src/HOL/Transitive_Closure.thy
author nipkow
Mon Aug 16 14:22:27 2004 +0200 (2004-08-16)
changeset 15131 c69542757a4d
parent 15096 be1d3b8cfbd5
child 15140 322485b816ac
permissions -rw-r--r--
New theory header syntax.
nipkow@10213
     1
(*  Title:      HOL/Transitive_Closure.thy
nipkow@10213
     2
    ID:         $Id$
nipkow@10213
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
nipkow@10213
     4
    Copyright   1992  University of Cambridge
nipkow@10213
     5
*)
nipkow@10213
     6
wenzelm@12691
     7
header {* Reflexive and Transitive closure of a relation *}
wenzelm@12691
     8
nipkow@15131
     9
theory Transitive_Closure
nipkow@15131
    10
import Inductive
nipkow@15131
    11
files ("../Provers/trancl.ML")
nipkow@15131
    12
begin
wenzelm@12691
    13
wenzelm@12691
    14
text {*
wenzelm@12691
    15
  @{text rtrancl} is reflexive/transitive closure,
wenzelm@12691
    16
  @{text trancl} is transitive closure,
wenzelm@12691
    17
  @{text reflcl} is reflexive closure.
wenzelm@12691
    18
wenzelm@12691
    19
  These postfix operators have \emph{maximum priority}, forcing their
wenzelm@12691
    20
  operands to be atomic.
wenzelm@12691
    21
*}
nipkow@10213
    22
berghofe@11327
    23
consts
wenzelm@12691
    24
  rtrancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^*)" [1000] 999)
berghofe@11327
    25
berghofe@11327
    26
inductive "r^*"
wenzelm@12691
    27
  intros
berghofe@12823
    28
    rtrancl_refl [intro!, CPure.intro!, simp]: "(a, a) : r^*"
berghofe@12823
    29
    rtrancl_into_rtrancl [CPure.intro]: "(a, b) : r^* ==> (b, c) : r ==> (a, c) : r^*"
berghofe@11327
    30
berghofe@13704
    31
consts
wenzelm@12691
    32
  trancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^+)" [1000] 999)
berghofe@13704
    33
berghofe@13704
    34
inductive "r^+"
berghofe@13704
    35
  intros
berghofe@13704
    36
    r_into_trancl [intro, CPure.intro]: "(a, b) : r ==> (a, b) : r^+"
berghofe@13704
    37
    trancl_into_trancl [CPure.intro]: "(a, b) : r^+ ==> (b, c) : r ==> (a,c) : r^+"
nipkow@10213
    38
nipkow@10213
    39
syntax
wenzelm@12691
    40
  "_reflcl" :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^=)" [1000] 999)
nipkow@10213
    41
translations
wenzelm@12691
    42
  "r^=" == "r \<union> Id"
nipkow@10213
    43
wenzelm@10827
    44
syntax (xsymbols)
schirmer@14361
    45
  rtrancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_\<^sup>*)" [1000] 999)
schirmer@14361
    46
  trancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_\<^sup>+)" [1000] 999)
schirmer@14361
    47
  "_reflcl" :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_\<^sup>=)" [1000] 999)
wenzelm@12691
    48
kleing@14565
    49
syntax (HTML output)
kleing@14565
    50
  rtrancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_\<^sup>*)" [1000] 999)
kleing@14565
    51
  trancl :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_\<^sup>+)" [1000] 999)
kleing@14565
    52
  "_reflcl" :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_\<^sup>=)" [1000] 999)
kleing@14565
    53
wenzelm@12691
    54
wenzelm@12691
    55
subsection {* Reflexive-transitive closure *}
wenzelm@12691
    56
wenzelm@12691
    57
lemma r_into_rtrancl [intro]: "!!p. p \<in> r ==> p \<in> r^*"
wenzelm@12691
    58
  -- {* @{text rtrancl} of @{text r} contains @{text r} *}
wenzelm@12691
    59
  apply (simp only: split_tupled_all)
wenzelm@12691
    60
  apply (erule rtrancl_refl [THEN rtrancl_into_rtrancl])
wenzelm@12691
    61
  done
wenzelm@12691
    62
wenzelm@12691
    63
lemma rtrancl_mono: "r \<subseteq> s ==> r^* \<subseteq> s^*"
wenzelm@12691
    64
  -- {* monotonicity of @{text rtrancl} *}
wenzelm@12691
    65
  apply (rule subsetI)
wenzelm@12691
    66
  apply (simp only: split_tupled_all)
wenzelm@12691
    67
  apply (erule rtrancl.induct)
paulson@14208
    68
   apply (rule_tac [2] rtrancl_into_rtrancl, blast+)
wenzelm@12691
    69
  done
wenzelm@12691
    70
berghofe@12823
    71
theorem rtrancl_induct [consumes 1, induct set: rtrancl]:
wenzelm@12937
    72
  assumes a: "(a, b) : r^*"
wenzelm@12937
    73
    and cases: "P a" "!!y z. [| (a, y) : r^*; (y, z) : r; P y |] ==> P z"
wenzelm@12937
    74
  shows "P b"
wenzelm@12691
    75
proof -
wenzelm@12691
    76
  from a have "a = a --> P b"
berghofe@12823
    77
    by (induct "%x y. x = a --> P y" a b) (rules intro: cases)+
wenzelm@12691
    78
  thus ?thesis by rules
wenzelm@12691
    79
qed
wenzelm@12691
    80
nipkow@14404
    81
lemmas rtrancl_induct2 =
nipkow@14404
    82
  rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
nipkow@14404
    83
                 consumes 1, case_names refl step]
nipkow@14404
    84
 
wenzelm@12691
    85
lemma trans_rtrancl: "trans(r^*)"
wenzelm@12691
    86
  -- {* transitivity of transitive closure!! -- by induction *}
berghofe@12823
    87
proof (rule transI)
berghofe@12823
    88
  fix x y z
berghofe@12823
    89
  assume "(x, y) \<in> r\<^sup>*"
berghofe@12823
    90
  assume "(y, z) \<in> r\<^sup>*"
berghofe@12823
    91
  thus "(x, z) \<in> r\<^sup>*" by induct (rules!)+
berghofe@12823
    92
qed
wenzelm@12691
    93
wenzelm@12691
    94
lemmas rtrancl_trans = trans_rtrancl [THEN transD, standard]
wenzelm@12691
    95
wenzelm@12691
    96
lemma rtranclE:
wenzelm@12691
    97
  "[| (a::'a,b) : r^*;  (a = b) ==> P;
wenzelm@12691
    98
      !!y.[| (a,y) : r^*; (y,b) : r |] ==> P
wenzelm@12691
    99
   |] ==> P"
wenzelm@12691
   100
  -- {* elimination of @{text rtrancl} -- by induction on a special formula *}
wenzelm@12691
   101
proof -
wenzelm@12691
   102
  assume major: "(a::'a,b) : r^*"
wenzelm@12691
   103
  case rule_context
wenzelm@12691
   104
  show ?thesis
wenzelm@12691
   105
    apply (subgoal_tac "(a::'a) = b | (EX y. (a,y) : r^* & (y,b) : r)")
wenzelm@12691
   106
     apply (rule_tac [2] major [THEN rtrancl_induct])
wenzelm@12691
   107
      prefer 2 apply (blast!)
wenzelm@12691
   108
      prefer 2 apply (blast!)
wenzelm@12691
   109
    apply (erule asm_rl exE disjE conjE prems)+
wenzelm@12691
   110
    done
wenzelm@12691
   111
qed
wenzelm@12691
   112
berghofe@12823
   113
lemma converse_rtrancl_into_rtrancl:
berghofe@12823
   114
  "(a, b) \<in> r \<Longrightarrow> (b, c) \<in> r\<^sup>* \<Longrightarrow> (a, c) \<in> r\<^sup>*"
berghofe@12823
   115
  by (rule rtrancl_trans) rules+
wenzelm@12691
   116
wenzelm@12691
   117
text {*
wenzelm@12691
   118
  \medskip More @{term "r^*"} equations and inclusions.
wenzelm@12691
   119
*}
wenzelm@12691
   120
wenzelm@12691
   121
lemma rtrancl_idemp [simp]: "(r^*)^* = r^*"
wenzelm@12691
   122
  apply auto
wenzelm@12691
   123
  apply (erule rtrancl_induct)
wenzelm@12691
   124
   apply (rule rtrancl_refl)
wenzelm@12691
   125
  apply (blast intro: rtrancl_trans)
wenzelm@12691
   126
  done
wenzelm@12691
   127
wenzelm@12691
   128
lemma rtrancl_idemp_self_comp [simp]: "R^* O R^* = R^*"
wenzelm@12691
   129
  apply (rule set_ext)
wenzelm@12691
   130
  apply (simp only: split_tupled_all)
wenzelm@12691
   131
  apply (blast intro: rtrancl_trans)
wenzelm@12691
   132
  done
wenzelm@12691
   133
wenzelm@12691
   134
lemma rtrancl_subset_rtrancl: "r \<subseteq> s^* ==> r^* \<subseteq> s^*"
paulson@14208
   135
by (drule rtrancl_mono, simp)
wenzelm@12691
   136
wenzelm@12691
   137
lemma rtrancl_subset: "R \<subseteq> S ==> S \<subseteq> R^* ==> S^* = R^*"
wenzelm@12691
   138
  apply (drule rtrancl_mono)
ballarin@14398
   139
  apply (drule rtrancl_mono, simp)
wenzelm@12691
   140
  done
wenzelm@12691
   141
wenzelm@12691
   142
lemma rtrancl_Un_rtrancl: "(R^* \<union> S^*)^* = (R \<union> S)^*"
wenzelm@12691
   143
  by (blast intro!: rtrancl_subset intro: r_into_rtrancl rtrancl_mono [THEN subsetD])
wenzelm@12691
   144
wenzelm@12691
   145
lemma rtrancl_reflcl [simp]: "(R^=)^* = R^*"
wenzelm@12691
   146
  by (blast intro!: rtrancl_subset intro: r_into_rtrancl)
wenzelm@12691
   147
wenzelm@12691
   148
lemma rtrancl_r_diff_Id: "(r - Id)^* = r^*"
wenzelm@12691
   149
  apply (rule sym)
paulson@14208
   150
  apply (rule rtrancl_subset, blast, clarify)
wenzelm@12691
   151
  apply (rename_tac a b)
paulson@14208
   152
  apply (case_tac "a = b", blast)
wenzelm@12691
   153
  apply (blast intro!: r_into_rtrancl)
wenzelm@12691
   154
  done
wenzelm@12691
   155
berghofe@12823
   156
theorem rtrancl_converseD:
wenzelm@12937
   157
  assumes r: "(x, y) \<in> (r^-1)^*"
wenzelm@12937
   158
  shows "(y, x) \<in> r^*"
berghofe@12823
   159
proof -
berghofe@12823
   160
  from r show ?thesis
berghofe@12823
   161
    by induct (rules intro: rtrancl_trans dest!: converseD)+
berghofe@12823
   162
qed
wenzelm@12691
   163
berghofe@12823
   164
theorem rtrancl_converseI:
wenzelm@12937
   165
  assumes r: "(y, x) \<in> r^*"
wenzelm@12937
   166
  shows "(x, y) \<in> (r^-1)^*"
berghofe@12823
   167
proof -
berghofe@12823
   168
  from r show ?thesis
berghofe@12823
   169
    by induct (rules intro: rtrancl_trans converseI)+
berghofe@12823
   170
qed
wenzelm@12691
   171
wenzelm@12691
   172
lemma rtrancl_converse: "(r^-1)^* = (r^*)^-1"
wenzelm@12691
   173
  by (fast dest!: rtrancl_converseD intro!: rtrancl_converseI)
wenzelm@12691
   174
nipkow@14404
   175
theorem converse_rtrancl_induct[consumes 1]:
wenzelm@12937
   176
  assumes major: "(a, b) : r^*"
wenzelm@12937
   177
    and cases: "P b" "!!y z. [| (y, z) : r; (z, b) : r^*; P z |] ==> P y"
wenzelm@12937
   178
  shows "P a"
wenzelm@12691
   179
proof -
berghofe@12823
   180
  from rtrancl_converseI [OF major]
wenzelm@12691
   181
  show ?thesis
berghofe@12823
   182
    by induct (rules intro: cases dest!: converseD rtrancl_converseD)+
wenzelm@12691
   183
qed
wenzelm@12691
   184
nipkow@14404
   185
lemmas converse_rtrancl_induct2 =
nipkow@14404
   186
  converse_rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
nipkow@14404
   187
                 consumes 1, case_names refl step]
wenzelm@12691
   188
wenzelm@12691
   189
lemma converse_rtranclE:
wenzelm@12691
   190
  "[| (x,z):r^*;
wenzelm@12691
   191
      x=z ==> P;
wenzelm@12691
   192
      !!y. [| (x,y):r; (y,z):r^* |] ==> P
wenzelm@12691
   193
   |] ==> P"
wenzelm@12691
   194
proof -
wenzelm@12691
   195
  assume major: "(x,z):r^*"
wenzelm@12691
   196
  case rule_context
wenzelm@12691
   197
  show ?thesis
wenzelm@12691
   198
    apply (subgoal_tac "x = z | (EX y. (x,y) : r & (y,z) : r^*)")
wenzelm@12691
   199
     apply (rule_tac [2] major [THEN converse_rtrancl_induct])
berghofe@13726
   200
      prefer 2 apply rules
berghofe@13726
   201
     prefer 2 apply rules
wenzelm@12691
   202
    apply (erule asm_rl exE disjE conjE prems)+
wenzelm@12691
   203
    done
wenzelm@12691
   204
qed
wenzelm@12691
   205
wenzelm@12691
   206
ML_setup {*
wenzelm@12691
   207
  bind_thm ("converse_rtranclE2", split_rule
wenzelm@12691
   208
    (read_instantiate [("x","(xa,xb)"), ("z","(za,zb)")] (thm "converse_rtranclE")));
wenzelm@12691
   209
*}
wenzelm@12691
   210
wenzelm@12691
   211
lemma r_comp_rtrancl_eq: "r O r^* = r^* O r"
wenzelm@12691
   212
  by (blast elim: rtranclE converse_rtranclE
wenzelm@12691
   213
    intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl)
wenzelm@12691
   214
wenzelm@12691
   215
wenzelm@12691
   216
subsection {* Transitive closure *}
wenzelm@10331
   217
berghofe@13704
   218
lemma trancl_mono: "!!p. p \<in> r^+ ==> r \<subseteq> s ==> p \<in> s^+"
berghofe@13704
   219
  apply (simp only: split_tupled_all)
berghofe@13704
   220
  apply (erule trancl.induct)
berghofe@13704
   221
  apply (rules dest: subsetD)+
wenzelm@12691
   222
  done
wenzelm@12691
   223
berghofe@13704
   224
lemma r_into_trancl': "!!p. p : r ==> p : r^+"
berghofe@13704
   225
  by (simp only: split_tupled_all) (erule r_into_trancl)
berghofe@13704
   226
wenzelm@12691
   227
text {*
wenzelm@12691
   228
  \medskip Conversions between @{text trancl} and @{text rtrancl}.
wenzelm@12691
   229
*}
wenzelm@12691
   230
berghofe@13704
   231
lemma trancl_into_rtrancl: "(a, b) \<in> r^+ ==> (a, b) \<in> r^*"
berghofe@13704
   232
  by (erule trancl.induct) rules+
wenzelm@12691
   233
berghofe@13704
   234
lemma rtrancl_into_trancl1: assumes r: "(a, b) \<in> r^*"
berghofe@13704
   235
  shows "!!c. (b, c) \<in> r ==> (a, c) \<in> r^+" using r
berghofe@13704
   236
  by induct rules+
wenzelm@12691
   237
wenzelm@12691
   238
lemma rtrancl_into_trancl2: "[| (a,b) : r;  (b,c) : r^* |]   ==>  (a,c) : r^+"
wenzelm@12691
   239
  -- {* intro rule from @{text r} and @{text rtrancl} *}
paulson@14208
   240
  apply (erule rtranclE, rules)
wenzelm@12691
   241
  apply (rule rtrancl_trans [THEN rtrancl_into_trancl1])
wenzelm@12691
   242
   apply (assumption | rule r_into_rtrancl)+
wenzelm@12691
   243
  done
wenzelm@12691
   244
berghofe@13704
   245
lemma trancl_induct [consumes 1, induct set: trancl]:
berghofe@13704
   246
  assumes a: "(a,b) : r^+"
berghofe@13704
   247
  and cases: "!!y. (a, y) : r ==> P y"
berghofe@13704
   248
    "!!y z. (a,y) : r^+ ==> (y, z) : r ==> P y ==> P z"
berghofe@13704
   249
  shows "P b"
wenzelm@12691
   250
  -- {* Nice induction rule for @{text trancl} *}
wenzelm@12691
   251
proof -
berghofe@13704
   252
  from a have "a = a --> P b"
berghofe@13704
   253
    by (induct "%x y. x = a --> P y" a b) (rules intro: cases)+
berghofe@13704
   254
  thus ?thesis by rules
wenzelm@12691
   255
qed
wenzelm@12691
   256
wenzelm@12691
   257
lemma trancl_trans_induct:
wenzelm@12691
   258
  "[| (x,y) : r^+;
wenzelm@12691
   259
      !!x y. (x,y) : r ==> P x y;
wenzelm@12691
   260
      !!x y z. [| (x,y) : r^+; P x y; (y,z) : r^+; P y z |] ==> P x z
wenzelm@12691
   261
   |] ==> P x y"
wenzelm@12691
   262
  -- {* Another induction rule for trancl, incorporating transitivity *}
wenzelm@12691
   263
proof -
wenzelm@12691
   264
  assume major: "(x,y) : r^+"
wenzelm@12691
   265
  case rule_context
wenzelm@12691
   266
  show ?thesis
berghofe@13704
   267
    by (rules intro: r_into_trancl major [THEN trancl_induct] prems)
wenzelm@12691
   268
qed
wenzelm@12691
   269
berghofe@13704
   270
inductive_cases tranclE: "(a, b) : r^+"
wenzelm@10980
   271
wenzelm@12691
   272
lemma trans_trancl: "trans(r^+)"
wenzelm@12691
   273
  -- {* Transitivity of @{term "r^+"} *}
berghofe@13704
   274
proof (rule transI)
berghofe@13704
   275
  fix x y z
berghofe@13704
   276
  assume "(x, y) \<in> r^+"
berghofe@13704
   277
  assume "(y, z) \<in> r^+"
berghofe@13704
   278
  thus "(x, z) \<in> r^+" by induct (rules!)+
berghofe@13704
   279
qed
wenzelm@12691
   280
wenzelm@12691
   281
lemmas trancl_trans = trans_trancl [THEN transD, standard]
wenzelm@12691
   282
berghofe@13704
   283
lemma rtrancl_trancl_trancl: assumes r: "(x, y) \<in> r^*"
berghofe@13704
   284
  shows "!!z. (y, z) \<in> r^+ ==> (x, z) \<in> r^+" using r
berghofe@13704
   285
  by induct (rules intro: trancl_trans)+
wenzelm@12691
   286
wenzelm@12691
   287
lemma trancl_into_trancl2: "(a, b) \<in> r ==> (b, c) \<in> r^+ ==> (a, c) \<in> r^+"
wenzelm@12691
   288
  by (erule transD [OF trans_trancl r_into_trancl])
wenzelm@12691
   289
wenzelm@12691
   290
lemma trancl_insert:
wenzelm@12691
   291
  "(insert (y, x) r)^+ = r^+ \<union> {(a, b). (a, y) \<in> r^* \<and> (x, b) \<in> r^*}"
wenzelm@12691
   292
  -- {* primitive recursion for @{text trancl} over finite relations *}
wenzelm@12691
   293
  apply (rule equalityI)
wenzelm@12691
   294
   apply (rule subsetI)
wenzelm@12691
   295
   apply (simp only: split_tupled_all)
paulson@14208
   296
   apply (erule trancl_induct, blast)
wenzelm@12691
   297
   apply (blast intro: rtrancl_into_trancl1 trancl_into_rtrancl r_into_trancl trancl_trans)
wenzelm@12691
   298
  apply (rule subsetI)
wenzelm@12691
   299
  apply (blast intro: trancl_mono rtrancl_mono
wenzelm@12691
   300
    [THEN [2] rev_subsetD] rtrancl_trancl_trancl rtrancl_into_trancl2)
wenzelm@12691
   301
  done
wenzelm@12691
   302
berghofe@13704
   303
lemma trancl_converseI: "(x, y) \<in> (r^+)^-1 ==> (x, y) \<in> (r^-1)^+"
berghofe@13704
   304
  apply (drule converseD)
berghofe@13704
   305
  apply (erule trancl.induct)
berghofe@13704
   306
  apply (rules intro: converseI trancl_trans)+
wenzelm@12691
   307
  done
wenzelm@12691
   308
berghofe@13704
   309
lemma trancl_converseD: "(x, y) \<in> (r^-1)^+ ==> (x, y) \<in> (r^+)^-1"
berghofe@13704
   310
  apply (rule converseI)
berghofe@13704
   311
  apply (erule trancl.induct)
berghofe@13704
   312
  apply (rules dest: converseD intro: trancl_trans)+
berghofe@13704
   313
  done
wenzelm@12691
   314
berghofe@13704
   315
lemma trancl_converse: "(r^-1)^+ = (r^+)^-1"
berghofe@13704
   316
  by (fastsimp simp add: split_tupled_all
berghofe@13704
   317
    intro!: trancl_converseI trancl_converseD)
wenzelm@12691
   318
wenzelm@12691
   319
lemma converse_trancl_induct:
wenzelm@12691
   320
  "[| (a,b) : r^+; !!y. (y,b) : r ==> P(y);
wenzelm@12691
   321
      !!y z.[| (y,z) : r;  (z,b) : r^+;  P(z) |] ==> P(y) |]
wenzelm@12691
   322
    ==> P(a)"
wenzelm@12691
   323
proof -
wenzelm@12691
   324
  assume major: "(a,b) : r^+"
wenzelm@12691
   325
  case rule_context
wenzelm@12691
   326
  show ?thesis
wenzelm@12691
   327
    apply (rule major [THEN converseI, THEN trancl_converseI [THEN trancl_induct]])
wenzelm@12691
   328
     apply (rule prems)
wenzelm@12691
   329
     apply (erule converseD)
wenzelm@12691
   330
    apply (blast intro: prems dest!: trancl_converseD)
wenzelm@12691
   331
    done
wenzelm@12691
   332
qed
wenzelm@12691
   333
wenzelm@12691
   334
lemma tranclD: "(x, y) \<in> R^+ ==> EX z. (x, z) \<in> R \<and> (z, y) \<in> R^*"
paulson@14208
   335
  apply (erule converse_trancl_induct, auto)
wenzelm@12691
   336
  apply (blast intro: rtrancl_trans)
wenzelm@12691
   337
  done
wenzelm@12691
   338
nipkow@13867
   339
lemma irrefl_tranclI: "r^-1 \<inter> r^* = {} ==> (x, x) \<notin> r^+"
nipkow@13867
   340
by(blast elim: tranclE dest: trancl_into_rtrancl)
wenzelm@12691
   341
wenzelm@12691
   342
lemma irrefl_trancl_rD: "!!X. ALL x. (x, x) \<notin> r^+ ==> (x, y) \<in> r ==> x \<noteq> y"
wenzelm@12691
   343
  by (blast dest: r_into_trancl)
wenzelm@12691
   344
wenzelm@12691
   345
lemma trancl_subset_Sigma_aux:
wenzelm@12691
   346
    "(a, b) \<in> r^* ==> r \<subseteq> A \<times> A ==> a = b \<or> a \<in> A"
paulson@14208
   347
  apply (erule rtrancl_induct, auto)
wenzelm@12691
   348
  done
wenzelm@12691
   349
wenzelm@12691
   350
lemma trancl_subset_Sigma: "r \<subseteq> A \<times> A ==> r^+ \<subseteq> A \<times> A"
berghofe@13704
   351
  apply (rule subsetI)
berghofe@13704
   352
  apply (simp only: split_tupled_all)
berghofe@13704
   353
  apply (erule tranclE)
berghofe@13704
   354
  apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+
wenzelm@12691
   355
  done
nipkow@10996
   356
wenzelm@11090
   357
lemma reflcl_trancl [simp]: "(r^+)^= = r^*"
wenzelm@11084
   358
  apply safe
wenzelm@12691
   359
   apply (erule trancl_into_rtrancl)
wenzelm@11084
   360
  apply (blast elim: rtranclE dest: rtrancl_into_trancl1)
wenzelm@11084
   361
  done
nipkow@10996
   362
wenzelm@11090
   363
lemma trancl_reflcl [simp]: "(r^=)^+ = r^*"
wenzelm@11084
   364
  apply safe
paulson@14208
   365
   apply (drule trancl_into_rtrancl, simp)
paulson@14208
   366
  apply (erule rtranclE, safe)
paulson@14208
   367
   apply (rule r_into_trancl, simp)
wenzelm@11084
   368
  apply (rule rtrancl_into_trancl1)
paulson@14208
   369
   apply (erule rtrancl_reflcl [THEN equalityD2, THEN subsetD], fast)
wenzelm@11084
   370
  done
nipkow@10996
   371
wenzelm@11090
   372
lemma trancl_empty [simp]: "{}^+ = {}"
wenzelm@11084
   373
  by (auto elim: trancl_induct)
nipkow@10996
   374
wenzelm@11090
   375
lemma rtrancl_empty [simp]: "{}^* = Id"
wenzelm@11084
   376
  by (rule subst [OF reflcl_trancl]) simp
nipkow@10996
   377
wenzelm@11090
   378
lemma rtranclD: "(a, b) \<in> R^* ==> a = b \<or> a \<noteq> b \<and> (a, b) \<in> R^+"
wenzelm@11084
   379
  by (force simp add: reflcl_trancl [symmetric] simp del: reflcl_trancl)
wenzelm@11084
   380
nipkow@10996
   381
wenzelm@12691
   382
text {* @{text Domain} and @{text Range} *}
nipkow@10996
   383
wenzelm@11090
   384
lemma Domain_rtrancl [simp]: "Domain (R^*) = UNIV"
wenzelm@11084
   385
  by blast
nipkow@10996
   386
wenzelm@11090
   387
lemma Range_rtrancl [simp]: "Range (R^*) = UNIV"
wenzelm@11084
   388
  by blast
nipkow@10996
   389
wenzelm@11090
   390
lemma rtrancl_Un_subset: "(R^* \<union> S^*) \<subseteq> (R Un S)^*"
wenzelm@11084
   391
  by (rule rtrancl_Un_rtrancl [THEN subst]) fast
nipkow@10996
   392
wenzelm@11090
   393
lemma in_rtrancl_UnI: "x \<in> R^* \<or> x \<in> S^* ==> x \<in> (R \<union> S)^*"
wenzelm@11084
   394
  by (blast intro: subsetD [OF rtrancl_Un_subset])
nipkow@10996
   395
wenzelm@11090
   396
lemma trancl_domain [simp]: "Domain (r^+) = Domain r"
wenzelm@11084
   397
  by (unfold Domain_def) (blast dest: tranclD)
nipkow@10996
   398
wenzelm@11090
   399
lemma trancl_range [simp]: "Range (r^+) = Range r"
wenzelm@11084
   400
  by (simp add: Range_def trancl_converse [symmetric])
nipkow@10996
   401
paulson@11115
   402
lemma Not_Domain_rtrancl:
wenzelm@12691
   403
    "x ~: Domain R ==> ((x, y) : R^*) = (x = y)"
wenzelm@12691
   404
  apply auto
wenzelm@12691
   405
  by (erule rev_mp, erule rtrancl_induct, auto)
wenzelm@12691
   406
berghofe@11327
   407
wenzelm@12691
   408
text {* More about converse @{text rtrancl} and @{text trancl}, should
wenzelm@12691
   409
  be merged with main body. *}
kleing@12428
   410
nipkow@14337
   411
lemma single_valued_confluent:
nipkow@14337
   412
  "\<lbrakk> single_valued r; (x,y) \<in> r^*; (x,z) \<in> r^* \<rbrakk>
nipkow@14337
   413
  \<Longrightarrow> (y,z) \<in> r^* \<or> (z,y) \<in> r^*"
nipkow@14337
   414
apply(erule rtrancl_induct)
nipkow@14337
   415
 apply simp
nipkow@14337
   416
apply(erule disjE)
nipkow@14337
   417
 apply(blast elim:converse_rtranclE dest:single_valuedD)
nipkow@14337
   418
apply(blast intro:rtrancl_trans)
nipkow@14337
   419
done
nipkow@14337
   420
wenzelm@12691
   421
lemma r_r_into_trancl: "(a, b) \<in> R ==> (b, c) \<in> R ==> (a, c) \<in> R^+"
kleing@12428
   422
  by (fast intro: trancl_trans)
kleing@12428
   423
kleing@12428
   424
lemma trancl_into_trancl [rule_format]:
wenzelm@12691
   425
    "(a, b) \<in> r\<^sup>+ ==> (b, c) \<in> r --> (a,c) \<in> r\<^sup>+"
wenzelm@12691
   426
  apply (erule trancl_induct)
kleing@12428
   427
   apply (fast intro: r_r_into_trancl)
kleing@12428
   428
  apply (fast intro: r_r_into_trancl trancl_trans)
kleing@12428
   429
  done
kleing@12428
   430
kleing@12428
   431
lemma trancl_rtrancl_trancl:
wenzelm@12691
   432
    "(a, b) \<in> r\<^sup>+ ==> (b, c) \<in> r\<^sup>* ==> (a, c) \<in> r\<^sup>+"
kleing@12428
   433
  apply (drule tranclD)
kleing@12428
   434
  apply (erule exE, erule conjE)
kleing@12428
   435
  apply (drule rtrancl_trans, assumption)
paulson@14208
   436
  apply (drule rtrancl_into_trancl2, assumption, assumption)
kleing@12428
   437
  done
kleing@12428
   438
wenzelm@12691
   439
lemmas transitive_closure_trans [trans] =
wenzelm@12691
   440
  r_r_into_trancl trancl_trans rtrancl_trans
wenzelm@12691
   441
  trancl_into_trancl trancl_into_trancl2
wenzelm@12691
   442
  rtrancl_into_rtrancl converse_rtrancl_into_rtrancl
wenzelm@12691
   443
  rtrancl_trancl_trancl trancl_rtrancl_trancl
kleing@12428
   444
kleing@12428
   445
declare trancl_into_rtrancl [elim]
berghofe@11327
   446
berghofe@11327
   447
declare rtranclE [cases set: rtrancl]
berghofe@11327
   448
declare tranclE [cases set: trancl]
berghofe@11327
   449
ballarin@15076
   450
subsection {* Setup of transitivity reasoner *}
ballarin@15076
   451
ballarin@15076
   452
use "../Provers/trancl.ML";
ballarin@15076
   453
ballarin@15076
   454
ML_setup {*
ballarin@15076
   455
ballarin@15076
   456
structure Trancl_Tac = Trancl_Tac_Fun (
ballarin@15076
   457
  struct
ballarin@15076
   458
    val r_into_trancl = thm "r_into_trancl";
ballarin@15076
   459
    val trancl_trans  = thm "trancl_trans";
ballarin@15076
   460
    val rtrancl_refl = thm "rtrancl_refl";
ballarin@15076
   461
    val r_into_rtrancl = thm "r_into_rtrancl";
ballarin@15076
   462
    val trancl_into_rtrancl = thm "trancl_into_rtrancl";
ballarin@15076
   463
    val rtrancl_trancl_trancl = thm "rtrancl_trancl_trancl";
ballarin@15076
   464
    val trancl_rtrancl_trancl = thm "trancl_rtrancl_trancl";
ballarin@15076
   465
    val rtrancl_trans = thm "rtrancl_trans";
ballarin@15096
   466
ballarin@15076
   467
  fun decomp (Trueprop $ t) = 
ballarin@15076
   468
    let fun dec (Const ("op :", _) $ (Const ("Pair", _) $ a $ b) $ rel ) = 
ballarin@15076
   469
	let fun decr (Const ("Transitive_Closure.rtrancl", _ ) $ r) = (r,"r*")
ballarin@15076
   470
	      | decr (Const ("Transitive_Closure.trancl", _ ) $ r)  = (r,"r+")
ballarin@15076
   471
	      | decr r = (r,"r");
ballarin@15076
   472
	    val (rel,r) = decr rel;
ballarin@15076
   473
	in Some (a,b,rel,r) end
ballarin@15076
   474
      | dec _ =  None 
ballarin@15076
   475
    in dec t end;
ballarin@15076
   476
  
ballarin@15076
   477
  end); (* struct *)
ballarin@15076
   478
ballarin@15076
   479
simpset_ref() := simpset ()
ballarin@15076
   480
    addSolver (mk_solver "Trancl" (fn _ => Trancl_Tac.trancl_tac))
ballarin@15076
   481
    addSolver (mk_solver "Rtrancl" (fn _ => Trancl_Tac.rtrancl_tac));
ballarin@15076
   482
ballarin@15076
   483
*}
ballarin@15076
   484
ballarin@15076
   485
(* Optional methods
ballarin@15076
   486
ballarin@15076
   487
method_setup trancl =
ballarin@15076
   488
  {* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (trancl_tac)) *}
ballarin@15076
   489
  {* simple transitivity reasoner *}	    
ballarin@15076
   490
method_setup rtrancl =
ballarin@15076
   491
  {* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (rtrancl_tac)) *}
ballarin@15076
   492
  {* simple transitivity reasoner *}
ballarin@15076
   493
ballarin@15076
   494
*)
ballarin@15076
   495
nipkow@10213
   496
end