src/HOL/Product_Type.thy
author kleing
Wed, 14 Apr 2004 14:13:05 +0200
changeset 14565 c6dc17aab88a
parent 14359 3d9948163018
child 14952 47455995693d
permissions -rw-r--r--
use more symbols in HTML output
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     1
(*  Title:      HOL/Product_Type.thy
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     2
    ID:         $Id$
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     4
    Copyright   1992  University of Cambridge
11777
wenzelm
parents: 11602
diff changeset
     5
*)
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     6
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
     7
header {* Cartesian products *}
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     8
11025
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
     9
theory Product_Type = Fun
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    10
files ("Tools/split_rule.ML"):
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    11
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    12
subsection {* Unit *}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    13
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    14
typedef unit = "{True}"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    15
proof
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    16
  show "True : ?unit" by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    17
qed
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    18
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    19
constdefs
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    20
  Unity :: unit    ("'(')")
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    21
  "() == Abs_unit True"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    22
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    23
lemma unit_eq: "u = ()"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    24
  by (induct u) (simp add: unit_def Unity_def)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    25
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    26
text {*
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    27
  Simplification procedure for @{thm [source] unit_eq}.  Cannot use
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    28
  this rule directly --- it loops!
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    29
*}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    30
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    31
ML_setup {*
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 12338
diff changeset
    32
  val unit_eq_proc =
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 12338
diff changeset
    33
    let val unit_meta_eq = mk_meta_eq (thm "unit_eq") in
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 12338
diff changeset
    34
      Simplifier.simproc (Theory.sign_of (the_context ())) "unit_eq" ["x::unit"]
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 12338
diff changeset
    35
      (fn _ => fn _ => fn t => if HOLogic.is_unit t then None else Some unit_meta_eq)
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 12338
diff changeset
    36
    end;
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    37
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    38
  Addsimprocs [unit_eq_proc];
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    39
*}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    40
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    41
lemma unit_all_eq1: "(!!x::unit. PROP P x) == PROP P ()"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    42
  by simp
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    43
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    44
lemma unit_all_eq2: "(!!x::unit. PROP P) == PROP P"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    45
  by (rule triv_forall_equality)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    46
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    47
lemma unit_induct [induct type: unit]: "P () ==> P x"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    48
  by simp
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    49
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    50
text {*
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    51
  This rewrite counters the effect of @{text unit_eq_proc} on @{term
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    52
  [source] "%u::unit. f u"}, replacing it by @{term [source]
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    53
  f} rather than by @{term [source] "%u. f ()"}.
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    54
*}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    55
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    56
lemma unit_abs_eta_conv [simp]: "(%u::unit. f ()) = f"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    57
  by (rule ext) simp
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    58
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    59
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    60
subsection {* Pairs *}
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    61
11777
wenzelm
parents: 11602
diff changeset
    62
subsubsection {* Type definition *}
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    63
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    64
constdefs
11025
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
    65
  Pair_Rep :: "['a, 'b] => ['a, 'b] => bool"
11032
83f723e86dac added hidden internal_split constant;
wenzelm
parents: 11025
diff changeset
    66
  "Pair_Rep == (%a b. %x y. x=a & y=b)"
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    67
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    68
global
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    69
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    70
typedef (Prod)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
    71
  ('a, 'b) "*"    (infixr 20)
11032
83f723e86dac added hidden internal_split constant;
wenzelm
parents: 11025
diff changeset
    72
    = "{f. EX a b. f = Pair_Rep (a::'a) (b::'b)}"
11025
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
    73
proof
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
    74
  fix a b show "Pair_Rep a b : ?Prod"
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
    75
    by blast
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
    76
qed
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    77
12114
a8e860c86252 eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents: 11966
diff changeset
    78
syntax (xsymbols)
11493
f3ff2549cdc8 added pair_imageI (also as intro rule)
oheimb
parents: 11451
diff changeset
    79
  "*"      :: "[type, type] => type"         ("(_ \<times>/ _)" [21, 20] 20)
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    80
syntax (HTML output)
11493
f3ff2549cdc8 added pair_imageI (also as intro rule)
oheimb
parents: 11451
diff changeset
    81
  "*"      :: "[type, type] => type"         ("(_ \<times>/ _)" [21, 20] 20)
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    82
11777
wenzelm
parents: 11602
diff changeset
    83
local
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    84
11777
wenzelm
parents: 11602
diff changeset
    85
wenzelm
parents: 11602
diff changeset
    86
subsubsection {* Abstract constants and syntax *}
wenzelm
parents: 11602
diff changeset
    87
wenzelm
parents: 11602
diff changeset
    88
global
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    89
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    90
consts
11025
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
    91
  fst      :: "'a * 'b => 'a"
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
    92
  snd      :: "'a * 'b => 'b"
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
    93
  split    :: "[['a, 'b] => 'c, 'a * 'b] => 'c"
14189
de58f4d939e1 Added the constant "curry".
skalberg
parents: 14101
diff changeset
    94
  curry    :: "['a * 'b => 'c, 'a, 'b] => 'c"
11025
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
    95
  prod_fun :: "['a => 'b, 'c => 'd, 'a * 'c] => 'b * 'd"
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
    96
  Pair     :: "['a, 'b] => 'a * 'b"
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
    97
  Sigma    :: "['a set, 'a => 'b set] => ('a * 'b) set"
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    98
11777
wenzelm
parents: 11602
diff changeset
    99
local
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   100
11777
wenzelm
parents: 11602
diff changeset
   101
text {*
wenzelm
parents: 11602
diff changeset
   102
  Patterns -- extends pre-defined type @{typ pttrn} used in
wenzelm
parents: 11602
diff changeset
   103
  abstractions.
wenzelm
parents: 11602
diff changeset
   104
*}
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   105
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   106
nonterminals
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   107
  tuple_args patterns
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   108
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   109
syntax
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   110
  "_tuple"      :: "'a => tuple_args => 'a * 'b"        ("(1'(_,/ _'))")
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   111
  "_tuple_arg"  :: "'a => tuple_args"                   ("_")
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   112
  "_tuple_args" :: "'a => tuple_args => tuple_args"     ("_,/ _")
11025
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
   113
  "_pattern"    :: "[pttrn, patterns] => pttrn"         ("'(_,/ _')")
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
   114
  ""            :: "pttrn => patterns"                  ("_")
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
   115
  "_patterns"   :: "[pttrn, patterns] => patterns"      ("_,/ _")
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
   116
  "@Sigma" ::"[pttrn, 'a set, 'b set] => ('a * 'b) set" ("(3SIGMA _:_./ _)" 10)
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
   117
  "@Times" ::"['a set,  'a => 'b set] => ('a * 'b) set" (infixr "<*>" 80)
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   118
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   119
translations
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   120
  "(x, y)"       == "Pair x y"
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   121
  "_tuple x (_tuple_args y z)" == "_tuple x (_tuple_arg (_tuple y z))"
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   122
  "%(x,y,zs).b"  == "split(%x (y,zs).b)"
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   123
  "%(x,y).b"     == "split(%x y. b)"
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   124
  "_abs (Pair x y) t" => "%(x,y).t"
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   125
  (* The last rule accommodates tuples in `case C ... (x,y) ... => ...'
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   126
     The (x,y) is parsed as `Pair x y' because it is logic, not pttrn *)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   127
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   128
  "SIGMA x:A. B" => "Sigma A (%x. B)"
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   129
  "A <*> B"      => "Sigma A (_K B)"
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   130
14359
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   131
(* reconstructs pattern from (nested) splits, avoiding eta-contraction of body*)
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   132
(* works best with enclosing "let", if "let" does not avoid eta-contraction   *)
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   133
print_translation {*
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   134
let fun split_tr' [Abs (x,T,t as (Abs abs))] =
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   135
      (* split (%x y. t) => %(x,y) t *)
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   136
      let val (y,t') = atomic_abs_tr' abs;
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   137
          val (x',t'') = atomic_abs_tr' (x,T,t');
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   138
    
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   139
      in Syntax.const "_abs" $ (Syntax.const "_pattern" $x'$y) $ t'' end
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   140
    | split_tr' [Abs (x,T,(s as Const ("split",_)$t))] =
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   141
       (* split (%x. (split (%y z. t))) => %(x,y,z). t *)
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   142
       let val (Const ("_abs",_)$(Const ("_pattern",_)$y$z)$t') = split_tr' [t];
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   143
           val (x',t'') = atomic_abs_tr' (x,T,t');
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   144
       in Syntax.const "_abs"$ 
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   145
           (Syntax.const "_pattern"$x'$(Syntax.const "_patterns"$y$z))$t'' end
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   146
    | split_tr' [Const ("split",_)$t] =
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   147
       (* split (split (%x y z. t)) => %((x,y),z). t *)   
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   148
       split_tr' [(split_tr' [t])] (* inner split_tr' creates next pattern *)
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   149
    | split_tr' [Const ("_abs",_)$x_y$(Abs abs)] =
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   150
       (* split (%pttrn z. t) => %(pttrn,z). t *)
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   151
       let val (z,t) = atomic_abs_tr' abs;
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   152
       in Syntax.const "_abs" $ (Syntax.const "_pattern" $x_y$z) $ t end
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   153
    | split_tr' _ =  raise Match;
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   154
in [("split", split_tr')]
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   155
end
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   156
*}
3d9948163018 Added print translation for pairs
schirmer
parents: 14337
diff changeset
   157
12114
a8e860c86252 eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents: 11966
diff changeset
   158
syntax (xsymbols)
11493
f3ff2549cdc8 added pair_imageI (also as intro rule)
oheimb
parents: 11451
diff changeset
   159
  "@Sigma" :: "[pttrn, 'a set, 'b set] => ('a * 'b) set"  ("(3\<Sigma> _\<in>_./ _)"   10)
f3ff2549cdc8 added pair_imageI (also as intro rule)
oheimb
parents: 11451
diff changeset
   160
  "@Times" :: "['a set,  'a => 'b set] => ('a * 'b) set"  ("_ \<times> _" [81, 80] 80)
11025
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
   161
14565
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14359
diff changeset
   162
syntax (HTML output)
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14359
diff changeset
   163
  "@Sigma" :: "[pttrn, 'a set, 'b set] => ('a * 'b) set"  ("(3\<Sigma> _\<in>_./ _)"   10)
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14359
diff changeset
   164
  "@Times" :: "['a set,  'a => 'b set] => ('a * 'b) set"  ("_ \<times> _" [81, 80] 80)
c6dc17aab88a use more symbols in HTML output
kleing
parents: 14359
diff changeset
   165
11032
83f723e86dac added hidden internal_split constant;
wenzelm
parents: 11025
diff changeset
   166
print_translation {* [("Sigma", dependent_tr' ("@Sigma", "@Times"))] *}
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   167
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   168
11777
wenzelm
parents: 11602
diff changeset
   169
subsubsection {* Definitions *}
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   170
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   171
defs
11025
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
   172
  Pair_def:     "Pair a b == Abs_Prod(Pair_Rep a b)"
11451
8abfb4f7bd02 partial restructuring to reduce dependence on Axiom of Choice
paulson
parents: 11425
diff changeset
   173
  fst_def:      "fst p == THE a. EX b. p = (a, b)"
8abfb4f7bd02 partial restructuring to reduce dependence on Axiom of Choice
paulson
parents: 11425
diff changeset
   174
  snd_def:      "snd p == THE b. EX a. p = (a, b)"
11025
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
   175
  split_def:    "split == (%c p. c (fst p) (snd p))"
14189
de58f4d939e1 Added the constant "curry".
skalberg
parents: 14101
diff changeset
   176
  curry_def:    "curry == (%c x y. c (x,y))"
11025
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
   177
  prod_fun_def: "prod_fun f g == split(%x y.(f(x), g(y)))"
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
   178
  Sigma_def:    "Sigma A B == UN x:A. UN y:B(x). {(x, y)}"
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   179
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   180
11966
wenzelm
parents: 11838
diff changeset
   181
subsubsection {* Lemmas and proof tool setup *}
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   182
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   183
lemma ProdI: "Pair_Rep a b : Prod"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   184
  by (unfold Prod_def) blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   185
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   186
lemma Pair_Rep_inject: "Pair_Rep a b = Pair_Rep a' b' ==> a = a' & b = b'"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   187
  apply (unfold Pair_Rep_def)
14208
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   188
  apply (drule fun_cong [THEN fun_cong], blast)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   189
  done
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   190
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   191
lemma inj_on_Abs_Prod: "inj_on Abs_Prod Prod"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   192
  apply (rule inj_on_inverseI)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   193
  apply (erule Abs_Prod_inverse)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   194
  done
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   195
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   196
lemma Pair_inject:
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   197
  "(a, b) = (a', b') ==> (a = a' ==> b = b' ==> R) ==> R"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   198
proof -
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   199
  case rule_context [unfolded Pair_def]
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   200
  show ?thesis
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   201
    apply (rule inj_on_Abs_Prod [THEN inj_onD, THEN Pair_Rep_inject, THEN conjE])
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   202
    apply (rule rule_context ProdI)+
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   203
    .
11025
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
   204
qed
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   205
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   206
lemma Pair_eq [iff]: "((a, b) = (a', b')) = (a = a' & b = b')"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   207
  by (blast elim!: Pair_inject)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   208
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   209
lemma fst_conv [simp]: "fst (a, b) = a"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   210
  by (unfold fst_def) blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   211
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   212
lemma snd_conv [simp]: "snd (a, b) = b"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   213
  by (unfold snd_def) blast
11025
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
   214
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   215
lemma fst_eqD: "fst (x, y) = a ==> x = a"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   216
  by simp
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   217
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   218
lemma snd_eqD: "snd (x, y) = a ==> y = a"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   219
  by simp
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   220
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   221
lemma PairE_lemma: "EX x y. p = (x, y)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   222
  apply (unfold Pair_def)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   223
  apply (rule Rep_Prod [unfolded Prod_def, THEN CollectE])
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   224
  apply (erule exE, erule exE, rule exI, rule exI)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   225
  apply (rule Rep_Prod_inverse [symmetric, THEN trans])
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   226
  apply (erule arg_cong)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   227
  done
11032
83f723e86dac added hidden internal_split constant;
wenzelm
parents: 11025
diff changeset
   228
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   229
lemma PairE [cases type: *]: "(!!x y. p = (x, y) ==> Q) ==> Q"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   230
  by (insert PairE_lemma [of p]) blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   231
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   232
ML_setup {*
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   233
  local val PairE = thm "PairE" in
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   234
    fun pair_tac s =
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   235
      EVERY' [res_inst_tac [("p", s)] PairE, hyp_subst_tac, K prune_params_tac];
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   236
  end;
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   237
*}
11032
83f723e86dac added hidden internal_split constant;
wenzelm
parents: 11025
diff changeset
   238
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   239
lemma surjective_pairing: "p = (fst p, snd p)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   240
  -- {* Do not add as rewrite rule: invalidates some proofs in IMP *}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   241
  by (cases p) simp
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   242
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   243
declare surjective_pairing [symmetric, simp]
11025
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
   244
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   245
lemma surj_pair [simp]: "EX x y. z = (x, y)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   246
  apply (rule exI)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   247
  apply (rule exI)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   248
  apply (rule surjective_pairing)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   249
  done
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   250
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   251
lemma split_paired_all: "(!!x. PROP P x) == (!!a b. PROP P (a, b))"
11820
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   252
proof
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   253
  fix a b
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   254
  assume "!!x. PROP P x"
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   255
  thus "PROP P (a, b)" .
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   256
next
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   257
  fix x
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   258
  assume "!!a b. PROP P (a, b)"
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   259
  hence "PROP P (fst x, snd x)" .
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   260
  thus "PROP P x" by simp
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   261
qed
015a82d4ee96 proper proof of split_paired_all (presently unused);
wenzelm
parents: 11777
diff changeset
   262
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   263
lemmas split_tupled_all = split_paired_all unit_all_eq2
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   264
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   265
text {*
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   266
  The rule @{thm [source] split_paired_all} does not work with the
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   267
  Simplifier because it also affects premises in congrence rules,
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   268
  where this can lead to premises of the form @{text "!!a b. ... =
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   269
  ?P(a, b)"} which cannot be solved by reflexivity.
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   270
*}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   271
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   272
ML_setup "
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   273
  (* replace parameters of product type by individual component parameters *)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   274
  val safe_full_simp_tac = generic_simp_tac true (true, false, false);
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   275
  local (* filtering with exists_paired_all is an essential optimization *)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   276
    fun exists_paired_all (Const (\"all\", _) $ Abs (_, T, t)) =
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   277
          can HOLogic.dest_prodT T orelse exists_paired_all t
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   278
      | exists_paired_all (t $ u) = exists_paired_all t orelse exists_paired_all u
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   279
      | exists_paired_all (Abs (_, _, t)) = exists_paired_all t
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   280
      | exists_paired_all _ = false;
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   281
    val ss = HOL_basic_ss
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   282
      addsimps [thm \"split_paired_all\", thm \"unit_all_eq2\", thm \"unit_abs_eta_conv\"]
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   283
      addsimprocs [unit_eq_proc];
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   284
  in
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   285
    val split_all_tac = SUBGOAL (fn (t, i) =>
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   286
      if exists_paired_all t then safe_full_simp_tac ss i else no_tac);
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   287
    val unsafe_split_all_tac = SUBGOAL (fn (t, i) =>
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   288
      if exists_paired_all t then full_simp_tac ss i else no_tac);
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   289
    fun split_all th =
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   290
   if exists_paired_all (#prop (Thm.rep_thm th)) then full_simplify ss th else th;
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   291
  end;
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   292
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   293
claset_ref() := claset() addSbefore (\"split_all_tac\", split_all_tac);
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   294
"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   295
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   296
lemma split_paired_All [simp]: "(ALL x. P x) = (ALL a b. P (a, b))"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   297
  -- {* @{text "[iff]"} is not a good idea because it makes @{text blast} loop *}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   298
  by fast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   299
14189
de58f4d939e1 Added the constant "curry".
skalberg
parents: 14101
diff changeset
   300
lemma curry_split [simp]: "curry (split f) = f"
de58f4d939e1 Added the constant "curry".
skalberg
parents: 14101
diff changeset
   301
  by (simp add: curry_def split_def)
de58f4d939e1 Added the constant "curry".
skalberg
parents: 14101
diff changeset
   302
de58f4d939e1 Added the constant "curry".
skalberg
parents: 14101
diff changeset
   303
lemma split_curry [simp]: "split (curry f) = f"
de58f4d939e1 Added the constant "curry".
skalberg
parents: 14101
diff changeset
   304
  by (simp add: curry_def split_def)
de58f4d939e1 Added the constant "curry".
skalberg
parents: 14101
diff changeset
   305
de58f4d939e1 Added the constant "curry".
skalberg
parents: 14101
diff changeset
   306
lemma curryI [intro!]: "f (a,b) ==> curry f a b"
de58f4d939e1 Added the constant "curry".
skalberg
parents: 14101
diff changeset
   307
  by (simp add: curry_def)
de58f4d939e1 Added the constant "curry".
skalberg
parents: 14101
diff changeset
   308
14190
609c072edf90 Fixed blunder in the setup of the classical reasoner wrt. the constant
skalberg
parents: 14189
diff changeset
   309
lemma curryD [dest!]: "curry f a b ==> f (a,b)"
14189
de58f4d939e1 Added the constant "curry".
skalberg
parents: 14101
diff changeset
   310
  by (simp add: curry_def)
de58f4d939e1 Added the constant "curry".
skalberg
parents: 14101
diff changeset
   311
14190
609c072edf90 Fixed blunder in the setup of the classical reasoner wrt. the constant
skalberg
parents: 14189
diff changeset
   312
lemma curryE: "[| curry f a b ; f (a,b) ==> Q |] ==> Q"
14189
de58f4d939e1 Added the constant "curry".
skalberg
parents: 14101
diff changeset
   313
  by (simp add: curry_def)
de58f4d939e1 Added the constant "curry".
skalberg
parents: 14101
diff changeset
   314
de58f4d939e1 Added the constant "curry".
skalberg
parents: 14101
diff changeset
   315
lemma curry_conv [simp]: "curry f a b = f (a,b)"
de58f4d939e1 Added the constant "curry".
skalberg
parents: 14101
diff changeset
   316
  by (simp add: curry_def)
de58f4d939e1 Added the constant "curry".
skalberg
parents: 14101
diff changeset
   317
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   318
lemma prod_induct [induct type: *]: "!!x. (!!a b. P (a, b)) ==> P x"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   319
  by fast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   320
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   321
lemma split_paired_Ex [simp]: "(EX x. P x) = (EX a b. P (a, b))"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   322
  by fast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   323
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   324
lemma split_conv [simp]: "split c (a, b) = c a b"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   325
  by (simp add: split_def)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   326
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   327
lemmas split = split_conv  -- {* for backwards compatibility *}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   328
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   329
lemmas splitI = split_conv [THEN iffD2, standard]
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   330
lemmas splitD = split_conv [THEN iffD1, standard]
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   331
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   332
lemma split_Pair_apply: "split (%x y. f (x, y)) = f"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   333
  -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity function. *}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   334
  apply (rule ext)
14208
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   335
  apply (tactic {* pair_tac "x" 1 *}, simp)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   336
  done
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   337
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   338
lemma split_paired_The: "(THE x. P x) = (THE (a, b). P (a, b))"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   339
  -- {* Can't be added to simpset: loops! *}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   340
  by (simp add: split_Pair_apply)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   341
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   342
lemma The_split: "The (split P) = (THE xy. P (fst xy) (snd xy))"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   343
  by (simp add: split_def)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   344
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   345
lemma Pair_fst_snd_eq: "!!s t. (s = t) = (fst s = fst t & snd s = snd t)"
14208
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   346
by (simp only: split_tupled_all, simp)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   347
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   348
lemma prod_eqI [intro?]: "fst p = fst q ==> snd p = snd q ==> p = q"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   349
  by (simp add: Pair_fst_snd_eq)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   350
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   351
lemma split_weak_cong: "p = q ==> split c p = split c q"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   352
  -- {* Prevents simplification of @{term c}: much faster *}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   353
  by (erule arg_cong)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   354
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   355
lemma split_eta: "(%(x, y). f (x, y)) = f"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   356
  apply (rule ext)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   357
  apply (simp only: split_tupled_all)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   358
  apply (rule split_conv)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   359
  done
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   360
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   361
lemma cond_split_eta: "(!!x y. f x y = g (x, y)) ==> (%(x, y). f x y) = g"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   362
  by (simp add: split_eta)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   363
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   364
text {*
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   365
  Simplification procedure for @{thm [source] cond_split_eta}.  Using
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   366
  @{thm [source] split_eta} as a rewrite rule is not general enough,
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   367
  and using @{thm [source] cond_split_eta} directly would render some
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   368
  existing proofs very inefficient; similarly for @{text
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   369
  split_beta}. *}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   370
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   371
ML_setup {*
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   372
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   373
local
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   374
  val cond_split_eta = thm "cond_split_eta";
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   375
  fun  Pair_pat k 0 (Bound m) = (m = k)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   376
  |    Pair_pat k i (Const ("Pair",  _) $ Bound m $ t) = i > 0 andalso
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   377
                        m = k+i andalso Pair_pat k (i-1) t
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   378
  |    Pair_pat _ _ _ = false;
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   379
  fun no_args k i (Abs (_, _, t)) = no_args (k+1) i t
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   380
  |   no_args k i (t $ u) = no_args k i t andalso no_args k i u
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   381
  |   no_args k i (Bound m) = m < k orelse m > k+i
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   382
  |   no_args _ _ _ = true;
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   383
  fun split_pat tp i (Abs  (_,_,t)) = if tp 0 i t then Some (i,t) else None
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   384
  |   split_pat tp i (Const ("split", _) $ Abs (_, _, t)) = split_pat tp (i+1) t
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   385
  |   split_pat tp i _ = None;
13480
bb72bd43c6c3 use Tactic.prove instead of prove_goalw_cterm in internal proofs!
wenzelm
parents: 13462
diff changeset
   386
  fun metaeq sg lhs rhs = mk_meta_eq (Tactic.prove sg [] []
bb72bd43c6c3 use Tactic.prove instead of prove_goalw_cterm in internal proofs!
wenzelm
parents: 13462
diff changeset
   387
        (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs,rhs)))
bb72bd43c6c3 use Tactic.prove instead of prove_goalw_cterm in internal proofs!
wenzelm
parents: 13462
diff changeset
   388
        (K (simp_tac (HOL_basic_ss addsimps [cond_split_eta]) 1)));
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   389
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   390
  fun beta_term_pat k i (Abs (_, _, t)) = beta_term_pat (k+1) i t
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   391
  |   beta_term_pat k i (t $ u) = Pair_pat k i (t $ u) orelse
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   392
                        (beta_term_pat k i t andalso beta_term_pat k i u)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   393
  |   beta_term_pat k i t = no_args k i t;
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   394
  fun  eta_term_pat k i (f $ arg) = no_args k i f andalso Pair_pat k i arg
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   395
  |    eta_term_pat _ _ _ = false;
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   396
  fun subst arg k i (Abs (x, T, t)) = Abs (x, T, subst arg (k+1) i t)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   397
  |   subst arg k i (t $ u) = if Pair_pat k i (t $ u) then incr_boundvars k arg
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   398
                              else (subst arg k i t $ subst arg k i u)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   399
  |   subst arg k i t = t;
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   400
  fun beta_proc sg _ (s as Const ("split", _) $ Abs (_, _, t) $ arg) =
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   401
        (case split_pat beta_term_pat 1 t of
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   402
        Some (i,f) => Some (metaeq sg s (subst arg 0 i f))
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   403
        | None => None)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   404
  |   beta_proc _ _ _ = None;
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   405
  fun eta_proc sg _ (s as Const ("split", _) $ Abs (_, _, t)) =
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   406
        (case split_pat eta_term_pat 1 t of
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   407
          Some (_,ft) => Some (metaeq sg s (let val (f $ arg) = ft in f end))
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   408
        | None => None)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   409
  |   eta_proc _ _ _ = None;
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   410
in
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 12338
diff changeset
   411
  val split_beta_proc = Simplifier.simproc (Theory.sign_of (the_context ()))
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 12338
diff changeset
   412
    "split_beta" ["split f z"] beta_proc;
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 12338
diff changeset
   413
  val split_eta_proc = Simplifier.simproc (Theory.sign_of (the_context ()))
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 12338
diff changeset
   414
    "split_eta" ["split f"] eta_proc;
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   415
end;
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   416
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   417
Addsimprocs [split_beta_proc, split_eta_proc];
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   418
*}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   419
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   420
lemma split_beta: "(%(x, y). P x y) z = P (fst z) (snd z)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   421
  by (subst surjective_pairing, rule split_conv)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   422
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   423
lemma split_split: "R (split c p) = (ALL x y. p = (x, y) --> R (c x y))"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   424
  -- {* For use with @{text split} and the Simplifier. *}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   425
  apply (subst surjective_pairing)
14208
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   426
  apply (subst split_conv, blast)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   427
  done
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   428
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   429
text {*
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   430
  @{thm [source] split_split} could be declared as @{text "[split]"}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   431
  done after the Splitter has been speeded up significantly;
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   432
  precompute the constants involved and don't do anything unless the
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   433
  current goal contains one of those constants.
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   434
*}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   435
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   436
lemma split_split_asm: "R (split c p) = (~(EX x y. p = (x, y) & (~R (c x y))))"
14208
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   437
by (subst split_split, simp)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   438
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   439
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   440
text {*
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   441
  \medskip @{term split} used as a logical connective or set former.
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   442
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   443
  \medskip These rules are for use with @{text blast}; could instead
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   444
  call @{text simp} using @{thm [source] split} as rewrite. *}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   445
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   446
lemma splitI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> split c p"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   447
  apply (simp only: split_tupled_all)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   448
  apply (simp (no_asm_simp))
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   449
  done
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   450
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   451
lemma splitI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> split c p x"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   452
  apply (simp only: split_tupled_all)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   453
  apply (simp (no_asm_simp))
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   454
  done
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   455
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   456
lemma splitE: "split c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   457
  by (induct p) (auto simp add: split_def)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   458
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   459
lemma splitE': "split c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   460
  by (induct p) (auto simp add: split_def)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   461
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   462
lemma splitE2:
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   463
  "[| Q (split P z);  !!x y. [|z = (x, y); Q (P x y)|] ==> R |] ==> R"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   464
proof -
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   465
  assume q: "Q (split P z)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   466
  assume r: "!!x y. [|z = (x, y); Q (P x y)|] ==> R"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   467
  show R
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   468
    apply (rule r surjective_pairing)+
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   469
    apply (rule split_beta [THEN subst], rule q)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   470
    done
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   471
qed
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   472
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   473
lemma splitD': "split R (a,b) c ==> R a b c"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   474
  by simp
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   475
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   476
lemma mem_splitI: "z: c a b ==> z: split c (a, b)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   477
  by simp
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   478
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   479
lemma mem_splitI2: "!!p. [| !!a b. p = (a, b) ==> z: c a b |] ==> z: split c p"
14208
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   480
by (simp only: split_tupled_all, simp)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   481
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   482
lemma mem_splitE: "[| z: split c p; !!x y. [| p = (x,y); z: c x y |] ==> Q |] ==> Q"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   483
proof -
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   484
  case rule_context [unfolded split_def]
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   485
  show ?thesis by (rule rule_context surjective_pairing)+
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   486
qed
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   487
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   488
declare mem_splitI2 [intro!] mem_splitI [intro!] splitI2' [intro!] splitI2 [intro!] splitI [intro!]
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   489
declare mem_splitE [elim!] splitE' [elim!] splitE [elim!]
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   490
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   491
ML_setup "
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   492
local (* filtering with exists_p_split is an essential optimization *)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   493
  fun exists_p_split (Const (\"split\",_) $ _ $ (Const (\"Pair\",_)$_$_)) = true
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   494
    | exists_p_split (t $ u) = exists_p_split t orelse exists_p_split u
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   495
    | exists_p_split (Abs (_, _, t)) = exists_p_split t
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   496
    | exists_p_split _ = false;
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   497
  val ss = HOL_basic_ss addsimps [thm \"split_conv\"];
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   498
in
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   499
val split_conv_tac = SUBGOAL (fn (t, i) =>
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   500
    if exists_p_split t then safe_full_simp_tac ss i else no_tac);
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   501
end;
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   502
(* This prevents applications of splitE for already splitted arguments leading
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   503
   to quite time-consuming computations (in particular for nested tuples) *)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   504
claset_ref() := claset() addSbefore (\"split_conv_tac\", split_conv_tac);
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   505
"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   506
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   507
lemma split_eta_SetCompr [simp]: "(%u. EX x y. u = (x, y) & P (x, y)) = P"
14208
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   508
by (rule ext, fast)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   509
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   510
lemma split_eta_SetCompr2 [simp]: "(%u. EX x y. u = (x, y) & P x y) = split P"
14208
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   511
by (rule ext, fast)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   512
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   513
lemma split_part [simp]: "(%(a,b). P & Q a b) = (%ab. P & split Q ab)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   514
  -- {* Allows simplifications of nested splits in case of independent predicates. *}
14208
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   515
  apply (rule ext, blast)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   516
  done
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   517
14337
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   518
(* Do NOT make this a simp rule as it
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   519
   a) only helps in special situations
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   520
   b) can lead to nontermination in the presence of split_def
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   521
*)
e13731554e50 undid split_comp_eq[simp] because it leads to nontermination together with split_def!
nipkow
parents: 14208
diff changeset
   522
lemma split_comp_eq: 
14101
d25c23e46173 added upd_fst, upd_snd, some thms
oheimb
parents: 13480
diff changeset
   523
"(%u. f (g (fst u)) (snd u)) = (split (%x. f (g x)))"
d25c23e46173 added upd_fst, upd_snd, some thms
oheimb
parents: 13480
diff changeset
   524
by (rule ext, auto)
d25c23e46173 added upd_fst, upd_snd, some thms
oheimb
parents: 13480
diff changeset
   525
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   526
lemma The_split_eq [simp]: "(THE (x',y'). x = x' & y = y') = (x, y)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   527
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   528
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   529
(*
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   530
the following  would be slightly more general,
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   531
but cannot be used as rewrite rule:
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   532
### Cannot add premise as rewrite rule because it contains (type) unknowns:
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   533
### ?y = .x
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   534
Goal "[| P y; !!x. P x ==> x = y |] ==> (@(x',y). x = x' & P y) = (x,y)"
14208
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   535
by (rtac some_equality 1)
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   536
by ( Simp_tac 1)
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   537
by (split_all_tac 1)
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   538
by (Asm_full_simp_tac 1)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   539
qed "The_split_eq";
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   540
*)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   541
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   542
lemma injective_fst_snd: "!!x y. [|fst x = fst y; snd x = snd y|] ==> x = y"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   543
  by auto
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   544
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   545
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   546
text {*
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   547
  \bigskip @{term prod_fun} --- action of the product functor upon
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   548
  functions.
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   549
*}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   550
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   551
lemma prod_fun [simp]: "prod_fun f g (a, b) = (f a, g b)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   552
  by (simp add: prod_fun_def)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   553
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   554
lemma prod_fun_compose: "prod_fun (f1 o f2) (g1 o g2) = (prod_fun f1 g1 o prod_fun f2 g2)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   555
  apply (rule ext)
14208
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   556
  apply (tactic {* pair_tac "x" 1 *}, simp)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   557
  done
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   558
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   559
lemma prod_fun_ident [simp]: "prod_fun (%x. x) (%y. y) = (%z. z)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   560
  apply (rule ext)
14208
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   561
  apply (tactic {* pair_tac "z" 1 *}, simp)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   562
  done
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   563
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   564
lemma prod_fun_imageI [intro]: "(a, b) : r ==> (f a, g b) : prod_fun f g ` r"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   565
  apply (rule image_eqI)
14208
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   566
  apply (rule prod_fun [symmetric], assumption)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   567
  done
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   568
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   569
lemma prod_fun_imageE [elim!]:
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   570
  "[| c: (prod_fun f g)`r;  !!x y. [| c=(f(x),g(y));  (x,y):r |] ==> P
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   571
    |] ==> P"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   572
proof -
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   573
  case rule_context
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   574
  assume major: "c: (prod_fun f g)`r"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   575
  show ?thesis
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   576
    apply (rule major [THEN imageE])
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   577
    apply (rule_tac p = x in PairE)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   578
    apply (rule rule_context)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   579
     prefer 2
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   580
     apply blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   581
    apply (blast intro: prod_fun)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   582
    done
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   583
qed
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   584
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   585
14101
d25c23e46173 added upd_fst, upd_snd, some thms
oheimb
parents: 13480
diff changeset
   586
constdefs
d25c23e46173 added upd_fst, upd_snd, some thms
oheimb
parents: 13480
diff changeset
   587
  upd_fst :: "('a => 'c) => 'a * 'b => 'c * 'b"
d25c23e46173 added upd_fst, upd_snd, some thms
oheimb
parents: 13480
diff changeset
   588
 "upd_fst f == prod_fun f id"
d25c23e46173 added upd_fst, upd_snd, some thms
oheimb
parents: 13480
diff changeset
   589
d25c23e46173 added upd_fst, upd_snd, some thms
oheimb
parents: 13480
diff changeset
   590
  upd_snd :: "('b => 'c) => 'a * 'b => 'a * 'c"
d25c23e46173 added upd_fst, upd_snd, some thms
oheimb
parents: 13480
diff changeset
   591
 "upd_snd f == prod_fun id f"
d25c23e46173 added upd_fst, upd_snd, some thms
oheimb
parents: 13480
diff changeset
   592
d25c23e46173 added upd_fst, upd_snd, some thms
oheimb
parents: 13480
diff changeset
   593
lemma upd_fst_conv [simp]: "upd_fst f (x,y) = (f x,y)" 
d25c23e46173 added upd_fst, upd_snd, some thms
oheimb
parents: 13480
diff changeset
   594
by (simp add: upd_fst_def)
d25c23e46173 added upd_fst, upd_snd, some thms
oheimb
parents: 13480
diff changeset
   595
d25c23e46173 added upd_fst, upd_snd, some thms
oheimb
parents: 13480
diff changeset
   596
lemma upd_snd_conv [simp]: "upd_snd f (x,y) = (x,f y)" 
d25c23e46173 added upd_fst, upd_snd, some thms
oheimb
parents: 13480
diff changeset
   597
by (simp add: upd_snd_def)
d25c23e46173 added upd_fst, upd_snd, some thms
oheimb
parents: 13480
diff changeset
   598
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   599
text {*
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   600
  \bigskip Disjoint union of a family of sets -- Sigma.
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   601
*}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   602
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   603
lemma SigmaI [intro!]: "[| a:A;  b:B(a) |] ==> (a,b) : Sigma A B"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   604
  by (unfold Sigma_def) blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   605
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   606
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   607
lemma SigmaE:
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   608
    "[| c: Sigma A B;
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   609
        !!x y.[| x:A;  y:B(x);  c=(x,y) |] ==> P
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   610
     |] ==> P"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   611
  -- {* The general elimination rule. *}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   612
  by (unfold Sigma_def) blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   613
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   614
text {*
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   615
  Elimination of @{term "(a, b) : A \<times> B"} -- introduces no
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   616
  eigenvariables.
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   617
*}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   618
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   619
lemma SigmaD1: "(a, b) : Sigma A B ==> a : A"
14208
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   620
by (erule SigmaE, blast)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   621
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   622
lemma SigmaD2: "(a, b) : Sigma A B ==> b : B a"
14208
144f45277d5a misc tidying
paulson
parents: 14190
diff changeset
   623
by (erule SigmaE, blast)
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   624
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   625
lemma SigmaE2:
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   626
    "[| (a, b) : Sigma A B;
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   627
        [| a:A;  b:B(a) |] ==> P
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   628
     |] ==> P"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   629
  by (blast dest: SigmaD1 SigmaD2)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   630
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   631
declare SigmaE [elim!] SigmaE2 [elim!]
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   632
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   633
lemma Sigma_mono: "[| A <= C; !!x. x:A ==> B x <= D x |] ==> Sigma A B <= Sigma C D"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   634
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   635
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   636
lemma Sigma_empty1 [simp]: "Sigma {} B = {}"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   637
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   638
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   639
lemma Sigma_empty2 [simp]: "A <*> {} = {}"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   640
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   641
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   642
lemma UNIV_Times_UNIV [simp]: "UNIV <*> UNIV = UNIV"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   643
  by auto
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   644
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   645
lemma Compl_Times_UNIV1 [simp]: "- (UNIV <*> A) = UNIV <*> (-A)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   646
  by auto
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   647
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   648
lemma Compl_Times_UNIV2 [simp]: "- (A <*> UNIV) = (-A) <*> UNIV"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   649
  by auto
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   650
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   651
lemma mem_Sigma_iff [iff]: "((a,b): Sigma A B) = (a:A & b:B(a))"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   652
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   653
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   654
lemma Times_subset_cancel2: "x:C ==> (A <*> C <= B <*> C) = (A <= B)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   655
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   656
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   657
lemma Times_eq_cancel2: "x:C ==> (A <*> C = B <*> C) = (A = B)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   658
  by (blast elim: equalityE)
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   659
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   660
lemma SetCompr_Sigma_eq:
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   661
    "Collect (split (%x y. P x & Q x y)) = (SIGMA x:Collect P. Collect (Q x))"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   662
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   663
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   664
text {*
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   665
  \bigskip Complex rules for Sigma.
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   666
*}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   667
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   668
lemma Collect_split [simp]: "{(a,b). P a & Q b} = Collect P <*> Collect Q"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   669
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   670
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   671
lemma UN_Times_distrib:
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   672
  "(UN (a,b):(A <*> B). E a <*> F b) = (UNION A E) <*> (UNION B F)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   673
  -- {* Suggested by Pierre Chartier *}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   674
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   675
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   676
lemma split_paired_Ball_Sigma [simp]:
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   677
    "(ALL z: Sigma A B. P z) = (ALL x:A. ALL y: B x. P(x,y))"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   678
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   679
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   680
lemma split_paired_Bex_Sigma [simp]:
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   681
    "(EX z: Sigma A B. P z) = (EX x:A. EX y: B x. P(x,y))"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   682
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   683
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   684
lemma Sigma_Un_distrib1: "(SIGMA i:I Un J. C(i)) = (SIGMA i:I. C(i)) Un (SIGMA j:J. C(j))"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   685
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   686
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   687
lemma Sigma_Un_distrib2: "(SIGMA i:I. A(i) Un B(i)) = (SIGMA i:I. A(i)) Un (SIGMA i:I. B(i))"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   688
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   689
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   690
lemma Sigma_Int_distrib1: "(SIGMA i:I Int J. C(i)) = (SIGMA i:I. C(i)) Int (SIGMA j:J. C(j))"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   691
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   692
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   693
lemma Sigma_Int_distrib2: "(SIGMA i:I. A(i) Int B(i)) = (SIGMA i:I. A(i)) Int (SIGMA i:I. B(i))"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   694
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   695
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   696
lemma Sigma_Diff_distrib1: "(SIGMA i:I - J. C(i)) = (SIGMA i:I. C(i)) - (SIGMA j:J. C(j))"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   697
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   698
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   699
lemma Sigma_Diff_distrib2: "(SIGMA i:I. A(i) - B(i)) = (SIGMA i:I. A(i)) - (SIGMA i:I. B(i))"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   700
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   701
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   702
lemma Sigma_Union: "Sigma (Union X) B = (UN A:X. Sigma A B)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   703
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   704
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   705
text {*
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   706
  Non-dependent versions are needed to avoid the need for higher-order
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   707
  matching, especially when the rules are re-oriented.
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   708
*}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   709
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   710
lemma Times_Un_distrib1: "(A Un B) <*> C = (A <*> C) Un (B <*> C)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   711
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   712
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   713
lemma Times_Int_distrib1: "(A Int B) <*> C = (A <*> C) Int (B <*> C)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   714
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   715
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   716
lemma Times_Diff_distrib1: "(A - B) <*> C = (A <*> C) - (B <*> C)"
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   717
  by blast
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   718
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   719
11493
f3ff2549cdc8 added pair_imageI (also as intro rule)
oheimb
parents: 11451
diff changeset
   720
lemma pair_imageI [intro]: "(a, b) : A ==> f a b : (%(a, b). f a b) ` A"
11777
wenzelm
parents: 11602
diff changeset
   721
  apply (rule_tac x = "(a, b)" in image_eqI)
wenzelm
parents: 11602
diff changeset
   722
   apply auto
wenzelm
parents: 11602
diff changeset
   723
  done
wenzelm
parents: 11602
diff changeset
   724
11493
f3ff2549cdc8 added pair_imageI (also as intro rule)
oheimb
parents: 11451
diff changeset
   725
11838
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   726
text {*
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   727
  Setup of internal @{text split_rule}.
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   728
*}
02d75712061d got rid of ML proof scripts for Product_Type;
wenzelm
parents: 11820
diff changeset
   729
11032
83f723e86dac added hidden internal_split constant;
wenzelm
parents: 11025
diff changeset
   730
constdefs
11425
wenzelm
parents: 11032
diff changeset
   731
  internal_split :: "('a => 'b => 'c) => 'a * 'b => 'c"
11032
83f723e86dac added hidden internal_split constant;
wenzelm
parents: 11025
diff changeset
   732
  "internal_split == split"
83f723e86dac added hidden internal_split constant;
wenzelm
parents: 11025
diff changeset
   733
83f723e86dac added hidden internal_split constant;
wenzelm
parents: 11025
diff changeset
   734
lemma internal_split_conv: "internal_split c (a, b) = c a b"
83f723e86dac added hidden internal_split constant;
wenzelm
parents: 11025
diff changeset
   735
  by (simp only: internal_split_def split_conv)
83f723e86dac added hidden internal_split constant;
wenzelm
parents: 11025
diff changeset
   736
83f723e86dac added hidden internal_split constant;
wenzelm
parents: 11025
diff changeset
   737
hide const internal_split
83f723e86dac added hidden internal_split constant;
wenzelm
parents: 11025
diff changeset
   738
11025
a70b796d9af8 converted to Isar therory, adding attributes complete_split and split_format
oheimb
parents: 10289
diff changeset
   739
use "Tools/split_rule.ML"
11032
83f723e86dac added hidden internal_split constant;
wenzelm
parents: 11025
diff changeset
   740
setup SplitRule.setup
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   741
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   742
end