src/HOL/Parity.thy
author haftmann
Thu May 06 23:11:58 2010 +0200 (2010-05-06)
changeset 36722 c8ea75ea4a29
parent 35644 d20cf282342e
child 36840 1e020f445846
permissions -rw-r--r--
tuned proof
wenzelm@21263
     1
(*  Title:      HOL/Library/Parity.thy
haftmann@25600
     2
    Author:     Jeremy Avigad, Jacques D. Fleuriot
wenzelm@21256
     3
*)
wenzelm@21256
     4
wenzelm@21256
     5
header {* Even and Odd for int and nat *}
wenzelm@21256
     6
wenzelm@21256
     7
theory Parity
haftmann@30738
     8
imports Main
wenzelm@21256
     9
begin
wenzelm@21256
    10
haftmann@29608
    11
class even_odd = 
haftmann@22390
    12
  fixes even :: "'a \<Rightarrow> bool"
wenzelm@21256
    13
wenzelm@21256
    14
abbreviation
haftmann@22390
    15
  odd :: "'a\<Colon>even_odd \<Rightarrow> bool" where
haftmann@22390
    16
  "odd x \<equiv> \<not> even x"
haftmann@22390
    17
haftmann@26259
    18
instantiation nat and int  :: even_odd
haftmann@25571
    19
begin
haftmann@25571
    20
haftmann@25571
    21
definition
haftmann@25571
    22
  even_def [presburger]: "even x \<longleftrightarrow> (x\<Colon>int) mod 2 = 0"
haftmann@22390
    23
haftmann@25571
    24
definition
haftmann@25571
    25
  even_nat_def [presburger]: "even x \<longleftrightarrow> even (int x)"
haftmann@25571
    26
haftmann@25571
    27
instance ..
haftmann@25571
    28
haftmann@25571
    29
end
wenzelm@21256
    30
haftmann@33318
    31
lemma transfer_int_nat_relations:
haftmann@33318
    32
  "even (int x) \<longleftrightarrow> even x"
haftmann@33318
    33
  by (simp add: even_nat_def)
haftmann@33318
    34
haftmann@35644
    35
declare transfer_morphism_int_nat[transfer add return:
haftmann@33318
    36
  transfer_int_nat_relations
haftmann@33318
    37
]
wenzelm@21256
    38
nipkow@31148
    39
lemma even_zero_int[simp]: "even (0::int)" by presburger
nipkow@31148
    40
nipkow@31148
    41
lemma odd_one_int[simp]: "odd (1::int)" by presburger
nipkow@31148
    42
nipkow@31148
    43
lemma even_zero_nat[simp]: "even (0::nat)" by presburger
nipkow@31148
    44
nipkow@31718
    45
lemma odd_1_nat [simp]: "odd (1::nat)" by presburger
nipkow@31148
    46
nipkow@31148
    47
declare even_def[of "number_of v", standard, simp]
nipkow@31148
    48
nipkow@31148
    49
declare even_nat_def[of "number_of v", standard, simp]
nipkow@31148
    50
wenzelm@21256
    51
subsection {* Even and odd are mutually exclusive *}
wenzelm@21256
    52
wenzelm@21263
    53
lemma int_pos_lt_two_imp_zero_or_one:
wenzelm@21256
    54
    "0 <= x ==> (x::int) < 2 ==> x = 0 | x = 1"
chaieb@23522
    55
  by presburger
wenzelm@21256
    56
chaieb@23522
    57
lemma neq_one_mod_two [simp, presburger]: 
chaieb@23522
    58
  "((x::int) mod 2 ~= 0) = (x mod 2 = 1)" by presburger
wenzelm@21256
    59
haftmann@25600
    60
wenzelm@21256
    61
subsection {* Behavior under integer arithmetic operations *}
chaieb@27668
    62
declare dvd_def[algebra]
chaieb@27668
    63
lemma nat_even_iff_2_dvd[algebra]: "even (x::nat) \<longleftrightarrow> 2 dvd x"
chaieb@27668
    64
  by (presburger add: even_nat_def even_def)
chaieb@27668
    65
lemma int_even_iff_2_dvd[algebra]: "even (x::int) \<longleftrightarrow> 2 dvd x"
chaieb@27668
    66
  by presburger
wenzelm@21256
    67
wenzelm@21256
    68
lemma even_times_anything: "even (x::int) ==> even (x * y)"
chaieb@27668
    69
  by algebra
wenzelm@21256
    70
chaieb@27668
    71
lemma anything_times_even: "even (y::int) ==> even (x * y)" by algebra
wenzelm@21256
    72
chaieb@27668
    73
lemma odd_times_odd: "odd (x::int) ==> odd y ==> odd (x * y)" 
wenzelm@21256
    74
  by (simp add: even_def zmod_zmult1_eq)
wenzelm@21256
    75
nipkow@31148
    76
lemma even_product[simp,presburger]: "even((x::int) * y) = (even x | even y)"
wenzelm@21263
    77
  apply (auto simp add: even_times_anything anything_times_even)
wenzelm@21256
    78
  apply (rule ccontr)
wenzelm@21256
    79
  apply (auto simp add: odd_times_odd)
wenzelm@21256
    80
  done
wenzelm@21256
    81
wenzelm@21256
    82
lemma even_plus_even: "even (x::int) ==> even y ==> even (x + y)"
nipkow@31148
    83
by presburger
wenzelm@21256
    84
wenzelm@21256
    85
lemma even_plus_odd: "even (x::int) ==> odd y ==> odd (x + y)"
nipkow@31148
    86
by presburger
wenzelm@21256
    87
wenzelm@21256
    88
lemma odd_plus_even: "odd (x::int) ==> even y ==> odd (x + y)"
nipkow@31148
    89
by presburger
wenzelm@21256
    90
chaieb@23522
    91
lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)" by presburger
wenzelm@21256
    92
nipkow@31148
    93
lemma even_sum[simp,presburger]:
nipkow@31148
    94
  "even ((x::int) + y) = ((even x & even y) | (odd x & odd y))"
nipkow@31148
    95
by presburger
wenzelm@21256
    96
nipkow@31148
    97
lemma even_neg[simp,presburger,algebra]: "even (-(x::int)) = even x"
nipkow@31148
    98
by presburger
wenzelm@21256
    99
nipkow@31148
   100
lemma even_difference[simp]:
chaieb@23522
   101
    "even ((x::int) - y) = ((even x & even y) | (odd x & odd y))" by presburger
wenzelm@21256
   102
nipkow@31148
   103
lemma even_power[simp,presburger]: "even ((x::int)^n) = (even x & n \<noteq> 0)"
nipkow@31148
   104
by (induct n) auto
wenzelm@21256
   105
nipkow@31148
   106
lemma odd_pow: "odd x ==> odd((x::int)^n)" by simp
wenzelm@21256
   107
wenzelm@21256
   108
wenzelm@21256
   109
subsection {* Equivalent definitions *}
wenzelm@21256
   110
chaieb@23522
   111
lemma two_times_even_div_two: "even (x::int) ==> 2 * (x div 2) = x" 
nipkow@31148
   112
by presburger
wenzelm@21256
   113
nipkow@31148
   114
lemma two_times_odd_div_two_plus_one:
nipkow@31148
   115
  "odd (x::int) ==> 2 * (x div 2) + 1 = x"
nipkow@31148
   116
by presburger
wenzelm@21256
   117
chaieb@23522
   118
lemma even_equiv_def: "even (x::int) = (EX y. x = 2 * y)" by presburger
wenzelm@21256
   119
chaieb@23522
   120
lemma odd_equiv_def: "odd (x::int) = (EX y. x = 2 * y + 1)" by presburger
wenzelm@21256
   121
wenzelm@21256
   122
subsection {* even and odd for nats *}
wenzelm@21256
   123
wenzelm@21256
   124
lemma pos_int_even_equiv_nat_even: "0 \<le> x ==> even x = even (nat x)"
nipkow@31148
   125
by (simp add: even_nat_def)
wenzelm@21256
   126
nipkow@31148
   127
lemma even_product_nat[simp,presburger,algebra]:
nipkow@31148
   128
  "even((x::nat) * y) = (even x | even y)"
nipkow@31148
   129
by (simp add: even_nat_def int_mult)
wenzelm@21256
   130
nipkow@31148
   131
lemma even_sum_nat[simp,presburger,algebra]:
nipkow@31148
   132
  "even ((x::nat) + y) = ((even x & even y) | (odd x & odd y))"
chaieb@23522
   133
by presburger
wenzelm@21256
   134
nipkow@31148
   135
lemma even_difference_nat[simp,presburger,algebra]:
nipkow@31148
   136
  "even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))"
nipkow@31148
   137
by presburger
wenzelm@21256
   138
nipkow@31148
   139
lemma even_Suc[simp,presburger,algebra]: "even (Suc x) = odd x"
nipkow@31148
   140
by presburger
wenzelm@21256
   141
nipkow@31148
   142
lemma even_power_nat[simp,presburger,algebra]:
nipkow@31148
   143
  "even ((x::nat)^y) = (even x & 0 < y)"
nipkow@31148
   144
by (simp add: even_nat_def int_power)
wenzelm@21256
   145
wenzelm@21256
   146
wenzelm@21256
   147
subsection {* Equivalent definitions *}
wenzelm@21256
   148
nipkow@31148
   149
lemma nat_lt_two_imp_zero_or_one:
nipkow@31148
   150
  "(x::nat) < Suc (Suc 0) ==> x = 0 | x = Suc 0"
nipkow@31148
   151
by presburger
wenzelm@21256
   152
wenzelm@21256
   153
lemma even_nat_mod_two_eq_zero: "even (x::nat) ==> x mod (Suc (Suc 0)) = 0"
nipkow@31148
   154
by presburger
wenzelm@21256
   155
wenzelm@21256
   156
lemma odd_nat_mod_two_eq_one: "odd (x::nat) ==> x mod (Suc (Suc 0)) = Suc 0"
chaieb@23522
   157
by presburger
wenzelm@21256
   158
wenzelm@21263
   159
lemma even_nat_equiv_def: "even (x::nat) = (x mod Suc (Suc 0) = 0)"
nipkow@31148
   160
by presburger
wenzelm@21256
   161
wenzelm@21256
   162
lemma odd_nat_equiv_def: "odd (x::nat) = (x mod Suc (Suc 0) = Suc 0)"
nipkow@31148
   163
by presburger
wenzelm@21256
   164
wenzelm@21263
   165
lemma even_nat_div_two_times_two: "even (x::nat) ==>
chaieb@23522
   166
    Suc (Suc 0) * (x div Suc (Suc 0)) = x" by presburger
wenzelm@21256
   167
wenzelm@21263
   168
lemma odd_nat_div_two_times_two_plus_one: "odd (x::nat) ==>
chaieb@23522
   169
    Suc( Suc (Suc 0) * (x div Suc (Suc 0))) = x" by presburger
wenzelm@21256
   170
wenzelm@21256
   171
lemma even_nat_equiv_def2: "even (x::nat) = (EX y. x = Suc (Suc 0) * y)"
nipkow@31148
   172
by presburger
wenzelm@21256
   173
wenzelm@21256
   174
lemma odd_nat_equiv_def2: "odd (x::nat) = (EX y. x = Suc(Suc (Suc 0) * y))"
nipkow@31148
   175
by presburger
wenzelm@21256
   176
haftmann@25600
   177
wenzelm@21256
   178
subsection {* Parity and powers *}
wenzelm@21256
   179
wenzelm@21263
   180
lemma  minus_one_even_odd_power:
haftmann@31017
   181
     "(even x --> (- 1::'a::{comm_ring_1})^x = 1) &
wenzelm@21256
   182
      (odd x --> (- 1::'a)^x = - 1)"
wenzelm@21256
   183
  apply (induct x)
wenzelm@21256
   184
  apply (rule conjI)
wenzelm@21256
   185
  apply simp
nipkow@31148
   186
  apply (insert even_zero_nat, blast)
huffman@35216
   187
  apply simp
wenzelm@21263
   188
  done
wenzelm@21256
   189
wenzelm@21256
   190
lemma minus_one_even_power [simp]:
haftmann@31017
   191
    "even x ==> (- 1::'a::{comm_ring_1})^x = 1"
wenzelm@21263
   192
  using minus_one_even_odd_power by blast
wenzelm@21256
   193
wenzelm@21256
   194
lemma minus_one_odd_power [simp]:
haftmann@31017
   195
    "odd x ==> (- 1::'a::{comm_ring_1})^x = - 1"
wenzelm@21263
   196
  using minus_one_even_odd_power by blast
wenzelm@21256
   197
wenzelm@21256
   198
lemma neg_one_even_odd_power:
haftmann@31017
   199
     "(even x --> (-1::'a::{number_ring})^x = 1) &
wenzelm@21256
   200
      (odd x --> (-1::'a)^x = -1)"
wenzelm@21256
   201
  apply (induct x)
huffman@35216
   202
  apply (simp, simp)
wenzelm@21256
   203
  done
wenzelm@21256
   204
wenzelm@21256
   205
lemma neg_one_even_power [simp]:
haftmann@31017
   206
    "even x ==> (-1::'a::{number_ring})^x = 1"
wenzelm@21263
   207
  using neg_one_even_odd_power by blast
wenzelm@21256
   208
wenzelm@21256
   209
lemma neg_one_odd_power [simp]:
haftmann@31017
   210
    "odd x ==> (-1::'a::{number_ring})^x = -1"
wenzelm@21263
   211
  using neg_one_even_odd_power by blast
wenzelm@21256
   212
wenzelm@21256
   213
lemma neg_power_if:
haftmann@31017
   214
     "(-x::'a::{comm_ring_1}) ^ n =
wenzelm@21256
   215
      (if even n then (x ^ n) else -(x ^ n))"
wenzelm@21263
   216
  apply (induct n)
huffman@35216
   217
  apply simp_all
wenzelm@21263
   218
  done
wenzelm@21256
   219
wenzelm@21263
   220
lemma zero_le_even_power: "even n ==>
huffman@35631
   221
    0 <= (x::'a::{linordered_ring,monoid_mult}) ^ n"
wenzelm@21256
   222
  apply (simp add: even_nat_equiv_def2)
wenzelm@21256
   223
  apply (erule exE)
wenzelm@21256
   224
  apply (erule ssubst)
wenzelm@21256
   225
  apply (subst power_add)
wenzelm@21256
   226
  apply (rule zero_le_square)
wenzelm@21256
   227
  done
wenzelm@21256
   228
wenzelm@21263
   229
lemma zero_le_odd_power: "odd n ==>
haftmann@35028
   230
    (0 <= (x::'a::{linordered_idom}) ^ n) = (0 <= x)"
huffman@35216
   231
apply (auto simp: odd_nat_equiv_def2 power_add zero_le_mult_iff)
haftmann@36722
   232
apply (metis field_power_not_zero divisors_zero order_antisym_conv zero_le_square)
nipkow@30056
   233
done
wenzelm@21256
   234
haftmann@35028
   235
lemma zero_le_power_eq[presburger]: "(0 <= (x::'a::{linordered_idom}) ^ n) =
wenzelm@21256
   236
    (even n | (odd n & 0 <= x))"
wenzelm@21256
   237
  apply auto
wenzelm@21263
   238
  apply (subst zero_le_odd_power [symmetric])
wenzelm@21256
   239
  apply assumption+
wenzelm@21256
   240
  apply (erule zero_le_even_power)
wenzelm@21263
   241
  done
wenzelm@21256
   242
haftmann@35028
   243
lemma zero_less_power_eq[presburger]: "(0 < (x::'a::{linordered_idom}) ^ n) =
wenzelm@21256
   244
    (n = 0 | (even n & x ~= 0) | (odd n & 0 < x))"
chaieb@27668
   245
chaieb@27668
   246
  unfolding order_less_le zero_le_power_eq by auto
wenzelm@21256
   247
haftmann@35028
   248
lemma power_less_zero_eq[presburger]: "((x::'a::{linordered_idom}) ^ n < 0) =
chaieb@27668
   249
    (odd n & x < 0)"
wenzelm@21263
   250
  apply (subst linorder_not_le [symmetric])+
wenzelm@21256
   251
  apply (subst zero_le_power_eq)
wenzelm@21256
   252
  apply auto
wenzelm@21263
   253
  done
wenzelm@21256
   254
haftmann@35028
   255
lemma power_le_zero_eq[presburger]: "((x::'a::{linordered_idom}) ^ n <= 0) =
wenzelm@21256
   256
    (n ~= 0 & ((odd n & x <= 0) | (even n & x = 0)))"
wenzelm@21263
   257
  apply (subst linorder_not_less [symmetric])+
wenzelm@21256
   258
  apply (subst zero_less_power_eq)
wenzelm@21256
   259
  apply auto
wenzelm@21263
   260
  done
wenzelm@21256
   261
wenzelm@21263
   262
lemma power_even_abs: "even n ==>
haftmann@35028
   263
    (abs (x::'a::{linordered_idom}))^n = x^n"
wenzelm@21263
   264
  apply (subst power_abs [symmetric])
wenzelm@21256
   265
  apply (simp add: zero_le_even_power)
wenzelm@21263
   266
  done
wenzelm@21256
   267
chaieb@23522
   268
lemma zero_less_power_nat_eq[presburger]: "(0 < (x::nat) ^ n) = (n = 0 | 0 < x)"
wenzelm@21263
   269
  by (induct n) auto
wenzelm@21256
   270
wenzelm@21263
   271
lemma power_minus_even [simp]: "even n ==>
haftmann@31017
   272
    (- x)^n = (x^n::'a::{comm_ring_1})"
wenzelm@21256
   273
  apply (subst power_minus)
wenzelm@21256
   274
  apply simp
wenzelm@21263
   275
  done
wenzelm@21256
   276
wenzelm@21263
   277
lemma power_minus_odd [simp]: "odd n ==>
haftmann@31017
   278
    (- x)^n = - (x^n::'a::{comm_ring_1})"
wenzelm@21256
   279
  apply (subst power_minus)
wenzelm@21256
   280
  apply simp
wenzelm@21263
   281
  done
wenzelm@21256
   282
haftmann@35028
   283
lemma power_mono_even: fixes x y :: "'a :: {linordered_idom}"
hoelzl@29803
   284
  assumes "even n" and "\<bar>x\<bar> \<le> \<bar>y\<bar>"
hoelzl@29803
   285
  shows "x^n \<le> y^n"
hoelzl@29803
   286
proof -
hoelzl@29803
   287
  have "0 \<le> \<bar>x\<bar>" by auto
hoelzl@29803
   288
  with `\<bar>x\<bar> \<le> \<bar>y\<bar>`
hoelzl@29803
   289
  have "\<bar>x\<bar>^n \<le> \<bar>y\<bar>^n" by (rule power_mono)
hoelzl@29803
   290
  thus ?thesis unfolding power_even_abs[OF `even n`] .
hoelzl@29803
   291
qed
hoelzl@29803
   292
hoelzl@29803
   293
lemma odd_pos: "odd (n::nat) \<Longrightarrow> 0 < n" by presburger
hoelzl@29803
   294
haftmann@35028
   295
lemma power_mono_odd: fixes x y :: "'a :: {linordered_idom}"
hoelzl@29803
   296
  assumes "odd n" and "x \<le> y"
hoelzl@29803
   297
  shows "x^n \<le> y^n"
hoelzl@29803
   298
proof (cases "y < 0")
hoelzl@29803
   299
  case True with `x \<le> y` have "-y \<le> -x" and "0 \<le> -y" by auto
hoelzl@29803
   300
  hence "(-y)^n \<le> (-x)^n" by (rule power_mono)
hoelzl@29803
   301
  thus ?thesis unfolding power_minus_odd[OF `odd n`] by auto
hoelzl@29803
   302
next
hoelzl@29803
   303
  case False
hoelzl@29803
   304
  show ?thesis
hoelzl@29803
   305
  proof (cases "x < 0")
hoelzl@29803
   306
    case True hence "n \<noteq> 0" and "x \<le> 0" using `odd n`[THEN odd_pos] by auto
hoelzl@29803
   307
    hence "x^n \<le> 0" unfolding power_le_zero_eq using `odd n` by auto
hoelzl@29803
   308
    moreover
hoelzl@29803
   309
    from `\<not> y < 0` have "0 \<le> y" by auto
hoelzl@29803
   310
    hence "0 \<le> y^n" by auto
hoelzl@29803
   311
    ultimately show ?thesis by auto
hoelzl@29803
   312
  next
hoelzl@29803
   313
    case False hence "0 \<le> x" by auto
hoelzl@29803
   314
    with `x \<le> y` show ?thesis using power_mono by auto
hoelzl@29803
   315
  qed
hoelzl@29803
   316
qed
wenzelm@21263
   317
haftmann@25600
   318
haftmann@25600
   319
subsection {* More Even/Odd Results *}
haftmann@25600
   320
 
chaieb@27668
   321
lemma even_mult_two_ex: "even(n) = (\<exists>m::nat. n = 2*m)" by presburger
chaieb@27668
   322
lemma odd_Suc_mult_two_ex: "odd(n) = (\<exists>m. n = Suc (2*m))" by presburger
chaieb@27668
   323
lemma even_add [simp]: "even(m + n::nat) = (even m = even n)"  by presburger
haftmann@25600
   324
chaieb@27668
   325
lemma odd_add [simp]: "odd(m + n::nat) = (odd m \<noteq> odd n)" by presburger
haftmann@25600
   326
haftmann@25600
   327
lemma div_Suc: "Suc a div c = a div c + Suc 0 div c +
haftmann@25600
   328
    (a mod c + Suc 0 mod c) div c" 
haftmann@25600
   329
  apply (subgoal_tac "Suc a = a + Suc 0")
haftmann@25600
   330
  apply (erule ssubst)
haftmann@25600
   331
  apply (rule div_add1_eq, simp)
haftmann@25600
   332
  done
haftmann@25600
   333
chaieb@27668
   334
lemma lemma_even_div2 [simp]: "even (n::nat) ==> (n + 1) div 2 = n div 2" by presburger
haftmann@25600
   335
haftmann@25600
   336
lemma lemma_not_even_div2 [simp]: "~even n ==> (n + 1) div 2 = Suc (n div 2)"
chaieb@27668
   337
by presburger
haftmann@25600
   338
chaieb@27668
   339
lemma even_num_iff: "0 < n ==> even n = (~ even(n - 1 :: nat))"  by presburger
chaieb@27668
   340
lemma even_even_mod_4_iff: "even (n::nat) = even (n mod 4)" by presburger
haftmann@25600
   341
chaieb@27668
   342
lemma lemma_odd_mod_4_div_2: "n mod 4 = (3::nat) ==> odd((n - 1) div 2)" by presburger
haftmann@25600
   343
haftmann@25600
   344
lemma lemma_even_mod_4_div_2: "n mod 4 = (1::nat) ==> even ((n - 1) div 2)"
chaieb@27668
   345
  by presburger
haftmann@25600
   346
wenzelm@21263
   347
text {* Simplify, when the exponent is a numeral *}
wenzelm@21256
   348
wenzelm@21256
   349
lemmas power_0_left_number_of = power_0_left [of "number_of w", standard]
wenzelm@21256
   350
declare power_0_left_number_of [simp]
wenzelm@21256
   351
wenzelm@21263
   352
lemmas zero_le_power_eq_number_of [simp] =
wenzelm@21256
   353
    zero_le_power_eq [of _ "number_of w", standard]
wenzelm@21256
   354
wenzelm@21263
   355
lemmas zero_less_power_eq_number_of [simp] =
wenzelm@21256
   356
    zero_less_power_eq [of _ "number_of w", standard]
wenzelm@21256
   357
wenzelm@21263
   358
lemmas power_le_zero_eq_number_of [simp] =
wenzelm@21256
   359
    power_le_zero_eq [of _ "number_of w", standard]
wenzelm@21256
   360
wenzelm@21263
   361
lemmas power_less_zero_eq_number_of [simp] =
wenzelm@21256
   362
    power_less_zero_eq [of _ "number_of w", standard]
wenzelm@21256
   363
wenzelm@21263
   364
lemmas zero_less_power_nat_eq_number_of [simp] =
wenzelm@21256
   365
    zero_less_power_nat_eq [of _ "number_of w", standard]
wenzelm@21256
   366
wenzelm@21263
   367
lemmas power_eq_0_iff_number_of [simp] = power_eq_0_iff [of _ "number_of w", standard]
wenzelm@21256
   368
wenzelm@21263
   369
lemmas power_even_abs_number_of [simp] = power_even_abs [of "number_of w" _, standard]
wenzelm@21256
   370
wenzelm@21256
   371
wenzelm@21256
   372
subsection {* An Equivalence for @{term [source] "0 \<le> a^n"} *}
wenzelm@21256
   373
wenzelm@21256
   374
lemma even_power_le_0_imp_0:
haftmann@35028
   375
    "a ^ (2*k) \<le> (0::'a::{linordered_idom}) ==> a=0"
huffman@35216
   376
  by (induct k) (auto simp add: zero_le_mult_iff mult_le_0_iff)
wenzelm@21256
   377
chaieb@23522
   378
lemma zero_le_power_iff[presburger]:
haftmann@35028
   379
  "(0 \<le> a^n) = (0 \<le> (a::'a::{linordered_idom}) | even n)"
wenzelm@21256
   380
proof cases
wenzelm@21256
   381
  assume even: "even n"
wenzelm@21256
   382
  then obtain k where "n = 2*k"
wenzelm@21256
   383
    by (auto simp add: even_nat_equiv_def2 numeral_2_eq_2)
wenzelm@21263
   384
  thus ?thesis by (simp add: zero_le_even_power even)
wenzelm@21256
   385
next
wenzelm@21256
   386
  assume odd: "odd n"
wenzelm@21256
   387
  then obtain k where "n = Suc(2*k)"
wenzelm@21256
   388
    by (auto simp add: odd_nat_equiv_def2 numeral_2_eq_2)
wenzelm@21256
   389
  thus ?thesis
huffman@35216
   390
    by (auto simp add: zero_le_mult_iff zero_le_even_power
wenzelm@21263
   391
             dest!: even_power_le_0_imp_0)
wenzelm@21263
   392
qed
wenzelm@21263
   393
wenzelm@21256
   394
wenzelm@21256
   395
subsection {* Miscellaneous *}
wenzelm@21256
   396
chaieb@23522
   397
lemma [presburger]:"(x + 1) div 2 = x div 2 \<longleftrightarrow> even (x::int)" by presburger
chaieb@23522
   398
lemma [presburger]: "(x + 1) div 2 = x div 2 + 1 \<longleftrightarrow> odd (x::int)" by presburger
chaieb@23522
   399
lemma even_plus_one_div_two: "even (x::int) ==> (x + 1) div 2 = x div 2"  by presburger
chaieb@23522
   400
lemma odd_plus_one_div_two: "odd (x::int) ==> (x + 1) div 2 = x div 2 + 1" by presburger
wenzelm@21256
   401
chaieb@23522
   402
lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger
chaieb@23522
   403
lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger
wenzelm@21263
   404
lemma even_nat_plus_one_div_two: "even (x::nat) ==>
chaieb@23522
   405
    (Suc x) div Suc (Suc 0) = x div Suc (Suc 0)" by presburger
wenzelm@21256
   406
wenzelm@21263
   407
lemma odd_nat_plus_one_div_two: "odd (x::nat) ==>
chaieb@23522
   408
    (Suc x) div Suc (Suc 0) = Suc (x div Suc (Suc 0))" by presburger
wenzelm@21256
   409
wenzelm@21256
   410
end