src/HOL/Library/Zorn.thy
author nipkow
Mon Aug 16 14:22:27 2004 +0200 (2004-08-16)
changeset 15131 c69542757a4d
parent 14706 71590b7733b7
child 15140 322485b816ac
permissions -rw-r--r--
New theory header syntax.
wenzelm@14706
     1
(*  Title       : HOL/Library/Zorn.thy
paulson@13652
     2
    ID          : $Id$
paulson@13652
     3
    Author      : Jacques D. Fleuriot
wenzelm@14706
     4
    Description : Zorn's Lemma -- see Larry Paulson's Zorn.thy in ZF
wenzelm@14706
     5
*)
paulson@13551
     6
wenzelm@14706
     7
header {* Zorn's Lemma *}
paulson@13551
     8
nipkow@15131
     9
theory Zorn
nipkow@15131
    10
import Main
nipkow@15131
    11
begin
paulson@13551
    12
wenzelm@14706
    13
text{*
wenzelm@14706
    14
  The lemma and section numbers refer to an unpublished article
wenzelm@14706
    15
  \cite{Abrial-Laffitte}.
wenzelm@14706
    16
*}
paulson@13551
    17
paulson@13551
    18
constdefs
paulson@13652
    19
  chain     ::  "'a set set => 'a set set set"
wenzelm@14706
    20
  "chain S  == {F. F \<subseteq> S & (\<forall>x \<in> F. \<forall>y \<in> F. x \<subseteq> y | y \<subseteq> x)}"
paulson@13551
    21
paulson@13652
    22
  super     ::  "['a set set,'a set set] => 'a set set set"
wenzelm@14706
    23
  "super S c == {d. d \<in> chain S & c \<subset> d}"
paulson@13551
    24
paulson@13652
    25
  maxchain  ::  "'a set set => 'a set set set"
wenzelm@14706
    26
  "maxchain S == {c. c \<in> chain S & super S c = {}}"
paulson@13551
    27
paulson@13652
    28
  succ      ::  "['a set set,'a set set] => 'a set set"
wenzelm@14706
    29
  "succ S c ==
wenzelm@14706
    30
    if c \<notin> chain S | c \<in> maxchain S
wenzelm@14706
    31
    then c else SOME c'. c' \<in> super S c"
paulson@13551
    32
wenzelm@14706
    33
consts
wenzelm@14706
    34
  TFin :: "'a set set => 'a set set set"
paulson@13551
    35
wenzelm@14706
    36
inductive "TFin S"
paulson@13551
    37
  intros
paulson@13551
    38
    succI:        "x \<in> TFin S ==> succ S x \<in> TFin S"
paulson@13551
    39
    Pow_UnionI:   "Y \<in> Pow(TFin S) ==> Union(Y) \<in> TFin S"
paulson@13551
    40
  monos          Pow_mono
paulson@13551
    41
paulson@13551
    42
paulson@13551
    43
subsection{*Mathematical Preamble*}
paulson@13551
    44
paulson@13551
    45
lemma Union_lemma0: "(\<forall>x \<in> C. x \<subseteq> A | B \<subseteq> x) ==> Union(C)<=A | B \<subseteq> Union(C)"
paulson@13551
    46
by blast
paulson@13551
    47
paulson@13551
    48
paulson@13551
    49
text{*This is theorem @{text increasingD2} of ZF/Zorn.thy*}
paulson@13551
    50
lemma Abrial_axiom1: "x \<subseteq> succ S x"
paulson@13551
    51
apply (unfold succ_def)
paulson@13551
    52
apply (rule split_if [THEN iffD2])
paulson@13551
    53
apply (auto simp add: super_def maxchain_def psubset_def)
paulson@13551
    54
apply (rule swap, assumption)
paulson@13551
    55
apply (rule someI2, blast+)
paulson@13551
    56
done
paulson@13551
    57
paulson@13551
    58
lemmas TFin_UnionI = TFin.Pow_UnionI [OF PowI]
paulson@13551
    59
wenzelm@14706
    60
lemma TFin_induct:
wenzelm@14706
    61
          "[| n \<in> TFin S;
wenzelm@14706
    62
             !!x. [| x \<in> TFin S; P(x) |] ==> P(succ S x);
wenzelm@14706
    63
             !!Y. [| Y \<subseteq> TFin S; Ball Y P |] ==> P(Union Y) |]
paulson@13551
    64
          ==> P(n)"
paulson@13551
    65
apply (erule TFin.induct, blast+)
paulson@13551
    66
done
paulson@13551
    67
paulson@13551
    68
lemma succ_trans: "x \<subseteq> y ==> x \<subseteq> succ S y"
wenzelm@14706
    69
apply (erule subset_trans)
wenzelm@14706
    70
apply (rule Abrial_axiom1)
paulson@13551
    71
done
paulson@13551
    72
paulson@13551
    73
text{*Lemma 1 of section 3.1*}
paulson@13551
    74
lemma TFin_linear_lemma1:
wenzelm@14706
    75
     "[| n \<in> TFin S;  m \<in> TFin S;
wenzelm@14706
    76
         \<forall>x \<in> TFin S. x \<subseteq> m --> x = m | succ S x \<subseteq> m
paulson@13551
    77
      |] ==> n \<subseteq> m | succ S m \<subseteq> n"
paulson@13551
    78
apply (erule TFin_induct)
wenzelm@14706
    79
apply (erule_tac [2] Union_lemma0) (*or just blast*)
paulson@13551
    80
apply (blast del: subsetI intro: succ_trans)
paulson@13551
    81
done
paulson@13551
    82
paulson@13551
    83
text{* Lemma 2 of section 3.2 *}
paulson@13551
    84
lemma TFin_linear_lemma2:
paulson@13551
    85
     "m \<in> TFin S ==> \<forall>n \<in> TFin S. n \<subseteq> m --> n=m | succ S n \<subseteq> m"
paulson@13551
    86
apply (erule TFin_induct)
paulson@13551
    87
apply (rule impI [THEN ballI])
wenzelm@14706
    88
txt{*case split using @{text TFin_linear_lemma1}*}
wenzelm@14706
    89
apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE],
paulson@13551
    90
       assumption+)
paulson@13551
    91
apply (drule_tac x = n in bspec, assumption)
wenzelm@14706
    92
apply (blast del: subsetI intro: succ_trans, blast)
paulson@13551
    93
txt{*second induction step*}
paulson@13551
    94
apply (rule impI [THEN ballI])
paulson@13551
    95
apply (rule Union_lemma0 [THEN disjE])
paulson@13551
    96
apply (rule_tac [3] disjI2)
wenzelm@14706
    97
 prefer 2 apply blast
paulson@13551
    98
apply (rule ballI)
wenzelm@14706
    99
apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE],
wenzelm@14706
   100
       assumption+, auto)
wenzelm@14706
   101
apply (blast intro!: Abrial_axiom1 [THEN subsetD])
paulson@13551
   102
done
paulson@13551
   103
paulson@13551
   104
text{*Re-ordering the premises of Lemma 2*}
paulson@13551
   105
lemma TFin_subsetD:
paulson@13551
   106
     "[| n \<subseteq> m;  m \<in> TFin S;  n \<in> TFin S |] ==> n=m | succ S n \<subseteq> m"
paulson@13551
   107
apply (rule TFin_linear_lemma2 [rule_format])
paulson@13551
   108
apply (assumption+)
paulson@13551
   109
done
paulson@13551
   110
paulson@13551
   111
text{*Consequences from section 3.3 -- Property 3.2, the ordering is total*}
paulson@13551
   112
lemma TFin_subset_linear: "[| m \<in> TFin S;  n \<in> TFin S|] ==> n \<subseteq> m | m \<subseteq> n"
wenzelm@14706
   113
apply (rule disjE)
paulson@13551
   114
apply (rule TFin_linear_lemma1 [OF _ _TFin_linear_lemma2])
paulson@13551
   115
apply (assumption+, erule disjI2)
wenzelm@14706
   116
apply (blast del: subsetI
paulson@13551
   117
             intro: subsetI Abrial_axiom1 [THEN subset_trans])
paulson@13551
   118
done
paulson@13551
   119
paulson@13551
   120
text{*Lemma 3 of section 3.3*}
paulson@13551
   121
lemma eq_succ_upper: "[| n \<in> TFin S;  m \<in> TFin S;  m = succ S m |] ==> n \<subseteq> m"
paulson@13551
   122
apply (erule TFin_induct)
paulson@13551
   123
apply (drule TFin_subsetD)
paulson@13551
   124
apply (assumption+, force, blast)
paulson@13551
   125
done
paulson@13551
   126
paulson@13551
   127
text{*Property 3.3 of section 3.3*}
paulson@13551
   128
lemma equal_succ_Union: "m \<in> TFin S ==> (m = succ S m) = (m = Union(TFin S))"
paulson@13551
   129
apply (rule iffI)
paulson@13551
   130
apply (rule Union_upper [THEN equalityI])
paulson@13551
   131
apply (rule_tac [2] eq_succ_upper [THEN Union_least])
paulson@13551
   132
apply (assumption+)
paulson@13551
   133
apply (erule ssubst)
paulson@13551
   134
apply (rule Abrial_axiom1 [THEN equalityI])
paulson@13551
   135
apply (blast del: subsetI
wenzelm@14706
   136
             intro: subsetI TFin_UnionI TFin.succI)
paulson@13551
   137
done
paulson@13551
   138
paulson@13551
   139
subsection{*Hausdorff's Theorem: Every Set Contains a Maximal Chain.*}
paulson@13551
   140
wenzelm@14706
   141
text{*NB: We assume the partial ordering is @{text "\<subseteq>"},
paulson@13551
   142
 the subset relation!*}
paulson@13551
   143
paulson@13551
   144
lemma empty_set_mem_chain: "({} :: 'a set set) \<in> chain S"
paulson@13551
   145
by (unfold chain_def, auto)
paulson@13551
   146
paulson@13551
   147
lemma super_subset_chain: "super S c \<subseteq> chain S"
paulson@13551
   148
by (unfold super_def, fast)
paulson@13551
   149
paulson@13551
   150
lemma maxchain_subset_chain: "maxchain S \<subseteq> chain S"
paulson@13551
   151
by (unfold maxchain_def, fast)
paulson@13551
   152
paulson@13551
   153
lemma mem_super_Ex: "c \<in> chain S - maxchain S ==> ? d. d \<in> super S c"
paulson@13551
   154
by (unfold super_def maxchain_def, auto)
paulson@13551
   155
wenzelm@14706
   156
lemma select_super: "c \<in> chain S - maxchain S ==>
paulson@13551
   157
                          (@c'. c': super S c): super S c"
paulson@13551
   158
apply (erule mem_super_Ex [THEN exE])
paulson@13551
   159
apply (rule someI2, auto)
paulson@13551
   160
done
paulson@13551
   161
wenzelm@14706
   162
lemma select_not_equals: "c \<in> chain S - maxchain S ==>
paulson@13551
   163
                          (@c'. c': super S c) \<noteq> c"
paulson@13551
   164
apply (rule notI)
paulson@13551
   165
apply (drule select_super)
paulson@13551
   166
apply (simp add: super_def psubset_def)
paulson@13551
   167
done
paulson@13551
   168
paulson@13551
   169
lemma succI3: "c \<in> chain S - maxchain S ==> succ S c = (@c'. c': super S c)"
paulson@13551
   170
apply (unfold succ_def)
paulson@13551
   171
apply (fast intro!: if_not_P)
paulson@13551
   172
done
paulson@13551
   173
paulson@13551
   174
lemma succ_not_equals: "c \<in> chain S - maxchain S ==> succ S c \<noteq> c"
paulson@13551
   175
apply (frule succI3)
paulson@13551
   176
apply (simp (no_asm_simp))
paulson@13551
   177
apply (rule select_not_equals, assumption)
paulson@13551
   178
done
paulson@13551
   179
paulson@13551
   180
lemma TFin_chain_lemma4: "c \<in> TFin S ==> (c :: 'a set set): chain S"
paulson@13551
   181
apply (erule TFin_induct)
paulson@13551
   182
apply (simp add: succ_def select_super [THEN super_subset_chain[THEN subsetD]])
paulson@13551
   183
apply (unfold chain_def)
paulson@13551
   184
apply (rule CollectI, safe)
paulson@13551
   185
apply (drule bspec, assumption)
wenzelm@14706
   186
apply (rule_tac [2] m1 = Xa and n1 = X in TFin_subset_linear [THEN disjE],
paulson@13551
   187
       blast+)
paulson@13551
   188
done
wenzelm@14706
   189
paulson@13551
   190
theorem Hausdorff: "\<exists>c. (c :: 'a set set): maxchain S"
paulson@13551
   191
apply (rule_tac x = "Union (TFin S) " in exI)
paulson@13551
   192
apply (rule classical)
paulson@13551
   193
apply (subgoal_tac "succ S (Union (TFin S)) = Union (TFin S) ")
paulson@13551
   194
 prefer 2
wenzelm@14706
   195
 apply (blast intro!: TFin_UnionI equal_succ_Union [THEN iffD2, symmetric])
paulson@13551
   196
apply (cut_tac subset_refl [THEN TFin_UnionI, THEN TFin_chain_lemma4])
paulson@13551
   197
apply (drule DiffI [THEN succ_not_equals], blast+)
paulson@13551
   198
done
paulson@13551
   199
paulson@13551
   200
wenzelm@14706
   201
subsection{*Zorn's Lemma: If All Chains Have Upper Bounds Then
paulson@13551
   202
                               There Is  a Maximal Element*}
paulson@13551
   203
wenzelm@14706
   204
lemma chain_extend:
wenzelm@14706
   205
    "[| c \<in> chain S; z \<in> S;
paulson@13551
   206
        \<forall>x \<in> c. x<=(z:: 'a set) |] ==> {z} Un c \<in> chain S"
paulson@13551
   207
by (unfold chain_def, blast)
paulson@13551
   208
paulson@13551
   209
lemma chain_Union_upper: "[| c \<in> chain S; x \<in> c |] ==> x \<subseteq> Union(c)"
paulson@13551
   210
by (unfold chain_def, auto)
paulson@13551
   211
paulson@13551
   212
lemma chain_ball_Union_upper: "c \<in> chain S ==> \<forall>x \<in> c. x \<subseteq> Union(c)"
paulson@13551
   213
by (unfold chain_def, auto)
paulson@13551
   214
paulson@13551
   215
lemma maxchain_Zorn:
paulson@13551
   216
     "[| c \<in> maxchain S; u \<in> S; Union(c) \<subseteq> u |] ==> Union(c) = u"
paulson@13551
   217
apply (rule ccontr)
paulson@13551
   218
apply (simp add: maxchain_def)
paulson@13551
   219
apply (erule conjE)
paulson@13551
   220
apply (subgoal_tac " ({u} Un c) \<in> super S c")
paulson@13551
   221
apply simp
paulson@13551
   222
apply (unfold super_def psubset_def)
paulson@13551
   223
apply (blast intro: chain_extend dest: chain_Union_upper)
paulson@13551
   224
done
paulson@13551
   225
paulson@13551
   226
theorem Zorn_Lemma:
paulson@13551
   227
     "\<forall>c \<in> chain S. Union(c): S ==> \<exists>y \<in> S. \<forall>z \<in> S. y \<subseteq> z --> y = z"
paulson@13551
   228
apply (cut_tac Hausdorff maxchain_subset_chain)
paulson@13551
   229
apply (erule exE)
paulson@13551
   230
apply (drule subsetD, assumption)
paulson@13551
   231
apply (drule bspec, assumption)
paulson@13551
   232
apply (rule_tac x = "Union (c) " in bexI)
paulson@13551
   233
apply (rule ballI, rule impI)
paulson@13551
   234
apply (blast dest!: maxchain_Zorn, assumption)
paulson@13551
   235
done
paulson@13551
   236
paulson@13551
   237
subsection{*Alternative version of Zorn's Lemma*}
paulson@13551
   238
paulson@13551
   239
lemma Zorn_Lemma2:
paulson@13551
   240
     "\<forall>c \<in> chain S. \<exists>y \<in> S. \<forall>x \<in> c. x \<subseteq> y
paulson@13551
   241
      ==> \<exists>y \<in> S. \<forall>x \<in> S. (y :: 'a set) \<subseteq> x --> y = x"
paulson@13551
   242
apply (cut_tac Hausdorff maxchain_subset_chain)
wenzelm@14706
   243
apply (erule exE)
wenzelm@14706
   244
apply (drule subsetD, assumption)
wenzelm@14706
   245
apply (drule bspec, assumption, erule bexE)
paulson@13551
   246
apply (rule_tac x = y in bexI)
paulson@13551
   247
 prefer 2 apply assumption
wenzelm@14706
   248
apply clarify
wenzelm@14706
   249
apply (rule ccontr)
paulson@13551
   250
apply (frule_tac z = x in chain_extend)
paulson@13551
   251
apply (assumption, blast)
wenzelm@14706
   252
apply (unfold maxchain_def super_def psubset_def)
paulson@13551
   253
apply (blast elim!: equalityCE)
paulson@13551
   254
done
paulson@13551
   255
paulson@13551
   256
text{*Various other lemmas*}
paulson@13551
   257
paulson@13551
   258
lemma chainD: "[| c \<in> chain S; x \<in> c; y \<in> c |] ==> x \<subseteq> y | y \<subseteq> x"
paulson@13551
   259
by (unfold chain_def, blast)
paulson@13551
   260
paulson@13551
   261
lemma chainD2: "!!(c :: 'a set set). c \<in> chain S ==> c \<subseteq> S"
paulson@13551
   262
by (unfold chain_def, blast)
paulson@13551
   263
paulson@13551
   264
end