src/HOL/Real/RealDef.thy
author nipkow
Mon Aug 16 14:22:27 2004 +0200 (2004-08-16)
changeset 15131 c69542757a4d
parent 15086 e6a2a98d5ef5
child 15140 322485b816ac
permissions -rw-r--r--
New theory header syntax.
paulson@5588
     1
(*  Title       : Real/RealDef.thy
paulson@7219
     2
    ID          : $Id$
paulson@5588
     3
    Author      : Jacques D. Fleuriot
paulson@5588
     4
    Copyright   : 1998  University of Cambridge
paulson@14387
     5
    Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4
paulson@14269
     6
*)
paulson@14269
     7
paulson@14387
     8
header{*Defining the Reals from the Positive Reals*}
paulson@14387
     9
nipkow@15131
    10
theory RealDef
nipkow@15131
    11
import PReal
nipkow@15131
    12
files ("real_arith.ML")
nipkow@15131
    13
begin
paulson@5588
    14
paulson@5588
    15
constdefs
paulson@5588
    16
  realrel   ::  "((preal * preal) * (preal * preal)) set"
paulson@14269
    17
  "realrel == {p. \<exists>x1 y1 x2 y2. p = ((x1,y1),(x2,y2)) & x1+y2 = x2+y1}"
paulson@14269
    18
paulson@14484
    19
typedef (Real)  real = "UNIV//realrel"
paulson@14269
    20
  by (auto simp add: quotient_def)
paulson@5588
    21
wenzelm@14691
    22
instance real :: "{ord, zero, one, plus, times, minus, inverse}" ..
paulson@14269
    23
paulson@14484
    24
constdefs
paulson@14484
    25
paulson@14484
    26
  (** these don't use the overloaded "real" function: users don't see them **)
paulson@14484
    27
paulson@14484
    28
  real_of_preal :: "preal => real"
paulson@14484
    29
  "real_of_preal m     ==
paulson@14484
    30
           Abs_Real(realrel``{(m + preal_of_rat 1, preal_of_rat 1)})"
paulson@14484
    31
paulson@14269
    32
consts
paulson@14378
    33
   (*Overloaded constant denoting the Real subset of enclosing
paulson@14269
    34
     types such as hypreal and complex*)
paulson@14269
    35
   Reals :: "'a set"
paulson@14269
    36
paulson@14269
    37
   (*overloaded constant for injecting other types into "real"*)
paulson@14269
    38
   real :: "'a => real"
paulson@5588
    39
wenzelm@14691
    40
syntax (xsymbols)
wenzelm@14691
    41
  Reals     :: "'a set"                   ("\<real>")
wenzelm@14691
    42
paulson@5588
    43
paulson@14269
    44
defs (overloaded)
paulson@5588
    45
paulson@14269
    46
  real_zero_def:
paulson@14484
    47
  "0 == Abs_Real(realrel``{(preal_of_rat 1, preal_of_rat 1)})"
paulson@12018
    48
paulson@14269
    49
  real_one_def:
paulson@14484
    50
  "1 == Abs_Real(realrel``
paulson@14365
    51
               {(preal_of_rat 1 + preal_of_rat 1,
paulson@14365
    52
		 preal_of_rat 1)})"
paulson@5588
    53
paulson@14269
    54
  real_minus_def:
paulson@14484
    55
  "- r ==  contents (\<Union>(x,y) \<in> Rep_Real(r). { Abs_Real(realrel``{(y,x)}) })"
paulson@14484
    56
paulson@14484
    57
  real_add_def:
paulson@14484
    58
   "z + w ==
paulson@14484
    59
       contents (\<Union>(x,y) \<in> Rep_Real(z). \<Union>(u,v) \<in> Rep_Real(w).
paulson@14484
    60
		 { Abs_Real(realrel``{(x+u, y+v)}) })"
bauerg@10606
    61
paulson@14269
    62
  real_diff_def:
paulson@14484
    63
   "r - (s::real) == r + - s"
paulson@14484
    64
paulson@14484
    65
  real_mult_def:
paulson@14484
    66
    "z * w ==
paulson@14484
    67
       contents (\<Union>(x,y) \<in> Rep_Real(z). \<Union>(u,v) \<in> Rep_Real(w).
paulson@14484
    68
		 { Abs_Real(realrel``{(x*u + y*v, x*v + y*u)}) })"
paulson@5588
    69
paulson@14269
    70
  real_inverse_def:
wenzelm@11713
    71
  "inverse (R::real) == (SOME S. (R = 0 & S = 0) | S * R = 1)"
paulson@5588
    72
paulson@14269
    73
  real_divide_def:
bauerg@10606
    74
  "R / (S::real) == R * inverse S"
paulson@14269
    75
paulson@14484
    76
  real_le_def:
paulson@14484
    77
   "z \<le> (w::real) == 
paulson@14484
    78
    \<exists>x y u v. x+v \<le> u+y & (x,y) \<in> Rep_Real z & (u,v) \<in> Rep_Real w"
paulson@5588
    79
paulson@14365
    80
  real_less_def: "(x < (y::real)) == (x \<le> y & x \<noteq> y)"
paulson@14365
    81
paulson@14334
    82
  real_abs_def:  "abs (r::real) == (if 0 \<le> r then r else -r)"
paulson@14334
    83
paulson@14334
    84
paulson@14365
    85
paulson@14329
    86
subsection{*Proving that realrel is an equivalence relation*}
paulson@14269
    87
paulson@14270
    88
lemma preal_trans_lemma:
paulson@14365
    89
  assumes "x + y1 = x1 + y"
paulson@14365
    90
      and "x + y2 = x2 + y"
paulson@14365
    91
  shows "x1 + y2 = x2 + (y1::preal)"
paulson@14365
    92
proof -
paulson@14365
    93
  have "(x1 + y2) + x = (x + y2) + x1" by (simp add: preal_add_ac) 
paulson@14365
    94
  also have "... = (x2 + y) + x1"  by (simp add: prems)
paulson@14365
    95
  also have "... = x2 + (x1 + y)"  by (simp add: preal_add_ac)
paulson@14365
    96
  also have "... = x2 + (x + y1)"  by (simp add: prems)
paulson@14365
    97
  also have "... = (x2 + y1) + x"  by (simp add: preal_add_ac)
paulson@14365
    98
  finally have "(x1 + y2) + x = (x2 + y1) + x" .
paulson@14365
    99
  thus ?thesis by (simp add: preal_add_right_cancel_iff) 
paulson@14365
   100
qed
paulson@14365
   101
paulson@14269
   102
paulson@14484
   103
lemma realrel_iff [simp]: "(((x1,y1),(x2,y2)) \<in> realrel) = (x1 + y2 = x2 + y1)"
paulson@14484
   104
by (simp add: realrel_def)
paulson@14269
   105
paulson@14269
   106
lemma equiv_realrel: "equiv UNIV realrel"
paulson@14365
   107
apply (auto simp add: equiv_def refl_def sym_def trans_def realrel_def)
paulson@14365
   108
apply (blast dest: preal_trans_lemma) 
paulson@14269
   109
done
paulson@14269
   110
paulson@14497
   111
text{*Reduces equality of equivalence classes to the @{term realrel} relation:
paulson@14497
   112
  @{term "(realrel `` {x} = realrel `` {y}) = ((x,y) \<in> realrel)"} *}
paulson@14269
   113
lemmas equiv_realrel_iff = 
paulson@14269
   114
       eq_equiv_class_iff [OF equiv_realrel UNIV_I UNIV_I]
paulson@14269
   115
paulson@14269
   116
declare equiv_realrel_iff [simp]
paulson@14269
   117
paulson@14497
   118
paulson@14484
   119
lemma realrel_in_real [simp]: "realrel``{(x,y)}: Real"
paulson@14484
   120
by (simp add: Real_def realrel_def quotient_def, blast)
paulson@14269
   121
paulson@14365
   122
paulson@14484
   123
lemma inj_on_Abs_Real: "inj_on Abs_Real Real"
paulson@14269
   124
apply (rule inj_on_inverseI)
paulson@14484
   125
apply (erule Abs_Real_inverse)
paulson@14269
   126
done
paulson@14269
   127
paulson@14484
   128
declare inj_on_Abs_Real [THEN inj_on_iff, simp]
paulson@14484
   129
declare Abs_Real_inverse [simp]
paulson@14269
   130
paulson@14269
   131
paulson@14484
   132
text{*Case analysis on the representation of a real number as an equivalence
paulson@14484
   133
      class of pairs of positive reals.*}
paulson@14484
   134
lemma eq_Abs_Real [case_names Abs_Real, cases type: real]: 
paulson@14484
   135
     "(!!x y. z = Abs_Real(realrel``{(x,y)}) ==> P) ==> P"
paulson@14484
   136
apply (rule Rep_Real [of z, unfolded Real_def, THEN quotientE])
paulson@14484
   137
apply (drule arg_cong [where f=Abs_Real])
paulson@14484
   138
apply (auto simp add: Rep_Real_inverse)
paulson@14269
   139
done
paulson@14269
   140
paulson@14269
   141
paulson@14329
   142
subsection{*Congruence property for addition*}
paulson@14269
   143
paulson@14269
   144
lemma real_add_congruent2_lemma:
paulson@14269
   145
     "[|a + ba = aa + b; ab + bc = ac + bb|]
paulson@14269
   146
      ==> a + ab + (ba + bc) = aa + ac + (b + (bb::preal))"
paulson@14269
   147
apply (simp add: preal_add_assoc) 
paulson@14269
   148
apply (rule preal_add_left_commute [of ab, THEN ssubst])
paulson@14269
   149
apply (simp add: preal_add_assoc [symmetric])
paulson@14269
   150
apply (simp add: preal_add_ac)
paulson@14269
   151
done
paulson@14269
   152
paulson@14269
   153
lemma real_add:
paulson@14497
   154
     "Abs_Real (realrel``{(x,y)}) + Abs_Real (realrel``{(u,v)}) =
paulson@14497
   155
      Abs_Real (realrel``{(x+u, y+v)})"
paulson@14497
   156
proof -
paulson@14658
   157
  have "congruent2 realrel realrel
paulson@14497
   158
        (\<lambda>z w. (\<lambda>(x,y). (\<lambda>(u,v). {Abs_Real (realrel `` {(x+u, y+v)})}) w) z)"
paulson@14497
   159
    by (simp add: congruent2_def, blast intro: real_add_congruent2_lemma) 
paulson@14497
   160
  thus ?thesis
paulson@14497
   161
    by (simp add: real_add_def UN_UN_split_split_eq
paulson@14658
   162
                  UN_equiv_class2 [OF equiv_realrel equiv_realrel])
paulson@14497
   163
qed
paulson@14269
   164
paulson@14269
   165
lemma real_add_commute: "(z::real) + w = w + z"
paulson@14497
   166
by (cases z, cases w, simp add: real_add preal_add_ac)
paulson@14269
   167
paulson@14269
   168
lemma real_add_assoc: "((z1::real) + z2) + z3 = z1 + (z2 + z3)"
paulson@14497
   169
by (cases z1, cases z2, cases z3, simp add: real_add preal_add_assoc)
paulson@14269
   170
paulson@14269
   171
lemma real_add_zero_left: "(0::real) + z = z"
paulson@14497
   172
by (cases z, simp add: real_add real_zero_def preal_add_ac)
paulson@14269
   173
obua@14738
   174
instance real :: comm_monoid_add
paulson@14269
   175
  by (intro_classes,
paulson@14269
   176
      (assumption | 
paulson@14269
   177
       rule real_add_commute real_add_assoc real_add_zero_left)+)
paulson@14269
   178
paulson@14269
   179
paulson@14334
   180
subsection{*Additive Inverse on real*}
paulson@14334
   181
paulson@14484
   182
lemma real_minus: "- Abs_Real(realrel``{(x,y)}) = Abs_Real(realrel `` {(y,x)})"
paulson@14484
   183
proof -
paulson@14484
   184
  have "congruent realrel (\<lambda>(x,y). {Abs_Real (realrel``{(y,x)})})"
paulson@14484
   185
    by (simp add: congruent_def preal_add_commute) 
paulson@14484
   186
  thus ?thesis
paulson@14484
   187
    by (simp add: real_minus_def UN_equiv_class [OF equiv_realrel])
paulson@14484
   188
qed
paulson@14334
   189
paulson@14334
   190
lemma real_add_minus_left: "(-z) + z = (0::real)"
paulson@14497
   191
by (cases z, simp add: real_minus real_add real_zero_def preal_add_commute)
paulson@14269
   192
paulson@14269
   193
paulson@14329
   194
subsection{*Congruence property for multiplication*}
paulson@14269
   195
paulson@14329
   196
lemma real_mult_congruent2_lemma:
paulson@14329
   197
     "!!(x1::preal). [| x1 + y2 = x2 + y1 |] ==>
paulson@14484
   198
          x * x1 + y * y1 + (x * y2 + y * x2) =
paulson@14484
   199
          x * x2 + y * y2 + (x * y1 + y * x1)"
paulson@14484
   200
apply (simp add: preal_add_left_commute preal_add_assoc [symmetric])
paulson@14269
   201
apply (simp add: preal_add_assoc preal_add_mult_distrib2 [symmetric])
paulson@14269
   202
apply (simp add: preal_add_commute)
paulson@14269
   203
done
paulson@14269
   204
paulson@14269
   205
lemma real_mult_congruent2:
paulson@14658
   206
    "congruent2 realrel realrel (%p1 p2.
paulson@14484
   207
        (%(x1,y1). (%(x2,y2). 
paulson@14484
   208
          { Abs_Real (realrel``{(x1*x2 + y1*y2, x1*y2+y1*x2)}) }) p2) p1)"
paulson@14658
   209
apply (rule congruent2_commuteI [OF equiv_realrel], clarify)
paulson@14269
   210
apply (simp add: preal_mult_commute preal_add_commute)
paulson@14269
   211
apply (auto simp add: real_mult_congruent2_lemma)
paulson@14269
   212
done
paulson@14269
   213
paulson@14269
   214
lemma real_mult:
paulson@14484
   215
      "Abs_Real((realrel``{(x1,y1)})) * Abs_Real((realrel``{(x2,y2)})) =
paulson@14484
   216
       Abs_Real(realrel `` {(x1*x2+y1*y2,x1*y2+y1*x2)})"
paulson@14484
   217
by (simp add: real_mult_def UN_UN_split_split_eq
paulson@14658
   218
         UN_equiv_class2 [OF equiv_realrel equiv_realrel real_mult_congruent2])
paulson@14269
   219
paulson@14269
   220
lemma real_mult_commute: "(z::real) * w = w * z"
paulson@14497
   221
by (cases z, cases w, simp add: real_mult preal_add_ac preal_mult_ac)
paulson@14269
   222
paulson@14269
   223
lemma real_mult_assoc: "((z1::real) * z2) * z3 = z1 * (z2 * z3)"
paulson@14484
   224
apply (cases z1, cases z2, cases z3)
paulson@14484
   225
apply (simp add: real_mult preal_add_mult_distrib2 preal_add_ac preal_mult_ac)
paulson@14269
   226
done
paulson@14269
   227
paulson@14269
   228
lemma real_mult_1: "(1::real) * z = z"
paulson@14484
   229
apply (cases z)
paulson@14484
   230
apply (simp add: real_mult real_one_def preal_add_mult_distrib2
paulson@14484
   231
                 preal_mult_1_right preal_mult_ac preal_add_ac)
paulson@14269
   232
done
paulson@14269
   233
paulson@14269
   234
lemma real_add_mult_distrib: "((z1::real) + z2) * w = (z1 * w) + (z2 * w)"
paulson@14484
   235
apply (cases z1, cases z2, cases w)
paulson@14484
   236
apply (simp add: real_add real_mult preal_add_mult_distrib2 
paulson@14484
   237
                 preal_add_ac preal_mult_ac)
paulson@14269
   238
done
paulson@14269
   239
paulson@14329
   240
text{*one and zero are distinct*}
paulson@14365
   241
lemma real_zero_not_eq_one: "0 \<noteq> (1::real)"
paulson@14484
   242
proof -
paulson@14484
   243
  have "preal_of_rat 1 < preal_of_rat 1 + preal_of_rat 1"
paulson@14484
   244
    by (simp add: preal_self_less_add_left) 
paulson@14484
   245
  thus ?thesis
paulson@14484
   246
    by (simp add: real_zero_def real_one_def preal_add_right_cancel_iff)
paulson@14484
   247
qed
paulson@14269
   248
paulson@14329
   249
subsection{*existence of inverse*}
paulson@14365
   250
paulson@14484
   251
lemma real_zero_iff: "Abs_Real (realrel `` {(x, x)}) = 0"
paulson@14497
   252
by (simp add: real_zero_def preal_add_commute)
paulson@14269
   253
paulson@14365
   254
text{*Instead of using an existential quantifier and constructing the inverse
paulson@14365
   255
within the proof, we could define the inverse explicitly.*}
paulson@14365
   256
paulson@14365
   257
lemma real_mult_inverse_left_ex: "x \<noteq> 0 ==> \<exists>y. y*x = (1::real)"
paulson@14484
   258
apply (simp add: real_zero_def real_one_def, cases x)
paulson@14269
   259
apply (cut_tac x = xa and y = y in linorder_less_linear)
paulson@14365
   260
apply (auto dest!: less_add_left_Ex simp add: real_zero_iff)
paulson@14334
   261
apply (rule_tac
paulson@14484
   262
        x = "Abs_Real (realrel `` { (preal_of_rat 1, 
paulson@14365
   263
                            inverse (D) + preal_of_rat 1)}) " 
paulson@14334
   264
       in exI)
paulson@14334
   265
apply (rule_tac [2]
paulson@14484
   266
        x = "Abs_Real (realrel `` { (inverse (D) + preal_of_rat 1,
paulson@14365
   267
                   preal_of_rat 1)})" 
paulson@14334
   268
       in exI)
paulson@14365
   269
apply (auto simp add: real_mult preal_mult_1_right
paulson@14329
   270
              preal_add_mult_distrib2 preal_add_mult_distrib preal_mult_1
paulson@14365
   271
              preal_mult_inverse_right preal_add_ac preal_mult_ac)
paulson@14269
   272
done
paulson@14269
   273
paulson@14365
   274
lemma real_mult_inverse_left: "x \<noteq> 0 ==> inverse(x)*x = (1::real)"
paulson@14484
   275
apply (simp add: real_inverse_def)
paulson@14365
   276
apply (frule real_mult_inverse_left_ex, safe)
paulson@14269
   277
apply (rule someI2, auto)
paulson@14269
   278
done
paulson@14334
   279
paulson@14341
   280
paulson@14341
   281
subsection{*The Real Numbers form a Field*}
paulson@14341
   282
paulson@14334
   283
instance real :: field
paulson@14334
   284
proof
paulson@14334
   285
  fix x y z :: real
paulson@14334
   286
  show "- x + x = 0" by (rule real_add_minus_left)
paulson@14334
   287
  show "x - y = x + (-y)" by (simp add: real_diff_def)
paulson@14334
   288
  show "(x * y) * z = x * (y * z)" by (rule real_mult_assoc)
paulson@14334
   289
  show "x * y = y * x" by (rule real_mult_commute)
paulson@14334
   290
  show "1 * x = x" by (rule real_mult_1)
paulson@14334
   291
  show "(x + y) * z = x * z + y * z" by (simp add: real_add_mult_distrib)
paulson@14334
   292
  show "0 \<noteq> (1::real)" by (rule real_zero_not_eq_one)
paulson@14365
   293
  show "x \<noteq> 0 ==> inverse x * x = 1" by (rule real_mult_inverse_left)
paulson@14430
   294
  show "x / y = x * inverse y" by (simp add: real_divide_def)
paulson@14334
   295
qed
paulson@14334
   296
paulson@14334
   297
paulson@14341
   298
text{*Inverse of zero!  Useful to simplify certain equations*}
paulson@14269
   299
paulson@14334
   300
lemma INVERSE_ZERO: "inverse 0 = (0::real)"
paulson@14484
   301
by (simp add: real_inverse_def)
paulson@14334
   302
paulson@14334
   303
instance real :: division_by_zero
paulson@14334
   304
proof
paulson@14334
   305
  show "inverse 0 = (0::real)" by (rule INVERSE_ZERO)
paulson@14334
   306
qed
paulson@14334
   307
paulson@14334
   308
paulson@14334
   309
(*Pull negations out*)
paulson@14334
   310
declare minus_mult_right [symmetric, simp] 
paulson@14334
   311
        minus_mult_left [symmetric, simp]
paulson@14334
   312
paulson@14334
   313
lemma real_mult_1_right: "z * (1::real) = z"
obua@14738
   314
  by (rule OrderedGroup.mult_1_right)
paulson@14269
   315
paulson@14269
   316
paulson@14365
   317
subsection{*The @{text "\<le>"} Ordering*}
paulson@14269
   318
paulson@14365
   319
lemma real_le_refl: "w \<le> (w::real)"
paulson@14484
   320
by (cases w, force simp add: real_le_def)
paulson@14269
   321
paulson@14378
   322
text{*The arithmetic decision procedure is not set up for type preal.
paulson@14378
   323
  This lemma is currently unused, but it could simplify the proofs of the
paulson@14378
   324
  following two lemmas.*}
paulson@14378
   325
lemma preal_eq_le_imp_le:
paulson@14378
   326
  assumes eq: "a+b = c+d" and le: "c \<le> a"
paulson@14378
   327
  shows "b \<le> (d::preal)"
paulson@14378
   328
proof -
paulson@14378
   329
  have "c+d \<le> a+d" by (simp add: prems preal_cancels)
paulson@14378
   330
  hence "a+b \<le> a+d" by (simp add: prems)
paulson@14378
   331
  thus "b \<le> d" by (simp add: preal_cancels)
paulson@14378
   332
qed
paulson@14378
   333
paulson@14378
   334
lemma real_le_lemma:
paulson@14378
   335
  assumes l: "u1 + v2 \<le> u2 + v1"
paulson@14378
   336
      and "x1 + v1 = u1 + y1"
paulson@14378
   337
      and "x2 + v2 = u2 + y2"
paulson@14378
   338
  shows "x1 + y2 \<le> x2 + (y1::preal)"
paulson@14365
   339
proof -
paulson@14378
   340
  have "(x1+v1) + (u2+y2) = (u1+y1) + (x2+v2)" by (simp add: prems)
paulson@14378
   341
  hence "(x1+y2) + (u2+v1) = (x2+y1) + (u1+v2)" by (simp add: preal_add_ac)
paulson@14378
   342
  also have "... \<le> (x2+y1) + (u2+v1)"
paulson@14365
   343
         by (simp add: prems preal_add_le_cancel_left)
paulson@14378
   344
  finally show ?thesis by (simp add: preal_add_le_cancel_right)
paulson@14378
   345
qed						 
paulson@14378
   346
paulson@14378
   347
lemma real_le: 
paulson@14484
   348
     "(Abs_Real(realrel``{(x1,y1)}) \<le> Abs_Real(realrel``{(x2,y2)})) =  
paulson@14484
   349
      (x1 + y2 \<le> x2 + y1)"
paulson@14378
   350
apply (simp add: real_le_def) 
paulson@14387
   351
apply (auto intro: real_le_lemma)
paulson@14378
   352
done
paulson@14378
   353
paulson@14378
   354
lemma real_le_anti_sym: "[| z \<le> w; w \<le> z |] ==> z = (w::real)"
paulson@14497
   355
by (cases z, cases w, simp add: real_le order_antisym)
paulson@14378
   356
paulson@14378
   357
lemma real_trans_lemma:
paulson@14378
   358
  assumes "x + v \<le> u + y"
paulson@14378
   359
      and "u + v' \<le> u' + v"
paulson@14378
   360
      and "x2 + v2 = u2 + y2"
paulson@14378
   361
  shows "x + v' \<le> u' + (y::preal)"
paulson@14378
   362
proof -
paulson@14378
   363
  have "(x+v') + (u+v) = (x+v) + (u+v')" by (simp add: preal_add_ac)
paulson@14378
   364
  also have "... \<le> (u+y) + (u+v')" 
paulson@14378
   365
    by (simp add: preal_add_le_cancel_right prems) 
paulson@14378
   366
  also have "... \<le> (u+y) + (u'+v)" 
paulson@14378
   367
    by (simp add: preal_add_le_cancel_left prems) 
paulson@14378
   368
  also have "... = (u'+y) + (u+v)"  by (simp add: preal_add_ac)
paulson@14378
   369
  finally show ?thesis by (simp add: preal_add_le_cancel_right)
paulson@14365
   370
qed						 
paulson@14269
   371
paulson@14365
   372
lemma real_le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::real)"
paulson@14484
   373
apply (cases i, cases j, cases k)
paulson@14484
   374
apply (simp add: real_le)
paulson@14378
   375
apply (blast intro: real_trans_lemma) 
paulson@14334
   376
done
paulson@14334
   377
paulson@14334
   378
(* Axiom 'order_less_le' of class 'order': *)
paulson@14334
   379
lemma real_less_le: "((w::real) < z) = (w \<le> z & w \<noteq> z)"
paulson@14365
   380
by (simp add: real_less_def)
paulson@14365
   381
paulson@14365
   382
instance real :: order
paulson@14365
   383
proof qed
paulson@14365
   384
 (assumption |
paulson@14365
   385
  rule real_le_refl real_le_trans real_le_anti_sym real_less_le)+
paulson@14365
   386
paulson@14378
   387
(* Axiom 'linorder_linear' of class 'linorder': *)
paulson@14378
   388
lemma real_le_linear: "(z::real) \<le> w | w \<le> z"
paulson@14484
   389
apply (cases z, cases w) 
paulson@14378
   390
apply (auto simp add: real_le real_zero_def preal_add_ac preal_cancels)
paulson@14334
   391
done
paulson@14334
   392
paulson@14334
   393
paulson@14334
   394
instance real :: linorder
paulson@14334
   395
  by (intro_classes, rule real_le_linear)
paulson@14334
   396
paulson@14334
   397
paulson@14378
   398
lemma real_le_eq_diff: "(x \<le> y) = (x-y \<le> (0::real))"
paulson@14484
   399
apply (cases x, cases y) 
paulson@14378
   400
apply (auto simp add: real_le real_zero_def real_diff_def real_add real_minus
paulson@14378
   401
                      preal_add_ac)
paulson@14378
   402
apply (simp_all add: preal_add_assoc [symmetric] preal_cancels)
paulson@14378
   403
done 
paulson@14378
   404
paulson@14484
   405
lemma real_add_left_mono: 
paulson@14484
   406
  assumes le: "x \<le> y" shows "z + x \<le> z + (y::real)"
paulson@14484
   407
proof -
paulson@14484
   408
  have "z + x - (z + y) = (z + -z) + (x - y)"
paulson@14484
   409
    by (simp add: diff_minus add_ac) 
paulson@14484
   410
  with le show ?thesis 
obua@14754
   411
    by (simp add: real_le_eq_diff[of x] real_le_eq_diff[of "z+x"] diff_minus)
paulson@14484
   412
qed
paulson@14334
   413
paulson@14365
   414
lemma real_sum_gt_zero_less: "(0 < S + (-W::real)) ==> (W < S)"
paulson@14365
   415
by (simp add: linorder_not_le [symmetric] real_le_eq_diff [of S] diff_minus)
paulson@14365
   416
paulson@14365
   417
lemma real_less_sum_gt_zero: "(W < S) ==> (0 < S + (-W::real))"
paulson@14365
   418
by (simp add: linorder_not_le [symmetric] real_le_eq_diff [of S] diff_minus)
paulson@14334
   419
paulson@14334
   420
lemma real_mult_order: "[| 0 < x; 0 < y |] ==> (0::real) < x * y"
paulson@14484
   421
apply (cases x, cases y)
paulson@14378
   422
apply (simp add: linorder_not_le [where 'a = real, symmetric] 
paulson@14378
   423
                 linorder_not_le [where 'a = preal] 
paulson@14378
   424
                  real_zero_def real_le real_mult)
paulson@14365
   425
  --{*Reduce to the (simpler) @{text "\<le>"} relation *}
paulson@14378
   426
apply (auto  dest!: less_add_left_Ex 
paulson@14365
   427
     simp add: preal_add_ac preal_mult_ac 
paulson@14378
   428
          preal_add_mult_distrib2 preal_cancels preal_self_less_add_right)
paulson@14334
   429
done
paulson@14334
   430
paulson@14334
   431
lemma real_mult_less_mono2: "[| (0::real) < z; x < y |] ==> z * x < z * y"
paulson@14334
   432
apply (rule real_sum_gt_zero_less)
paulson@14334
   433
apply (drule real_less_sum_gt_zero [of x y])
paulson@14334
   434
apply (drule real_mult_order, assumption)
paulson@14334
   435
apply (simp add: right_distrib)
paulson@14334
   436
done
paulson@14334
   437
paulson@14365
   438
text{*lemma for proving @{term "0<(1::real)"}*}
paulson@14365
   439
lemma real_zero_le_one: "0 \<le> (1::real)"
paulson@14387
   440
by (simp add: real_zero_def real_one_def real_le 
paulson@14378
   441
                 preal_self_less_add_left order_less_imp_le)
paulson@14334
   442
paulson@14378
   443
paulson@14334
   444
subsection{*The Reals Form an Ordered Field*}
paulson@14334
   445
paulson@14334
   446
instance real :: ordered_field
paulson@14334
   447
proof
paulson@14334
   448
  fix x y z :: real
paulson@14334
   449
  show "x \<le> y ==> z + x \<le> z + y" by (rule real_add_left_mono)
paulson@14334
   450
  show "x < y ==> 0 < z ==> z * x < z * y" by (simp add: real_mult_less_mono2)
paulson@14334
   451
  show "\<bar>x\<bar> = (if x < 0 then -x else x)"
paulson@14334
   452
    by (auto dest: order_le_less_trans simp add: real_abs_def linorder_not_le)
paulson@14334
   453
qed
paulson@14334
   454
paulson@14365
   455
paulson@14365
   456
paulson@14365
   457
text{*The function @{term real_of_preal} requires many proofs, but it seems
paulson@14365
   458
to be essential for proving completeness of the reals from that of the
paulson@14365
   459
positive reals.*}
paulson@14365
   460
paulson@14365
   461
lemma real_of_preal_add:
paulson@14365
   462
     "real_of_preal ((x::preal) + y) = real_of_preal x + real_of_preal y"
paulson@14365
   463
by (simp add: real_of_preal_def real_add preal_add_mult_distrib preal_mult_1 
paulson@14365
   464
              preal_add_ac)
paulson@14365
   465
paulson@14365
   466
lemma real_of_preal_mult:
paulson@14365
   467
     "real_of_preal ((x::preal) * y) = real_of_preal x* real_of_preal y"
paulson@14365
   468
by (simp add: real_of_preal_def real_mult preal_add_mult_distrib2
paulson@14365
   469
              preal_mult_1 preal_mult_1_right preal_add_ac preal_mult_ac)
paulson@14365
   470
paulson@14365
   471
paulson@14365
   472
text{*Gleason prop 9-4.4 p 127*}
paulson@14365
   473
lemma real_of_preal_trichotomy:
paulson@14365
   474
      "\<exists>m. (x::real) = real_of_preal m | x = 0 | x = -(real_of_preal m)"
paulson@14484
   475
apply (simp add: real_of_preal_def real_zero_def, cases x)
paulson@14365
   476
apply (auto simp add: real_minus preal_add_ac)
paulson@14365
   477
apply (cut_tac x = x and y = y in linorder_less_linear)
paulson@14365
   478
apply (auto dest!: less_add_left_Ex simp add: preal_add_assoc [symmetric])
paulson@14365
   479
apply (auto simp add: preal_add_commute)
paulson@14365
   480
done
paulson@14365
   481
paulson@14365
   482
lemma real_of_preal_leD:
paulson@14365
   483
      "real_of_preal m1 \<le> real_of_preal m2 ==> m1 \<le> m2"
paulson@14484
   484
by (simp add: real_of_preal_def real_le preal_cancels)
paulson@14365
   485
paulson@14365
   486
lemma real_of_preal_lessI: "m1 < m2 ==> real_of_preal m1 < real_of_preal m2"
paulson@14365
   487
by (auto simp add: real_of_preal_leD linorder_not_le [symmetric])
paulson@14365
   488
paulson@14365
   489
lemma real_of_preal_lessD:
paulson@14365
   490
      "real_of_preal m1 < real_of_preal m2 ==> m1 < m2"
paulson@14484
   491
by (simp add: real_of_preal_def real_le linorder_not_le [symmetric] 
paulson@14484
   492
              preal_cancels) 
paulson@14484
   493
paulson@14365
   494
paulson@14365
   495
lemma real_of_preal_less_iff [simp]:
paulson@14365
   496
     "(real_of_preal m1 < real_of_preal m2) = (m1 < m2)"
paulson@14365
   497
by (blast intro: real_of_preal_lessI real_of_preal_lessD)
paulson@14365
   498
paulson@14365
   499
lemma real_of_preal_le_iff:
paulson@14365
   500
     "(real_of_preal m1 \<le> real_of_preal m2) = (m1 \<le> m2)"
paulson@14365
   501
by (simp add: linorder_not_less [symmetric]) 
paulson@14365
   502
paulson@14365
   503
lemma real_of_preal_zero_less: "0 < real_of_preal m"
paulson@14365
   504
apply (auto simp add: real_zero_def real_of_preal_def real_less_def real_le_def
paulson@14365
   505
            preal_add_ac preal_cancels)
paulson@14365
   506
apply (simp_all add: preal_add_assoc [symmetric] preal_cancels)
paulson@14365
   507
apply (blast intro: preal_self_less_add_left order_less_imp_le)
paulson@14365
   508
apply (insert preal_not_eq_self [of "preal_of_rat 1" m]) 
paulson@14365
   509
apply (simp add: preal_add_ac) 
paulson@14365
   510
done
paulson@14365
   511
paulson@14365
   512
lemma real_of_preal_minus_less_zero: "- real_of_preal m < 0"
paulson@14365
   513
by (simp add: real_of_preal_zero_less)
paulson@14365
   514
paulson@14365
   515
lemma real_of_preal_not_minus_gt_zero: "~ 0 < - real_of_preal m"
paulson@14484
   516
proof -
paulson@14484
   517
  from real_of_preal_minus_less_zero
paulson@14484
   518
  show ?thesis by (blast dest: order_less_trans)
paulson@14484
   519
qed
paulson@14365
   520
paulson@14365
   521
paulson@14365
   522
subsection{*Theorems About the Ordering*}
paulson@14365
   523
paulson@14365
   524
text{*obsolete but used a lot*}
paulson@14365
   525
paulson@14365
   526
lemma real_not_refl2: "x < y ==> x \<noteq> (y::real)"
paulson@14365
   527
by blast 
paulson@14365
   528
paulson@14365
   529
lemma real_le_imp_less_or_eq: "!!(x::real). x \<le> y ==> x < y | x = y"
paulson@14365
   530
by (simp add: order_le_less)
paulson@14365
   531
paulson@14365
   532
lemma real_gt_zero_preal_Ex: "(0 < x) = (\<exists>y. x = real_of_preal y)"
paulson@14365
   533
apply (auto simp add: real_of_preal_zero_less)
paulson@14365
   534
apply (cut_tac x = x in real_of_preal_trichotomy)
paulson@14365
   535
apply (blast elim!: real_of_preal_not_minus_gt_zero [THEN notE])
paulson@14365
   536
done
paulson@14365
   537
paulson@14365
   538
lemma real_gt_preal_preal_Ex:
paulson@14365
   539
     "real_of_preal z < x ==> \<exists>y. x = real_of_preal y"
paulson@14365
   540
by (blast dest!: real_of_preal_zero_less [THEN order_less_trans]
paulson@14365
   541
             intro: real_gt_zero_preal_Ex [THEN iffD1])
paulson@14365
   542
paulson@14365
   543
lemma real_ge_preal_preal_Ex:
paulson@14365
   544
     "real_of_preal z \<le> x ==> \<exists>y. x = real_of_preal y"
paulson@14365
   545
by (blast dest: order_le_imp_less_or_eq real_gt_preal_preal_Ex)
paulson@14365
   546
paulson@14365
   547
lemma real_less_all_preal: "y \<le> 0 ==> \<forall>x. y < real_of_preal x"
paulson@14365
   548
by (auto elim: order_le_imp_less_or_eq [THEN disjE] 
paulson@14365
   549
            intro: real_of_preal_zero_less [THEN [2] order_less_trans] 
paulson@14365
   550
            simp add: real_of_preal_zero_less)
paulson@14365
   551
paulson@14365
   552
lemma real_less_all_real2: "~ 0 < y ==> \<forall>x. y < real_of_preal x"
paulson@14365
   553
by (blast intro!: real_less_all_preal linorder_not_less [THEN iffD1])
paulson@14365
   554
paulson@14334
   555
lemma real_add_less_le_mono: "[| w'<w; z'\<le>z |] ==> w' + z' < w + (z::real)"
obua@14738
   556
  by (rule OrderedGroup.add_less_le_mono)
paulson@14334
   557
paulson@14334
   558
lemma real_add_le_less_mono:
paulson@14334
   559
     "!!z z'::real. [| w'\<le>w; z'<z |] ==> w' + z' < w + z"
obua@14738
   560
  by (rule OrderedGroup.add_le_less_mono)
paulson@14334
   561
paulson@14334
   562
lemma real_le_square [simp]: "(0::real) \<le> x*x"
paulson@14334
   563
 by (rule Ring_and_Field.zero_le_square)
paulson@14334
   564
paulson@14334
   565
paulson@14334
   566
subsection{*More Lemmas*}
paulson@14334
   567
paulson@14334
   568
lemma real_mult_left_cancel: "(c::real) \<noteq> 0 ==> (c*a=c*b) = (a=b)"
paulson@14334
   569
by auto
paulson@14334
   570
paulson@14334
   571
lemma real_mult_right_cancel: "(c::real) \<noteq> 0 ==> (a*c=b*c) = (a=b)"
paulson@14334
   572
by auto
paulson@14334
   573
paulson@14334
   574
text{*The precondition could be weakened to @{term "0\<le>x"}*}
paulson@14334
   575
lemma real_mult_less_mono:
paulson@14334
   576
     "[| u<v;  x<y;  (0::real) < v;  0 < x |] ==> u*x < v* y"
paulson@14334
   577
 by (simp add: Ring_and_Field.mult_strict_mono order_less_imp_le)
paulson@14334
   578
paulson@14334
   579
lemma real_mult_less_iff1 [simp]: "(0::real) < z ==> (x*z < y*z) = (x < y)"
paulson@14334
   580
  by (force elim: order_less_asym
paulson@14334
   581
            simp add: Ring_and_Field.mult_less_cancel_right)
paulson@14334
   582
paulson@14334
   583
lemma real_mult_le_cancel_iff1 [simp]: "(0::real) < z ==> (x*z \<le> y*z) = (x\<le>y)"
paulson@14365
   584
apply (simp add: mult_le_cancel_right)
paulson@14365
   585
apply (blast intro: elim: order_less_asym) 
paulson@14365
   586
done
paulson@14334
   587
paulson@14334
   588
lemma real_mult_le_cancel_iff2 [simp]: "(0::real) < z ==> (z*x \<le> z*y) = (x\<le>y)"
paulson@14334
   589
  by (force elim: order_less_asym
paulson@14334
   590
            simp add: Ring_and_Field.mult_le_cancel_left)
paulson@14334
   591
paulson@14334
   592
text{*Only two uses?*}
paulson@14334
   593
lemma real_mult_less_mono':
paulson@14334
   594
     "[| x < y;  r1 < r2;  (0::real) \<le> r1;  0 \<le> x|] ==> r1 * x < r2 * y"
paulson@14334
   595
 by (rule Ring_and_Field.mult_strict_mono')
paulson@14334
   596
paulson@14334
   597
text{*FIXME: delete or at least combine the next two lemmas*}
paulson@14334
   598
lemma real_sum_squares_cancel: "x * x + y * y = 0 ==> x = (0::real)"
obua@14738
   599
apply (drule OrderedGroup.equals_zero_I [THEN sym])
paulson@14334
   600
apply (cut_tac x = y in real_le_square) 
paulson@14476
   601
apply (auto, drule order_antisym, auto)
paulson@14334
   602
done
paulson@14334
   603
paulson@14334
   604
lemma real_sum_squares_cancel2: "x * x + y * y = 0 ==> y = (0::real)"
paulson@14334
   605
apply (rule_tac y = x in real_sum_squares_cancel)
paulson@14476
   606
apply (simp add: add_commute)
paulson@14334
   607
done
paulson@14334
   608
paulson@14334
   609
lemma real_add_order: "[| 0 < x; 0 < y |] ==> (0::real) < x + y"
paulson@14365
   610
by (drule add_strict_mono [of concl: 0 0], assumption, simp)
paulson@14334
   611
paulson@14334
   612
lemma real_le_add_order: "[| 0 \<le> x; 0 \<le> y |] ==> (0::real) \<le> x + y"
paulson@14334
   613
apply (drule order_le_imp_less_or_eq)+
paulson@14334
   614
apply (auto intro: real_add_order order_less_imp_le)
paulson@14334
   615
done
paulson@14334
   616
paulson@14365
   617
lemma real_inverse_unique: "x*y = (1::real) ==> y = inverse x"
paulson@14365
   618
apply (case_tac "x \<noteq> 0")
paulson@14365
   619
apply (rule_tac c1 = x in real_mult_left_cancel [THEN iffD1], auto)
paulson@14365
   620
done
paulson@14334
   621
paulson@14365
   622
lemma real_inverse_gt_one: "[| (0::real) < x; x < 1 |] ==> 1 < inverse x"
paulson@14365
   623
by (auto dest: less_imp_inverse_less)
paulson@14334
   624
paulson@14365
   625
lemma real_mult_self_sum_ge_zero: "(0::real) \<le> x*x + y*y"
paulson@14365
   626
proof -
paulson@14365
   627
  have "0 + 0 \<le> x*x + y*y" by (blast intro: add_mono zero_le_square)
paulson@14365
   628
  thus ?thesis by simp
paulson@14365
   629
qed
paulson@14365
   630
paulson@14334
   631
paulson@14365
   632
subsection{*Embedding the Integers into the Reals*}
paulson@14365
   633
paulson@14378
   634
defs (overloaded)
paulson@14378
   635
  real_of_nat_def: "real z == of_nat z"
paulson@14378
   636
  real_of_int_def: "real z == of_int z"
paulson@14365
   637
paulson@14365
   638
lemma real_of_int_zero [simp]: "real (0::int) = 0"  
paulson@14378
   639
by (simp add: real_of_int_def) 
paulson@14365
   640
paulson@14365
   641
lemma real_of_one [simp]: "real (1::int) = (1::real)"
paulson@14378
   642
by (simp add: real_of_int_def) 
paulson@14334
   643
paulson@14365
   644
lemma real_of_int_add: "real (x::int) + real y = real (x + y)"
paulson@14378
   645
by (simp add: real_of_int_def) 
paulson@14365
   646
declare real_of_int_add [symmetric, simp]
paulson@14365
   647
paulson@14365
   648
lemma real_of_int_minus: "-real (x::int) = real (-x)"
paulson@14378
   649
by (simp add: real_of_int_def) 
paulson@14365
   650
declare real_of_int_minus [symmetric, simp]
paulson@14365
   651
paulson@14365
   652
lemma real_of_int_diff: "real (x::int) - real y = real (x - y)"
paulson@14378
   653
by (simp add: real_of_int_def) 
paulson@14365
   654
declare real_of_int_diff [symmetric, simp]
paulson@14334
   655
paulson@14365
   656
lemma real_of_int_mult: "real (x::int) * real y = real (x * y)"
paulson@14378
   657
by (simp add: real_of_int_def) 
paulson@14365
   658
declare real_of_int_mult [symmetric, simp]
paulson@14365
   659
paulson@14365
   660
lemma real_of_int_zero_cancel [simp]: "(real x = 0) = (x = (0::int))"
paulson@14378
   661
by (simp add: real_of_int_def) 
paulson@14365
   662
paulson@14365
   663
lemma real_of_int_inject [iff]: "(real (x::int) = real y) = (x = y)"
paulson@14378
   664
by (simp add: real_of_int_def) 
paulson@14365
   665
paulson@14365
   666
lemma real_of_int_less_iff [iff]: "(real (x::int) < real y) = (x < y)"
paulson@14378
   667
by (simp add: real_of_int_def) 
paulson@14365
   668
paulson@14365
   669
lemma real_of_int_le_iff [simp]: "(real (x::int) \<le> real y) = (x \<le> y)"
paulson@14378
   670
by (simp add: real_of_int_def) 
paulson@14365
   671
paulson@14365
   672
paulson@14365
   673
subsection{*Embedding the Naturals into the Reals*}
paulson@14365
   674
paulson@14334
   675
lemma real_of_nat_zero [simp]: "real (0::nat) = 0"
paulson@14365
   676
by (simp add: real_of_nat_def)
paulson@14334
   677
paulson@14334
   678
lemma real_of_nat_one [simp]: "real (Suc 0) = (1::real)"
paulson@14365
   679
by (simp add: real_of_nat_def)
paulson@14334
   680
paulson@14365
   681
lemma real_of_nat_add [simp]: "real (m + n) = real (m::nat) + real n"
paulson@14378
   682
by (simp add: real_of_nat_def)
paulson@14334
   683
paulson@14334
   684
(*Not for addsimps: often the LHS is used to represent a positive natural*)
paulson@14334
   685
lemma real_of_nat_Suc: "real (Suc n) = real n + (1::real)"
paulson@14378
   686
by (simp add: real_of_nat_def)
paulson@14334
   687
paulson@14334
   688
lemma real_of_nat_less_iff [iff]: 
paulson@14334
   689
     "(real (n::nat) < real m) = (n < m)"
paulson@14365
   690
by (simp add: real_of_nat_def)
paulson@14334
   691
paulson@14334
   692
lemma real_of_nat_le_iff [iff]: "(real (n::nat) \<le> real m) = (n \<le> m)"
paulson@14378
   693
by (simp add: real_of_nat_def)
paulson@14334
   694
paulson@14334
   695
lemma real_of_nat_ge_zero [iff]: "0 \<le> real (n::nat)"
paulson@14378
   696
by (simp add: real_of_nat_def zero_le_imp_of_nat)
paulson@14334
   697
paulson@14365
   698
lemma real_of_nat_Suc_gt_zero: "0 < real (Suc n)"
paulson@14378
   699
by (simp add: real_of_nat_def del: of_nat_Suc)
paulson@14365
   700
paulson@14334
   701
lemma real_of_nat_mult [simp]: "real (m * n) = real (m::nat) * real n"
paulson@14378
   702
by (simp add: real_of_nat_def)
paulson@14334
   703
paulson@14334
   704
lemma real_of_nat_inject [iff]: "(real (n::nat) = real m) = (n = m)"
paulson@14378
   705
by (simp add: real_of_nat_def)
paulson@14334
   706
paulson@14387
   707
lemma real_of_nat_zero_iff [iff]: "(real (n::nat) = 0) = (n = 0)"
paulson@14378
   708
by (simp add: real_of_nat_def)
paulson@14334
   709
paulson@14365
   710
lemma real_of_nat_diff: "n \<le> m ==> real (m - n) = real (m::nat) - real n"
paulson@14378
   711
by (simp add: add: real_of_nat_def) 
paulson@14334
   712
paulson@14365
   713
lemma real_of_nat_gt_zero_cancel_iff [simp]: "(0 < real (n::nat)) = (0 < n)"
paulson@14378
   714
by (simp add: add: real_of_nat_def) 
paulson@14365
   715
paulson@14365
   716
lemma real_of_nat_le_zero_cancel_iff [simp]: "(real (n::nat) \<le> 0) = (n = 0)"
paulson@14378
   717
by (simp add: add: real_of_nat_def)
paulson@14334
   718
paulson@14365
   719
lemma not_real_of_nat_less_zero [simp]: "~ real (n::nat) < 0"
paulson@14378
   720
by (simp add: add: real_of_nat_def)
paulson@14334
   721
paulson@14365
   722
lemma real_of_nat_ge_zero_cancel_iff [simp]: "(0 \<le> real (n::nat)) = (0 \<le> n)"
paulson@14378
   723
by (simp add: add: real_of_nat_def)
paulson@14334
   724
paulson@14365
   725
lemma real_of_int_real_of_nat: "real (int n) = real n"
paulson@14378
   726
by (simp add: real_of_nat_def real_of_int_def int_eq_of_nat)
paulson@14378
   727
paulson@14426
   728
lemma real_of_int_of_nat_eq [simp]: "real (of_nat n :: int) = real n"
paulson@14426
   729
by (simp add: real_of_int_def real_of_nat_def)
paulson@14334
   730
paulson@14387
   731
paulson@14387
   732
paulson@14387
   733
subsection{*Numerals and Arithmetic*}
paulson@14387
   734
paulson@14387
   735
instance real :: number ..
paulson@14387
   736
paulson@15013
   737
defs (overloaded)
paulson@15013
   738
  real_number_of_def: "(number_of w :: real) == of_int (Rep_Bin w)"
paulson@15013
   739
    --{*the type constraint is essential!*}
paulson@14387
   740
paulson@14387
   741
instance real :: number_ring
paulson@15013
   742
by (intro_classes, simp add: real_number_of_def) 
paulson@14387
   743
paulson@14387
   744
paulson@14387
   745
text{*Collapse applications of @{term real} to @{term number_of}*}
paulson@14387
   746
lemma real_number_of [simp]: "real (number_of v :: int) = number_of v"
paulson@14387
   747
by (simp add:  real_of_int_def of_int_number_of_eq)
paulson@14387
   748
paulson@14387
   749
lemma real_of_nat_number_of [simp]:
paulson@14387
   750
     "real (number_of v :: nat) =  
paulson@14387
   751
        (if neg (number_of v :: int) then 0  
paulson@14387
   752
         else (number_of v :: real))"
paulson@14387
   753
by (simp add: real_of_int_real_of_nat [symmetric] int_nat_number_of)
paulson@14387
   754
 
paulson@14387
   755
paulson@14387
   756
use "real_arith.ML"
paulson@14387
   757
paulson@14387
   758
setup real_arith_setup
paulson@14387
   759
paulson@14387
   760
subsection{* Simprules combining x+y and 0: ARE THEY NEEDED?*}
paulson@14387
   761
paulson@14387
   762
text{*Needed in this non-standard form by Hyperreal/Transcendental*}
paulson@14387
   763
lemma real_0_le_divide_iff:
paulson@14387
   764
     "((0::real) \<le> x/y) = ((x \<le> 0 | 0 \<le> y) & (0 \<le> x | y \<le> 0))"
paulson@14387
   765
by (simp add: real_divide_def zero_le_mult_iff, auto)
paulson@14387
   766
paulson@14387
   767
lemma real_add_minus_iff [simp]: "(x + - a = (0::real)) = (x=a)" 
paulson@14387
   768
by arith
paulson@14387
   769
paulson@15085
   770
lemma real_add_eq_0_iff: "(x+y = (0::real)) = (y = -x)"
paulson@14387
   771
by auto
paulson@14387
   772
paulson@15085
   773
lemma real_add_less_0_iff: "(x+y < (0::real)) = (y < -x)"
paulson@14387
   774
by auto
paulson@14387
   775
paulson@15085
   776
lemma real_0_less_add_iff: "((0::real) < x+y) = (-x < y)"
paulson@14387
   777
by auto
paulson@14387
   778
paulson@15085
   779
lemma real_add_le_0_iff: "(x+y \<le> (0::real)) = (y \<le> -x)"
paulson@14387
   780
by auto
paulson@14387
   781
paulson@15085
   782
lemma real_0_le_add_iff: "((0::real) \<le> x+y) = (-x \<le> y)"
paulson@14387
   783
by auto
paulson@14387
   784
paulson@14387
   785
paulson@14387
   786
(*
paulson@14387
   787
FIXME: we should have this, as for type int, but many proofs would break.
paulson@14387
   788
It replaces x+-y by x-y.
paulson@15086
   789
declare real_diff_def [symmetric, simp]
paulson@14387
   790
*)
paulson@14387
   791
paulson@14387
   792
paulson@14387
   793
subsubsection{*Density of the Reals*}
paulson@14387
   794
paulson@14387
   795
lemma real_lbound_gt_zero:
paulson@14387
   796
     "[| (0::real) < d1; 0 < d2 |] ==> \<exists>e. 0 < e & e < d1 & e < d2"
paulson@14387
   797
apply (rule_tac x = " (min d1 d2) /2" in exI)
paulson@14387
   798
apply (simp add: min_def)
paulson@14387
   799
done
paulson@14387
   800
paulson@14387
   801
paulson@14387
   802
text{*Similar results are proved in @{text Ring_and_Field}*}
paulson@14387
   803
lemma real_less_half_sum: "x < y ==> x < (x+y) / (2::real)"
paulson@14387
   804
  by auto
paulson@14387
   805
paulson@14387
   806
lemma real_gt_half_sum: "x < y ==> (x+y)/(2::real) < y"
paulson@14387
   807
  by auto
paulson@14387
   808
paulson@14387
   809
paulson@14387
   810
subsection{*Absolute Value Function for the Reals*}
paulson@14387
   811
paulson@14387
   812
text{*FIXME: these should go!*}
paulson@14387
   813
lemma abs_eqI1: "(0::real)\<le>x ==> abs x = x"
paulson@15003
   814
by (simp add: abs_if)
paulson@14387
   815
paulson@14387
   816
lemma abs_eqI2: "(0::real) < x ==> abs x = x"
paulson@15003
   817
by (simp add: abs_if)
paulson@14387
   818
paulson@14387
   819
lemma abs_minus_eqI2: "x < (0::real) ==> abs x = -x"
paulson@15003
   820
by (simp add: abs_if linorder_not_less [symmetric])
paulson@14387
   821
paulson@14387
   822
lemma abs_minus_add_cancel: "abs(x + (-y)) = abs (y + (-(x::real)))"
paulson@15003
   823
by (simp add: abs_if)
paulson@14387
   824
paulson@14387
   825
lemma abs_interval_iff: "(abs x < r) = (-r < x & x < (r::real))"
paulson@14387
   826
by (force simp add: Ring_and_Field.abs_less_iff)
paulson@14387
   827
paulson@14387
   828
lemma abs_le_interval_iff: "(abs x \<le> r) = (-r\<le>x & x\<le>(r::real))"
obua@14738
   829
by (force simp add: OrderedGroup.abs_le_iff)
paulson@14387
   830
paulson@14484
   831
(*FIXME: used only once, in SEQ.ML*)
paulson@14387
   832
lemma abs_add_one_gt_zero [simp]: "(0::real) < 1 + abs(x)"
paulson@15003
   833
by (simp add: abs_if)
paulson@14387
   834
paulson@14387
   835
lemma abs_real_of_nat_cancel [simp]: "abs (real x) = real (x::nat)"
paulson@14387
   836
by (auto intro: abs_eqI1 simp add: real_of_nat_ge_zero)
paulson@14387
   837
paulson@14387
   838
lemma abs_add_one_not_less_self [simp]: "~ abs(x) + (1::real) < x"
paulson@14387
   839
apply (simp add: linorder_not_less)
paulson@14387
   840
apply (auto intro: abs_ge_self [THEN order_trans])
paulson@14387
   841
done
paulson@14387
   842
 
paulson@14387
   843
text{*Used only in Hyperreal/Lim.ML*}
paulson@14387
   844
lemma abs_sum_triangle_ineq: "abs ((x::real) + y + (-l + -m)) \<le> abs(x + -l) + abs(y + -m)"
paulson@14387
   845
apply (simp add: real_add_assoc)
paulson@14387
   846
apply (rule_tac a1 = y in add_left_commute [THEN ssubst])
paulson@14387
   847
apply (rule real_add_assoc [THEN subst])
paulson@14387
   848
apply (rule abs_triangle_ineq)
paulson@14387
   849
done
paulson@14387
   850
paulson@14387
   851
paulson@14387
   852
paulson@14334
   853
ML
paulson@14334
   854
{*
paulson@14387
   855
val real_lbound_gt_zero = thm"real_lbound_gt_zero";
paulson@14387
   856
val real_less_half_sum = thm"real_less_half_sum";
paulson@14387
   857
val real_gt_half_sum = thm"real_gt_half_sum";
paulson@14341
   858
paulson@14387
   859
val abs_eqI1 = thm"abs_eqI1";
paulson@14387
   860
val abs_eqI2 = thm"abs_eqI2";
paulson@14387
   861
val abs_minus_eqI2 = thm"abs_minus_eqI2";
paulson@14387
   862
val abs_ge_zero = thm"abs_ge_zero";
paulson@14387
   863
val abs_idempotent = thm"abs_idempotent";
obua@14738
   864
val abs_eq_0 = thm"abs_eq_0";
paulson@14387
   865
val abs_ge_self = thm"abs_ge_self";
paulson@14387
   866
val abs_ge_minus_self = thm"abs_ge_minus_self";
paulson@14387
   867
val abs_mult = thm"abs_mult";
paulson@14387
   868
val abs_inverse = thm"abs_inverse";
paulson@14387
   869
val abs_triangle_ineq = thm"abs_triangle_ineq";
paulson@14387
   870
val abs_minus_cancel = thm"abs_minus_cancel";
paulson@14387
   871
val abs_minus_add_cancel = thm"abs_minus_add_cancel";
paulson@14387
   872
val abs_interval_iff = thm"abs_interval_iff";
paulson@14387
   873
val abs_le_interval_iff = thm"abs_le_interval_iff";
paulson@14387
   874
val abs_add_one_gt_zero = thm"abs_add_one_gt_zero";
paulson@14387
   875
val abs_le_zero_iff = thm"abs_le_zero_iff";
paulson@14387
   876
val abs_add_one_not_less_self = thm"abs_add_one_not_less_self";
paulson@14387
   877
val abs_sum_triangle_ineq = thm"abs_sum_triangle_ineq";
paulson@14334
   878
paulson@14387
   879
val abs_mult_less = thm"abs_mult_less";
paulson@14334
   880
*}
paulson@10752
   881
paulson@14387
   882
paulson@5588
   883
end