 
paulson@14416
   301
     "[| summable f; \<forall>m. n \<le> m --> 0 \<le> f(m) |] ==> sumr 0 n f \<le> suminf f"
paulson@14416
   302
apply (drule summable_sums)
paulson@14416
   303
apply (simp add: sums_def)
paulson@14416
   304
apply (cut_tac k = "sumr 0 n f" in LIMSEQ_const)
paulson@14416
   305
apply (erule LIMSEQ_le, blast) 
paulson@14416
   306
apply (rule_tac x = n in exI, clarify) 
paulson@14416
   307
apply (drule le_imp_less_or_eq)
paulson@14416
   308
apply (auto intro: sumr_le)
paulson@14416
   309
done
paulson@14416
   310
paulson@14416
   311
lemma series_pos_less:
paulson@14416
   312
     "[| summable f; \<forall>m. n \<le> m --> 0 < f(m) |] ==> sumr 0 n f < suminf f"
paulson@14416
   313
apply (rule_tac y = "sumr 0 (Suc n) f" in order_less_le_trans)
paulson@14416
   314
apply (rule_tac [2] series_pos_le, auto)
paulson@14416
   315
apply (drule_tac x = m in spec, auto)
paulson@14416
   316
done
paulson@14416
   317
paulson@15085
   318
text{*Sum of a geometric progression.*}
paulson@14416
   319
paulson@14416
   320
lemma sumr_geometric: "x ~= 1 ==> sumr 0 n (%n. x ^ n) = (x ^ n - 1) / (x - 1)"
paulson@14416
   321
apply (induct_tac "n", auto)
paulson@14416
   322
apply (rule_tac c1 = "x - 1" in real_mult_right_cancel [THEN iffD1])
paulson@14416
   323
apply (auto simp add: real_mult_assoc left_distrib)
paulson@14416
   324
apply (simp add: right_distrib real_diff_def real_mult_commute)
paulson@14416
   325
done
paulson@14416
   326
paulson@14416
   327
lemma geometric_sums: "abs(x) < 1 ==> (%n. x ^ n) sums (1/(1 - x))"
paulson@14416
   328
apply (case_tac "x = 1")
paulson@14416
   329
apply (auto dest!: LIMSEQ_rabs_realpow_zero2 simp add: sumr_geometric sums_def real_diff_def add_divide_distrib)
paulson@14416
   330
apply (subgoal_tac "1 / (1 + -x) = 0/ (x - 1) + - 1/ (x - 1) ")
paulson@14416
   331
apply (erule ssubst)
paulson@14416
   332
apply (rule LIMSEQ_add, rule LIMSEQ_divide)
paulson@14416
   333
apply (auto intro: LIMSEQ_const simp add: real_diff_def minus_divide_right LIMSEQ_rabs_realpow_zero2)
paulson@14416
   334
done
paulson@14416
   335
paulson@15085
   336
text{*Cauchy-type criterion for convergence of series (c.f. Harrison)*}
paulson@15085
   337
paulson@14416
   338
lemma summable_convergent_sumr_iff: "summable f = convergent (%n. sumr 0 n f)"
paulson@14416
   339
by (simp add: summable_def sums_def convergent_def)
paulson@14416
   340
paulson@14416
   341
lemma summable_Cauchy:
paulson@14416
   342
     "summable f =  
paulson@14416
   343
      (\<forall>e. 0 < e --> (\<exists>N. \<forall>m n. N \<le> m --> abs(sumr m n f) < e))"
paulson@14416
   344
apply (auto simp add: summable_convergent_sumr_iff Cauchy_convergent_iff [symmetric] Cauchy_def)
paulson@14416
   345
apply (drule_tac [!] spec, auto) 
paulson@14416
   346
apply (rule_tac x = M in exI)
paulson@14416
   347
apply (rule_tac [2] x = N in exI, auto)
paulson@14416
   348
apply (cut_tac [!] m = m and n = n in less_linear, auto)
paulson@14416
   349
apply (frule le_less_trans [THEN less_imp_le], assumption)
paulson@14416
   350
apply (drule_tac x = n in spec)
paulson@14416
   351
apply (drule_tac x = m in spec)
paulson@14416
   352
apply (auto intro: abs_minus_add_cancel [THEN subst]
paulson@14416
   353
            simp add: sumr_split_add_minus abs_minus_add_cancel)
paulson@14416
   354
done
paulson@14416
   355
paulson@15085
   356
text{*Comparison test*}
paulson@15085
   357
paulson@14416
   358
lemma summable_comparison_test:
paulson@14416
   359
     "[| \<exists>N. \<forall>n. N \<le> n --> abs(f n) \<le> g n; summable g |] ==> summable f"
paulson@14416
   360
apply (auto simp add: summable_Cauchy)
paulson@14416
   361
apply (drule spec, auto)
paulson@14416
   362
apply (rule_tac x = "N + Na" in exI, auto)
paulson@14416
   363
apply (rotate_tac 2)
paulson@14416
   364
apply (drule_tac x = m in spec)
paulson@14416
   365
apply (auto, rotate_tac 2, drule_tac x = n in spec)
paulson@14416
   366
apply (rule_tac y = "sumr m n (%k. abs (f k))" in order_le_less_trans)
paulson@14416
   367
apply (rule sumr_rabs)
paulson@14416
   368
apply (rule_tac y = "sumr m n g" in order_le_less_trans)
paulson@14416
   369
apply (auto intro: sumr_le2 simp add: abs_interval_iff)
paulson@14416
   370
done
paulson@14416
   371
paulson@14416
   372
lemma summable_rabs_comparison_test:
paulson@14416
   373
     "[| \<exists>N. \<forall>n. N \<le> n --> abs(f n) \<le> g n; summable g |] 
paulson@14416
   374
      ==> summable (%k. abs (f k))"
paulson@14416
   375
apply (rule summable_comparison_test)
paulson@14416
   376
apply (auto simp add: abs_idempotent)
paulson@14416
   377
done
paulson@14416
   378
paulson@15085
   379
text{*Limit comparison property for series (c.f. jrh)*}
paulson@15085
   380
paulson@14416
   381
lemma summable_le:
paulson@14416
   382
     "[|\<forall>n. f n \<le> g n; summable f; summable g |] ==> suminf f \<le> suminf g"
paulson@14416
   383
apply (drule summable_sums)+
paulson@14416
   384
apply (auto intro!: LIMSEQ_le simp add: sums_def)
paulson@14416
   385
apply (rule exI)
paulson@14416
   386
apply (auto intro!: sumr_le2)
paulson@14416
   387
done
paulson@14416
   388
paulson@14416
   389
lemma summable_le2:
paulson@14416
   390
     "[|\<forall>n. abs(f n) \<le> g n; summable g |]  
paulson@14416
   391
      ==> summable f & suminf f \<le> suminf g"
paulson@14416
   392
apply (auto intro: summable_comparison_test intro!: summable_le)
paulson@14416
   393
apply (simp add: abs_le_interval_iff)
paulson@14416
   394
done
paulson@14416
   395
paulson@15085
   396
text{*Absolute convergence imples normal convergence*}
paulson@14416
   397
lemma summable_rabs_cancel: "summable (%n. abs (f n)) ==> summable f"
paulson@14416
   398
apply (auto simp add: sumr_rabs summable_Cauchy)
paulson@14416
   399
apply (drule spec, auto)
paulson@14416
   400
apply (rule_tac x = N in exI, auto)
paulson@14416
   401
apply (drule spec, auto)
paulson@14416
   402
apply (rule_tac y = "sumr m n (%n. abs (f n))" in order_le_less_trans)
paulson@14416
   403
apply (auto intro: sumr_rabs)
paulson@14416
   404
done
paulson@14416
   405
paulson@15085
   406
text{*Absolute convergence of series*}
paulson@14416
   407
lemma summable_rabs:
paulson@14416
   408
     "summable (%n. abs (f n)) ==> abs(suminf f) \<le> suminf (%n. abs(f n))"
paulson@14416
   409
by (auto intro: LIMSEQ_le LIMSEQ_imp_rabs summable_rabs_cancel summable_sumr_LIMSEQ_suminf sumr_rabs)
paulson@14416
   410
paulson@14416
   411
paulson@14416
   412
subsection{* The Ratio Test*}
paulson@14416
   413
paulson@14416
   414
lemma rabs_ratiotest_lemma: "[| c \<le> 0; abs x \<le> c * abs y |] ==> x = (0::real)"
paulson@14416
   415
apply (drule order_le_imp_less_or_eq, auto)
paulson@14416
   416
apply (subgoal_tac "0 \<le> c * abs y")
paulson@14416
   417
apply (simp add: zero_le_mult_iff, arith)
paulson@14416
   418
done
paulson@14416
   419
paulson@14416
   420
lemma le_Suc_ex: "(k::nat) \<le> l ==> (\<exists>n. l = k + n)"
paulson@14416
   421
apply (drule le_imp_less_or_eq)
paulson@14416
   422
apply (auto dest: less_imp_Suc_add)
paulson@14416
   423
done
paulson@14416
   424
paulson@14416
   425
lemma le_Suc_ex_iff: "((k::nat) \<le> l) = (\<exists>n. l = k + n)"
paulson@14416
   426
by (auto simp add: le_Suc_ex)
paulson@14416
   427
paulson@14416
   428
(*All this trouble just to get 0<c *)
paulson@14416
   429
lemma ratio_test_lemma2:
paulson@14416
   430
     "[| \<forall>n. N \<le> n --> abs(f(Suc n)) \<le> c*abs(f n) |]  
paulson@14416
   431
      ==> 0 < c | summable f"
paulson@14416
   432
apply (simp (no_asm) add: linorder_not_le [symmetric])
paulson@14416
   433
apply (simp add: summable_Cauchy)
paulson@14416
   434
apply (safe, subgoal_tac "\<forall>n. N \<le> n --> f (Suc n) = 0")
paulson@14416
   435
prefer 2 apply (blast intro: rabs_ratiotest_lemma)
paulson@14416
   436
apply (rule_tac x = "Suc N" in exI, clarify)
paulson@14416
   437
apply (drule_tac n=n in Suc_le_imp_diff_ge2, auto) 
paulson@14416
   438
done
paulson@14416
   439
paulson@14416
   440
lemma ratio_test:
paulson@14416
   441
     "[| c < 1; \<forall>n. N \<le> n --> abs(f(Suc n)) \<le> c*abs(f n) |]  
paulson@14416
   442
      ==> summable f"
paulson@14416
   443
apply (frule ratio_test_lemma2, auto)
paulson@14416
   444
apply (rule_tac g = "%n. (abs (f N) / (c ^ N))*c ^ n" in summable_comparison_test)
paulson@14416
   445
apply (rule_tac x = N in exI, safe)
paulson@14416
   446
apply (drule le_Suc_ex_iff [THEN iffD1])
paulson@14416
   447
apply (auto simp add: power_add realpow_not_zero)
paulson@14416
   448
apply (induct_tac "na", auto)
paulson@14416
   449
apply (rule_tac y = "c*abs (f (N + n))" in order_trans)
paulson@14416
   450
apply (auto intro: mult_right_mono simp add: summable_def)
paulson@14416
   451
apply (simp add: mult_ac)
paulson@14416
   452
apply (rule_tac x = "abs (f N) * (1/ (1 - c)) / (c ^ N) " in exI)
paulson@14416
   453
apply (rule sums_divide)
paulson@14416
   454
apply (rule sums_mult)
paulson@15003
   455
apply (auto intro!: sums_mult geometric_sums simp add: abs_if)
paulson@14416
   456
done
paulson@14416
   457
paulson@14416
   458
paulson@15085
   459
text{*Differentiation of finite sum*}
paulson@14416
   460
paulson@14416
   461
lemma DERIV_sumr [rule_format (no_asm)]:
paulson@14416
   462
     "(\<forall>r. m \<le> r & r < (m + n) --> DERIV (%x. f r x) x :> (f' r x))  
paulson@14416
   463
      --> DERIV (%x. sumr m n (%n. f n x)) x :> sumr m n (%r. f' r x)"
paulson@14416
   464
apply (induct_tac "n")
paulson@14416
   465
apply (auto intro: DERIV_add)
paulson@14416
   466
done
paulson@14416
   467
paulson@14416
   468
ML
paulson@14416
   469
{*
paulson@14416
   470
val sumr_Suc = thm"sumr_Suc";
paulson@14416
   471
val sums_def = thm"sums_def";
paulson@14416
   472
val summable_def = thm"summable_def";
paulson@14416
   473
val suminf_def = thm"suminf_def";
paulson@14416
   474
paulson@14416
   475
val sumr_add = thm "sumr_add";
paulson@14416
   476
val sumr_mult = thm "sumr_mult";
paulson@14416
   477
val sumr_split_add = thm "sumr_split_add";
paulson@14416
   478
val sumr_rabs = thm "sumr_rabs";
paulson@14416
   479
val sumr_fun_eq = thm "sumr_fun_eq";
paulson@14416
   480
val sumr_diff_mult_const = thm "sumr_diff_mult_const";
paulson@14416
   481
val sumr_minus_one_realpow_zero = thm "sumr_minus_one_realpow_zero";
paulson@14416
   482
val sumr_le2 = thm "sumr_le2";
paulson@14416
   483
val sumr_ge_zero = thm "sumr_ge_zero";
paulson@14416
   484
val sumr_ge_zero2 = thm "sumr_ge_zero2";
paulson@14416
   485
val sumr_rabs_ge_zero = thm "sumr_rabs_ge_zero";
paulson@14416
   486
val rabs_sumr_rabs_cancel = thm "rabs_sumr_rabs_cancel";
paulson@14416
   487
val sumr_zero = thm "sumr_zero";
paulson@14416
   488
val Suc_le_imp_diff_ge2 = thm "Suc_le_imp_diff_ge2";
paulson@14416
   489
val sumr_one_lb_realpow_zero = thm "sumr_one_lb_realpow_zero";
paulson@14416
   490
val sumr_diff = thm "sumr_diff";
paulson@14416
   491
val sumr_subst = thm "sumr_subst";
paulson@14416
   492
val sumr_bound = thm "sumr_bound";
paulson@14416
   493
val sumr_bound2 = thm "sumr_bound2";
paulson@14416
   494
val sumr_group = thm "sumr_group";
paulson@14416
   495
val sums_summable = thm "sums_summable";
paulson@14416
   496
val summable_sums = thm "summable_sums";
paulson@14416
   497
val summable_sumr_LIMSEQ_suminf = thm "summable_sumr_LIMSEQ_suminf";
paulson@14416
   498
val sums_unique = thm "sums_unique";
paulson@14416
   499
val series_zero = thm "series_zero";
paulson@14416
   500
val sums_mult = thm "sums_mult";
paulson@14416
   501
val sums_divide = thm "sums_divide";
paulson@14416
   502
val sums_diff = thm "sums_diff";
paulson@14416
   503
val suminf_mult = thm "suminf_mult";
paulson@14416
   504
val suminf_mult2 = thm "suminf_mult2";
paulson@14416
   505
val suminf_diff = thm "suminf_diff";
paulson@14416
   506
val sums_minus = thm "sums_minus";
paulson@14416
   507
val sums_group = thm "sums_group";
paulson@14416
   508
val sumr_pos_lt_pair_lemma = thm "sumr_pos_lt_pair_lemma";
paulson@14416
   509
val sumr_pos_lt_pair = thm "sumr_pos_lt_pair";
paulson@14416
   510
val series_pos_le = thm "series_pos_le";
paulson@14416
   511
val series_pos_less = thm "series_pos_less";
paulson@14416
   512
val sumr_geometric = thm "sumr_geometric";
paulson@14416
   513
val geometric_sums = thm "geometric_sums";
paulson@14416
   514
val summable_convergent_sumr_iff = thm "summable_convergent_sumr_iff";
paulson@14416
   515
val summable_Cauchy = thm "summable_Cauchy";
paulson@14416
   516
val summable_comparison_test = thm "summable_comparison_test";
paulson@14416
   517
val summable_rabs_comparison_test = thm "summable_rabs_comparison_test";
paulson@14416
   518
val summable_le = thm "summable_le";
paulson@14416
   519
val summable_le2 = thm "summable_le2";
paulson@14416
   520
val summable_rabs_cancel = thm "summable_rabs_cancel";
paulson@14416
   521
val summable_rabs = thm "summable_rabs";
paulson@14416
   522
val rabs_ratiotest_lemma = thm "rabs_ratiotest_lemma";
paulson@14416
   523
val le_Suc_ex = thm "le_Suc_ex";
paulson@14416
   524
val le_Suc_ex_iff = thm "le_Suc_ex_iff";
paulson@14416
   525
val ratio_test_lemma2 = thm "ratio_test_lemma2";
paulson@14416
   526
val ratio_test = thm "ratio_test";
paulson@14416
   527
val DERIV_sumr = thm "DERIV_sumr";
paulson@14416
   528
*}
paulson@14416
   529
paulson@14416
   530
end