src/Pure/tactic.ML
author wenzelm
Sat Sep 25 13:05:38 1999 +0200 (1999-09-25)
changeset 7596 c97c3ad15d2e
parent 7491 95a4af0e10a7
child 8129 29e239c7b8c2
permissions -rw-r--r--
added fold_rule;
wenzelm@3575
     1
(*  Title: 	Pure/tactic.ML
clasohm@0
     2
    ID:         $Id$
clasohm@1460
     3
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1991  University of Cambridge
clasohm@0
     5
clasohm@0
     6
Tactics 
clasohm@0
     7
*)
clasohm@0
     8
clasohm@0
     9
signature TACTIC =
paulson@1501
    10
  sig
paulson@3409
    11
  val ares_tac		: thm list -> int -> tactic
clasohm@0
    12
  val asm_rewrite_goal_tac:
nipkow@4713
    13
    bool*bool*bool -> (meta_simpset -> tactic) -> meta_simpset -> int -> tactic
paulson@3409
    14
  val assume_tac	: int -> tactic
paulson@3409
    15
  val atac	: int ->tactic
lcp@670
    16
  val bimatch_from_nets_tac: 
paulson@1501
    17
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
paulson@3409
    18
  val bimatch_tac	: (bool*thm)list -> int -> tactic
paulson@3706
    19
  val biresolution_from_nets_tac: 
paulson@3706
    20
	('a list -> (bool * thm) list) ->
paulson@3706
    21
	bool -> 'a Net.net * 'a Net.net -> int -> tactic
lcp@670
    22
  val biresolve_from_nets_tac: 
paulson@1501
    23
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
paulson@3409
    24
  val biresolve_tac	: (bool*thm)list -> int -> tactic
paulson@3409
    25
  val build_net	: thm list -> (int*thm) Net.net
paulson@1501
    26
  val build_netpair:    (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net ->
paulson@1501
    27
      (bool*thm)list -> (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net
paulson@3409
    28
  val compose_inst_tac	: (string*string)list -> (bool*thm*int) -> 
paulson@3409
    29
                          int -> tactic
paulson@3409
    30
  val compose_tac	: (bool * thm * int) -> int -> tactic 
paulson@3409
    31
  val cut_facts_tac	: thm list -> int -> tactic
paulson@3409
    32
  val cut_inst_tac	: (string*string)list -> thm -> int -> tactic   
oheimb@7491
    33
  val datac             : thm -> int -> int -> tactic
paulson@3409
    34
  val defer_tac 	: int -> tactic
paulson@3409
    35
  val distinct_subgoals_tac	: tactic
paulson@3409
    36
  val dmatch_tac	: thm list -> int -> tactic
paulson@3409
    37
  val dresolve_tac	: thm list -> int -> tactic
paulson@3409
    38
  val dres_inst_tac	: (string*string)list -> thm -> int -> tactic   
paulson@3409
    39
  val dtac		: thm -> int ->tactic
oheimb@7491
    40
  val eatac             : thm -> int -> int -> tactic
paulson@3409
    41
  val etac		: thm -> int ->tactic
paulson@3409
    42
  val eq_assume_tac	: int -> tactic   
paulson@3409
    43
  val ematch_tac	: thm list -> int -> tactic
paulson@3409
    44
  val eresolve_tac	: thm list -> int -> tactic
nipkow@5974
    45
  val eres_inst_tac	: (string*string)list -> thm -> int -> tactic
oheimb@7491
    46
  val fatac             : thm -> int -> int -> tactic
nipkow@5974
    47
  val filter_prems_tac  : (term -> bool) -> int -> tactic  
paulson@3409
    48
  val filter_thms	: (term*term->bool) -> int*term*thm list -> thm list
paulson@3409
    49
  val filt_resolve_tac	: thm list -> int -> int -> tactic
paulson@3409
    50
  val flexflex_tac	: tactic
paulson@3409
    51
  val fold_goals_tac	: thm list -> tactic
wenzelm@7596
    52
  val fold_rule		: thm list -> thm -> thm
paulson@3409
    53
  val fold_tac		: thm list -> tactic
paulson@3409
    54
  val forward_tac	: thm list -> int -> tactic   
paulson@3409
    55
  val forw_inst_tac	: (string*string)list -> thm -> int -> tactic
oheimb@7491
    56
  val ftac		: thm -> int ->tactic
paulson@3409
    57
  val insert_tagged_brl : ('a*(bool*thm)) * 
paulson@3409
    58
                          (('a*(bool*thm))Net.net * ('a*(bool*thm))Net.net) ->
paulson@3409
    59
                          ('a*(bool*thm))Net.net * ('a*(bool*thm))Net.net
paulson@3409
    60
  val delete_tagged_brl	: (bool*thm) * 
paulson@3409
    61
                         ((int*(bool*thm))Net.net * (int*(bool*thm))Net.net) ->
paulson@1801
    62
                    (int*(bool*thm))Net.net * (int*(bool*thm))Net.net
paulson@3409
    63
  val is_fact		: thm -> bool
paulson@3409
    64
  val lessb		: (bool * thm) * (bool * thm) -> bool
paulson@3409
    65
  val lift_inst_rule	: thm * int * (string*string)list * thm -> thm
paulson@3409
    66
  val make_elim		: thm -> thm
paulson@3409
    67
  val match_from_net_tac	: (int*thm) Net.net -> int -> tactic
paulson@3409
    68
  val match_tac	: thm list -> int -> tactic
wenzelm@5838
    69
  val metacut_tac	: thm -> int -> tactic
paulson@3409
    70
  val net_bimatch_tac	: (bool*thm) list -> int -> tactic
paulson@3409
    71
  val net_biresolve_tac	: (bool*thm) list -> int -> tactic
paulson@3409
    72
  val net_match_tac	: thm list -> int -> tactic
paulson@3409
    73
  val net_resolve_tac	: thm list -> int -> tactic
paulson@3409
    74
  val orderlist		: (int * 'a) list -> 'a list
paulson@3409
    75
  val PRIMITIVE		: (thm -> thm) -> tactic  
wenzelm@4270
    76
  val PRIMSEQ		: (thm -> thm Seq.seq) -> tactic  
paulson@3409
    77
  val prune_params_tac	: tactic
paulson@3409
    78
  val rename_tac	: string -> int -> tactic
paulson@3409
    79
  val rename_last_tac	: string -> string list -> int -> tactic
paulson@3409
    80
  val resolve_from_net_tac	: (int*thm) Net.net -> int -> tactic
paulson@3409
    81
  val resolve_tac	: thm list -> int -> tactic
paulson@3409
    82
  val res_inst_tac	: (string*string)list -> thm -> int -> tactic   
wenzelm@3575
    83
  val rewrite_goals_rule: thm list -> thm -> thm
wenzelm@3575
    84
  val rewrite_rule	: thm list -> thm -> thm
paulson@3409
    85
  val rewrite_goals_tac	: thm list -> tactic
paulson@3409
    86
  val rewrite_tac	: thm list -> tactic
paulson@3409
    87
  val rewtac		: thm -> tactic
paulson@3409
    88
  val rotate_tac	: int -> int -> tactic
paulson@3409
    89
  val rtac		: thm -> int -> tactic
paulson@3409
    90
  val rule_by_tactic	: tactic -> thm -> thm
wenzelm@5263
    91
  val solve_tac		: thm list -> int -> tactic
paulson@3409
    92
  val subgoal_tac	: string -> int -> tactic
paulson@3409
    93
  val subgoals_tac	: string list -> int -> tactic
paulson@3409
    94
  val subgoals_of_brl	: bool * thm -> int
paulson@3409
    95
  val term_lift_inst_rule	:
nipkow@1975
    96
      thm * int * (indexname*typ)list * ((indexname*typ)*term)list  * thm
nipkow@1975
    97
      -> thm
paulson@3409
    98
  val thin_tac		: string -> int -> tactic
paulson@3409
    99
  val trace_goalno_tac	: (int -> tactic) -> int -> tactic
paulson@1501
   100
  end;
clasohm@0
   101
clasohm@0
   102
paulson@1501
   103
structure Tactic : TACTIC = 
clasohm@0
   104
struct
clasohm@0
   105
paulson@1501
   106
(*Discover which goal is chosen:  SOMEGOAL(trace_goalno_tac tac) *)
paulson@1501
   107
fun trace_goalno_tac tac i st =  
wenzelm@4270
   108
    case Seq.pull(tac i st) of
wenzelm@4270
   109
	None    => Seq.empty
wenzelm@5956
   110
      | seqcell => (writeln ("Subgoal " ^ string_of_int i ^ " selected"); 
wenzelm@4270
   111
    			 Seq.make(fn()=> seqcell));
clasohm@0
   112
clasohm@0
   113
(*Makes a rule by applying a tactic to an existing rule*)
paulson@1501
   114
fun rule_by_tactic tac rl =
paulson@2688
   115
  let val (st, thaw) = freeze_thaw (zero_var_indexes rl)
wenzelm@4270
   116
  in case Seq.pull (tac st)  of
clasohm@1460
   117
	None        => raise THM("rule_by_tactic", 0, [rl])
paulson@2688
   118
      | Some(st',_) => Thm.varifyT (thaw st')
paulson@2688
   119
  end;
clasohm@0
   120
 
clasohm@0
   121
(*** Basic tactics ***)
clasohm@0
   122
clasohm@0
   123
(*Makes a tactic whose effect on a state is given by thmfun: thm->thm seq.*)
wenzelm@4270
   124
fun PRIMSEQ thmfun st =  thmfun st handle THM _ => Seq.empty;
clasohm@0
   125
clasohm@0
   126
(*Makes a tactic whose effect on a state is given by thmfun: thm->thm.*)
wenzelm@4270
   127
fun PRIMITIVE thmfun = PRIMSEQ (Seq.single o thmfun);
clasohm@0
   128
clasohm@0
   129
(*** The following fail if the goal number is out of range:
clasohm@0
   130
     thus (REPEAT (resolve_tac rules i)) stops once subgoal i disappears. *)
clasohm@0
   131
clasohm@0
   132
(*Solve subgoal i by assumption*)
clasohm@0
   133
fun assume_tac i = PRIMSEQ (assumption i);
clasohm@0
   134
clasohm@0
   135
(*Solve subgoal i by assumption, using no unification*)
clasohm@0
   136
fun eq_assume_tac i = PRIMITIVE (eq_assumption i);
clasohm@0
   137
clasohm@0
   138
(** Resolution/matching tactics **)
clasohm@0
   139
clasohm@0
   140
(*The composition rule/state: no lifting or var renaming.
clasohm@0
   141
  The arg = (bires_flg, orule, m) ;  see bicompose for explanation.*)
clasohm@0
   142
fun compose_tac arg i = PRIMSEQ (bicompose false arg i);
clasohm@0
   143
clasohm@0
   144
(*Converts a "destruct" rule like P&Q==>P to an "elimination" rule
clasohm@0
   145
  like [| P&Q; P==>R |] ==> R *)
clasohm@0
   146
fun make_elim rl = zero_var_indexes (rl RS revcut_rl);
clasohm@0
   147
clasohm@0
   148
(*Attack subgoal i by resolution, using flags to indicate elimination rules*)
clasohm@0
   149
fun biresolve_tac brules i = PRIMSEQ (biresolution false brules i);
clasohm@0
   150
clasohm@0
   151
(*Resolution: the simple case, works for introduction rules*)
clasohm@0
   152
fun resolve_tac rules = biresolve_tac (map (pair false) rules);
clasohm@0
   153
clasohm@0
   154
(*Resolution with elimination rules only*)
clasohm@0
   155
fun eresolve_tac rules = biresolve_tac (map (pair true) rules);
clasohm@0
   156
clasohm@0
   157
(*Forward reasoning using destruction rules.*)
clasohm@0
   158
fun forward_tac rls = resolve_tac (map make_elim rls) THEN' assume_tac;
clasohm@0
   159
clasohm@0
   160
(*Like forward_tac, but deletes the assumption after use.*)
clasohm@0
   161
fun dresolve_tac rls = eresolve_tac (map make_elim rls);
clasohm@0
   162
clasohm@0
   163
(*Shorthand versions: for resolution with a single theorem*)
oheimb@7491
   164
val atac    =   assume_tac;
oheimb@7491
   165
fun rtac rl =  resolve_tac [rl];
oheimb@7491
   166
fun dtac rl = dresolve_tac [rl];
clasohm@1460
   167
fun etac rl = eresolve_tac [rl];
oheimb@7491
   168
fun ftac rl =  forward_tac [rl];
oheimb@7491
   169
fun datac thm j = EVERY' (dtac thm::replicate j atac);
oheimb@7491
   170
fun eatac thm j = EVERY' (etac thm::replicate j atac);
oheimb@7491
   171
fun fatac thm j = EVERY' (ftac thm::replicate j atac);
clasohm@0
   172
clasohm@0
   173
(*Use an assumption or some rules ... A popular combination!*)
clasohm@0
   174
fun ares_tac rules = assume_tac  ORELSE'  resolve_tac rules;
clasohm@0
   175
wenzelm@5263
   176
fun solve_tac rules = resolve_tac rules THEN_ALL_NEW assume_tac;
wenzelm@5263
   177
clasohm@0
   178
(*Matching tactics -- as above, but forbid updating of state*)
clasohm@0
   179
fun bimatch_tac brules i = PRIMSEQ (biresolution true brules i);
clasohm@0
   180
fun match_tac rules  = bimatch_tac (map (pair false) rules);
clasohm@0
   181
fun ematch_tac rules = bimatch_tac (map (pair true) rules);
clasohm@0
   182
fun dmatch_tac rls   = ematch_tac (map make_elim rls);
clasohm@0
   183
clasohm@0
   184
(*Smash all flex-flex disagreement pairs in the proof state.*)
clasohm@0
   185
val flexflex_tac = PRIMSEQ flexflex_rule;
clasohm@0
   186
paulson@3409
   187
paulson@3409
   188
(*Remove duplicate subgoals.  By Mark Staples*)
paulson@3409
   189
local
paulson@3409
   190
fun cterm_aconv (a,b) = #t (rep_cterm a) aconv #t (rep_cterm b);
paulson@3409
   191
in
paulson@3409
   192
fun distinct_subgoals_tac state = 
paulson@3409
   193
    let val (frozth,thawfn) = freeze_thaw state
paulson@3409
   194
	val froz_prems = cprems_of frozth
paulson@3409
   195
	val assumed = implies_elim_list frozth (map assume froz_prems)
paulson@3409
   196
	val implied = implies_intr_list (gen_distinct cterm_aconv froz_prems)
paulson@3409
   197
					assumed;
wenzelm@4270
   198
    in  Seq.single (thawfn implied)  end
paulson@3409
   199
end; 
paulson@3409
   200
paulson@3409
   201
clasohm@0
   202
(*Lift and instantiate a rule wrt the given state and subgoal number *)
paulson@1501
   203
fun lift_inst_rule (st, i, sinsts, rule) =
paulson@1501
   204
let val {maxidx,sign,...} = rep_thm st
paulson@1501
   205
    val (_, _, Bi, _) = dest_state(st,i)
clasohm@1460
   206
    val params = Logic.strip_params Bi	        (*params of subgoal i*)
clasohm@0
   207
    val params = rev(rename_wrt_term Bi params) (*as they are printed*)
clasohm@0
   208
    val paramTs = map #2 params
clasohm@0
   209
    and inc = maxidx+1
clasohm@0
   210
    fun liftvar (Var ((a,j), T)) = Var((a, j+inc), paramTs---> incr_tvar inc T)
clasohm@0
   211
      | liftvar t = raise TERM("Variable expected", [t]);
clasohm@0
   212
    fun liftterm t = list_abs_free (params, 
clasohm@1460
   213
				    Logic.incr_indexes(paramTs,inc) t)
clasohm@0
   214
    (*Lifts instantiation pair over params*)
lcp@230
   215
    fun liftpair (cv,ct) = (cterm_fun liftvar cv, cterm_fun liftterm ct)
clasohm@0
   216
    fun lifttvar((a,i),ctyp) =
clasohm@1460
   217
	let val {T,sign} = rep_ctyp ctyp
clasohm@1460
   218
	in  ((a,i+inc), ctyp_of sign (incr_tvar inc T)) end
paulson@1501
   219
    val rts = types_sorts rule and (types,sorts) = types_sorts st
clasohm@0
   220
    fun types'(a,~1) = (case assoc(params,a) of None => types(a,~1) | sm => sm)
clasohm@0
   221
      | types'(ixn) = types ixn;
nipkow@949
   222
    val used = add_term_tvarnames
paulson@1501
   223
                  (#prop(rep_thm st) $ #prop(rep_thm rule),[])
nipkow@949
   224
    val (Tinsts,insts) = read_insts sign rts (types',sorts) used sinsts
clasohm@0
   225
in instantiate (map lifttvar Tinsts, map liftpair insts)
paulson@1501
   226
               (lift_rule (st,i) rule)
clasohm@0
   227
end;
clasohm@0
   228
nipkow@3984
   229
(*
nipkow@3984
   230
Like lift_inst_rule but takes terms, not strings, where the terms may contain
nipkow@3984
   231
Bounds referring to parameters of the subgoal.
nipkow@3984
   232
nipkow@3984
   233
insts: [...,(vj,tj),...]
nipkow@3984
   234
nipkow@3984
   235
The tj may contain references to parameters of subgoal i of the state st
nipkow@3984
   236
in the form of Bound k, i.e. the tj may be subterms of the subgoal.
nipkow@3984
   237
To saturate the lose bound vars, the tj are enclosed in abstractions
nipkow@3984
   238
corresponding to the parameters of subgoal i, thus turning them into
nipkow@3984
   239
functions. At the same time, the types of the vj are lifted.
nipkow@3984
   240
nipkow@3984
   241
NB: the types in insts must be correctly instantiated already,
nipkow@3984
   242
    i.e. Tinsts is not applied to insts.
nipkow@3984
   243
*)
nipkow@1975
   244
fun term_lift_inst_rule (st, i, Tinsts, insts, rule) =
nipkow@1966
   245
let val {maxidx,sign,...} = rep_thm st
nipkow@1966
   246
    val (_, _, Bi, _) = dest_state(st,i)
nipkow@1966
   247
    val params = Logic.strip_params Bi          (*params of subgoal i*)
nipkow@1966
   248
    val paramTs = map #2 params
nipkow@1966
   249
    and inc = maxidx+1
nipkow@1975
   250
    fun liftvar ((a,j), T) = Var((a, j+inc), paramTs---> incr_tvar inc T)
nipkow@1975
   251
    (*lift only Var, not term, which must be lifted already*)
nipkow@1975
   252
    fun liftpair (v,t) = (cterm_of sign (liftvar v), cterm_of sign t)
nipkow@1975
   253
    fun liftTpair((a,i),T) = ((a,i+inc), ctyp_of sign (incr_tvar inc T))
nipkow@1975
   254
in instantiate (map liftTpair Tinsts, map liftpair insts)
nipkow@1966
   255
               (lift_rule (st,i) rule)
nipkow@1966
   256
end;
clasohm@0
   257
clasohm@0
   258
(*** Resolve after lifting and instantation; may refer to parameters of the
clasohm@0
   259
     subgoal.  Fails if "i" is out of range.  ***)
clasohm@0
   260
clasohm@0
   261
(*compose version: arguments are as for bicompose.*)
paulson@3538
   262
fun compose_inst_tac sinsts (bires_flg, rule, nsubgoal) i st = st |>
paulson@3538
   263
  (compose_tac (bires_flg, lift_inst_rule (st, i, sinsts, rule), nsubgoal) i
paulson@3538
   264
   handle TERM (msg,_)   => (writeln msg;  no_tac)
paulson@3538
   265
	| THM  (msg,_,_) => (writeln msg;  no_tac));
clasohm@0
   266
lcp@761
   267
(*"Resolve" version.  Note: res_inst_tac cannot behave sensibly if the
lcp@761
   268
  terms that are substituted contain (term or type) unknowns from the
lcp@761
   269
  goal, because it is unable to instantiate goal unknowns at the same time.
lcp@761
   270
paulson@2029
   271
  The type checker is instructed not to freeze flexible type vars that
nipkow@952
   272
  were introduced during type inference and still remain in the term at the
nipkow@952
   273
  end.  This increases flexibility but can introduce schematic type vars in
nipkow@952
   274
  goals.
lcp@761
   275
*)
clasohm@0
   276
fun res_inst_tac sinsts rule i =
clasohm@0
   277
    compose_inst_tac sinsts (false, rule, nprems_of rule) i;
clasohm@0
   278
paulson@1501
   279
(*eresolve elimination version*)
clasohm@0
   280
fun eres_inst_tac sinsts rule i =
clasohm@0
   281
    compose_inst_tac sinsts (true, rule, nprems_of rule) i;
clasohm@0
   282
lcp@270
   283
(*For forw_inst_tac and dres_inst_tac.  Preserve Var indexes of rl;
lcp@270
   284
  increment revcut_rl instead.*)
clasohm@0
   285
fun make_elim_preserve rl = 
lcp@270
   286
  let val {maxidx,...} = rep_thm rl
wenzelm@6390
   287
      fun cvar ixn = cterm_of (Theory.sign_of ProtoPure.thy) (Var(ixn,propT));
lcp@270
   288
      val revcut_rl' = 
clasohm@1460
   289
	  instantiate ([],  [(cvar("V",0), cvar("V",maxidx+1)),
clasohm@1460
   290
			     (cvar("W",0), cvar("W",maxidx+1))]) revcut_rl
clasohm@0
   291
      val arg = (false, rl, nprems_of rl)
wenzelm@4270
   292
      val [th] = Seq.list_of (bicompose false arg 1 revcut_rl')
clasohm@0
   293
  in  th  end
clasohm@0
   294
  handle Bind => raise THM("make_elim_preserve", 1, [rl]);
clasohm@0
   295
lcp@270
   296
(*instantiate and cut -- for a FACT, anyway...*)
lcp@270
   297
fun cut_inst_tac sinsts rule = res_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   298
lcp@270
   299
(*forward tactic applies a RULE to an assumption without deleting it*)
lcp@270
   300
fun forw_inst_tac sinsts rule = cut_inst_tac sinsts rule THEN' assume_tac;
lcp@270
   301
lcp@270
   302
(*dresolve tactic applies a RULE to replace an assumption*)
clasohm@0
   303
fun dres_inst_tac sinsts rule = eres_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   304
paulson@1951
   305
(*Deletion of an assumption*)
paulson@1951
   306
fun thin_tac s = eres_inst_tac [("V",s)] thin_rl;
paulson@1951
   307
lcp@270
   308
(*** Applications of cut_rl ***)
clasohm@0
   309
clasohm@0
   310
(*Used by metacut_tac*)
clasohm@0
   311
fun bires_cut_tac arg i =
clasohm@1460
   312
    resolve_tac [cut_rl] i  THEN  biresolve_tac arg (i+1) ;
clasohm@0
   313
clasohm@0
   314
(*The conclusion of the rule gets assumed in subgoal i,
clasohm@0
   315
  while subgoal i+1,... are the premises of the rule.*)
clasohm@0
   316
fun metacut_tac rule = bires_cut_tac [(false,rule)];
clasohm@0
   317
clasohm@0
   318
(*Recognizes theorems that are not rules, but simple propositions*)
clasohm@0
   319
fun is_fact rl =
clasohm@0
   320
    case prems_of rl of
clasohm@1460
   321
	[] => true  |  _::_ => false;
clasohm@0
   322
clasohm@0
   323
(*"Cut" all facts from theorem list into the goal as assumptions. *)
clasohm@0
   324
fun cut_facts_tac ths i =
clasohm@0
   325
    EVERY (map (fn th => metacut_tac th i) (filter is_fact ths));
clasohm@0
   326
clasohm@0
   327
(*Introduce the given proposition as a lemma and subgoal*)
paulson@4178
   328
fun subgoal_tac sprop i st = 
wenzelm@4270
   329
  let val st'    = Seq.hd (res_inst_tac [("psi", sprop)] cut_rl i st)
paulson@4178
   330
      val concl' = Logic.strip_assums_concl (List.nth(prems_of st', i))
paulson@4178
   331
  in  
paulson@4178
   332
      if null (term_tvars concl') then ()
paulson@4178
   333
      else warning"Type variables in new subgoal: add a type constraint?";
wenzelm@4270
   334
      Seq.single st'
paulson@4178
   335
  end;
clasohm@0
   336
lcp@439
   337
(*Introduce a list of lemmas and subgoals*)
lcp@439
   338
fun subgoals_tac sprops = EVERY' (map subgoal_tac sprops);
lcp@439
   339
clasohm@0
   340
clasohm@0
   341
(**** Indexing and filtering of theorems ****)
clasohm@0
   342
clasohm@0
   343
(*Returns the list of potentially resolvable theorems for the goal "prem",
clasohm@1460
   344
	using the predicate  could(subgoal,concl).
clasohm@0
   345
  Resulting list is no longer than "limit"*)
clasohm@0
   346
fun filter_thms could (limit, prem, ths) =
clasohm@0
   347
  let val pb = Logic.strip_assums_concl prem;   (*delete assumptions*)
clasohm@0
   348
      fun filtr (limit, []) = []
clasohm@1460
   349
	| filtr (limit, th::ths) =
clasohm@1460
   350
	    if limit=0 then  []
clasohm@1460
   351
	    else if could(pb, concl_of th)  then th :: filtr(limit-1, ths)
clasohm@1460
   352
	    else filtr(limit,ths)
clasohm@0
   353
  in  filtr(limit,ths)  end;
clasohm@0
   354
clasohm@0
   355
clasohm@0
   356
(*** biresolution and resolution using nets ***)
clasohm@0
   357
clasohm@0
   358
(** To preserve the order of the rules, tag them with increasing integers **)
clasohm@0
   359
clasohm@0
   360
(*insert tags*)
clasohm@0
   361
fun taglist k [] = []
clasohm@0
   362
  | taglist k (x::xs) = (k,x) :: taglist (k+1) xs;
clasohm@0
   363
clasohm@0
   364
(*remove tags and suppress duplicates -- list is assumed sorted!*)
clasohm@0
   365
fun untaglist [] = []
clasohm@0
   366
  | untaglist [(k:int,x)] = [x]
clasohm@0
   367
  | untaglist ((k,x) :: (rest as (k',x')::_)) =
clasohm@0
   368
      if k=k' then untaglist rest
clasohm@0
   369
      else    x :: untaglist rest;
clasohm@0
   370
clasohm@0
   371
(*return list elements in original order*)
wenzelm@4438
   372
fun orderlist kbrls = untaglist (sort (int_ord o pairself fst) kbrls); 
clasohm@0
   373
clasohm@0
   374
(*insert one tagged brl into the pair of nets*)
lcp@1077
   375
fun insert_tagged_brl (kbrl as (k,(eres,th)), (inet,enet)) =
clasohm@0
   376
    if eres then 
clasohm@1460
   377
	case prems_of th of
clasohm@1460
   378
	    prem::_ => (inet, Net.insert_term ((prem,kbrl), enet, K false))
clasohm@1460
   379
	  | [] => error"insert_tagged_brl: elimination rule with no premises"
clasohm@0
   380
    else (Net.insert_term ((concl_of th, kbrl), inet, K false), enet);
clasohm@0
   381
clasohm@0
   382
(*build a pair of nets for biresolution*)
lcp@670
   383
fun build_netpair netpair brls = 
lcp@1077
   384
    foldr insert_tagged_brl (taglist 1 brls, netpair);
clasohm@0
   385
paulson@1801
   386
(*delete one kbrl from the pair of nets;
paulson@1801
   387
  we don't know the value of k, so we use 0 and ignore it in the comparison*)
paulson@1801
   388
local
paulson@1801
   389
  fun eq_kbrl ((k,(eres,th)), (k',(eres',th'))) = eq_thm (th,th')
paulson@1801
   390
in
paulson@1801
   391
fun delete_tagged_brl (brl as (eres,th), (inet,enet)) =
paulson@1801
   392
    if eres then 
paulson@1801
   393
	case prems_of th of
paulson@1801
   394
	    prem::_ => (inet, Net.delete_term ((prem, (0,brl)), enet, eq_kbrl))
paulson@2814
   395
	  | []      => (inet,enet)     (*no major premise: ignore*)
paulson@1801
   396
    else (Net.delete_term ((concl_of th, (0,brl)), inet, eq_kbrl), enet);
paulson@1801
   397
end;
paulson@1801
   398
paulson@1801
   399
paulson@3706
   400
(*biresolution using a pair of nets rather than rules.  
paulson@3706
   401
    function "order" must sort and possibly filter the list of brls.
paulson@3706
   402
    boolean "match" indicates matching or unification.*)
paulson@3706
   403
fun biresolution_from_nets_tac order match (inet,enet) =
clasohm@0
   404
  SUBGOAL
clasohm@0
   405
    (fn (prem,i) =>
clasohm@0
   406
      let val hyps = Logic.strip_assums_hyp prem
clasohm@0
   407
          and concl = Logic.strip_assums_concl prem 
clasohm@0
   408
          val kbrls = Net.unify_term inet concl @
paulson@2672
   409
                      List.concat (map (Net.unify_term enet) hyps)
paulson@3706
   410
      in PRIMSEQ (biresolution match (order kbrls) i) end);
clasohm@0
   411
paulson@3706
   412
(*versions taking pre-built nets.  No filtering of brls*)
paulson@3706
   413
val biresolve_from_nets_tac = biresolution_from_nets_tac orderlist false;
paulson@3706
   414
val bimatch_from_nets_tac   = biresolution_from_nets_tac orderlist true;
clasohm@0
   415
clasohm@0
   416
(*fast versions using nets internally*)
lcp@670
   417
val net_biresolve_tac =
lcp@670
   418
    biresolve_from_nets_tac o build_netpair(Net.empty,Net.empty);
lcp@670
   419
lcp@670
   420
val net_bimatch_tac =
lcp@670
   421
    bimatch_from_nets_tac o build_netpair(Net.empty,Net.empty);
clasohm@0
   422
clasohm@0
   423
(*** Simpler version for resolve_tac -- only one net, and no hyps ***)
clasohm@0
   424
clasohm@0
   425
(*insert one tagged rl into the net*)
clasohm@0
   426
fun insert_krl (krl as (k,th), net) =
clasohm@0
   427
    Net.insert_term ((concl_of th, krl), net, K false);
clasohm@0
   428
clasohm@0
   429
(*build a net of rules for resolution*)
clasohm@0
   430
fun build_net rls = 
clasohm@0
   431
    foldr insert_krl (taglist 1 rls, Net.empty);
clasohm@0
   432
clasohm@0
   433
(*resolution using a net rather than rules; pred supports filt_resolve_tac*)
clasohm@0
   434
fun filt_resolution_from_net_tac match pred net =
clasohm@0
   435
  SUBGOAL
clasohm@0
   436
    (fn (prem,i) =>
clasohm@0
   437
      let val krls = Net.unify_term net (Logic.strip_assums_concl prem)
clasohm@0
   438
      in 
clasohm@1460
   439
	 if pred krls  
clasohm@0
   440
         then PRIMSEQ
clasohm@1460
   441
		(biresolution match (map (pair false) (orderlist krls)) i)
clasohm@0
   442
         else no_tac
clasohm@0
   443
      end);
clasohm@0
   444
clasohm@0
   445
(*Resolve the subgoal using the rules (making a net) unless too flexible,
clasohm@0
   446
   which means more than maxr rules are unifiable.      *)
clasohm@0
   447
fun filt_resolve_tac rules maxr = 
clasohm@0
   448
    let fun pred krls = length krls <= maxr
clasohm@0
   449
    in  filt_resolution_from_net_tac false pred (build_net rules)  end;
clasohm@0
   450
clasohm@0
   451
(*versions taking pre-built nets*)
clasohm@0
   452
val resolve_from_net_tac = filt_resolution_from_net_tac false (K true);
clasohm@0
   453
val match_from_net_tac = filt_resolution_from_net_tac true (K true);
clasohm@0
   454
clasohm@0
   455
(*fast versions using nets internally*)
clasohm@0
   456
val net_resolve_tac = resolve_from_net_tac o build_net;
clasohm@0
   457
val net_match_tac = match_from_net_tac o build_net;
clasohm@0
   458
clasohm@0
   459
clasohm@0
   460
(*** For Natural Deduction using (bires_flg, rule) pairs ***)
clasohm@0
   461
clasohm@0
   462
(*The number of new subgoals produced by the brule*)
lcp@1077
   463
fun subgoals_of_brl (true,rule)  = nprems_of rule - 1
lcp@1077
   464
  | subgoals_of_brl (false,rule) = nprems_of rule;
clasohm@0
   465
clasohm@0
   466
(*Less-than test: for sorting to minimize number of new subgoals*)
clasohm@0
   467
fun lessb (brl1,brl2) = subgoals_of_brl brl1 < subgoals_of_brl brl2;
clasohm@0
   468
clasohm@0
   469
clasohm@0
   470
(*** Meta-Rewriting Tactics ***)
clasohm@0
   471
clasohm@0
   472
fun result1 tacf mss thm =
wenzelm@4270
   473
  apsome fst (Seq.pull (tacf mss thm));
clasohm@0
   474
wenzelm@3575
   475
val simple_prover =
wenzelm@3575
   476
  result1 (fn mss => ALLGOALS (resolve_tac (prems_of_mss mss)));
wenzelm@3575
   477
wenzelm@3575
   478
val rewrite_rule = Drule.rewrite_rule_aux simple_prover;
wenzelm@3575
   479
val rewrite_goals_rule = Drule.rewrite_goals_rule_aux simple_prover;
wenzelm@3575
   480
wenzelm@3575
   481
paulson@2145
   482
(*Rewrite subgoal i only.  SELECT_GOAL avoids inefficiencies in goals_conv.*)
paulson@2145
   483
fun asm_rewrite_goal_tac mode prover_tac mss =
paulson@2145
   484
      SELECT_GOAL 
paulson@2145
   485
        (PRIMITIVE
paulson@2145
   486
	   (rewrite_goal_rule mode (result1 prover_tac) mss 1));
clasohm@0
   487
lcp@69
   488
(*Rewrite throughout proof state. *)
lcp@69
   489
fun rewrite_tac defs = PRIMITIVE(rewrite_rule defs);
clasohm@0
   490
clasohm@0
   491
(*Rewrite subgoals only, not main goal. *)
lcp@69
   492
fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
clasohm@0
   493
clasohm@1460
   494
fun rewtac def = rewrite_goals_tac [def];
clasohm@0
   495
clasohm@0
   496
paulson@1501
   497
(*** for folding definitions, handling critical pairs ***)
lcp@69
   498
lcp@69
   499
(*The depth of nesting in a term*)
lcp@69
   500
fun term_depth (Abs(a,T,t)) = 1 + term_depth t
paulson@2145
   501
  | term_depth (f$t) = 1 + Int.max(term_depth f, term_depth t)
lcp@69
   502
  | term_depth _ = 0;
lcp@69
   503
lcp@69
   504
val lhs_of_thm = #1 o Logic.dest_equals o #prop o rep_thm;
lcp@69
   505
lcp@69
   506
(*folding should handle critical pairs!  E.g. K == Inl(0),  S == Inr(Inl(0))
lcp@69
   507
  Returns longest lhs first to avoid folding its subexpressions.*)
lcp@69
   508
fun sort_lhs_depths defs =
lcp@69
   509
  let val keylist = make_keylist (term_depth o lhs_of_thm) defs
wenzelm@4438
   510
      val keys = distinct (sort (rev_order o int_ord) (map #2 keylist))
lcp@69
   511
  in  map (keyfilter keylist) keys  end;
lcp@69
   512
wenzelm@7596
   513
val rev_defs = sort_lhs_depths o map symmetric;
lcp@69
   514
wenzelm@7596
   515
fun fold_rule defs thm = foldl (fn (th, ds) => rewrite_rule ds th) (thm, rev_defs defs);
wenzelm@7596
   516
fun fold_tac defs = EVERY (map rewrite_tac (rev_defs defs));
wenzelm@7596
   517
fun fold_goals_tac defs = EVERY (map rewrite_goals_tac (rev_defs defs));
lcp@69
   518
lcp@69
   519
lcp@69
   520
(*** Renaming of parameters in a subgoal
lcp@69
   521
     Names may contain letters, digits or primes and must be
lcp@69
   522
     separated by blanks ***)
clasohm@0
   523
clasohm@0
   524
(*Calling this will generate the warning "Same as previous level" since
clasohm@0
   525
  it affects nothing but the names of bound variables!*)
clasohm@0
   526
fun rename_tac str i = 
wenzelm@4693
   527
  let val cs = Symbol.explode str 
clasohm@0
   528
  in  
clasohm@0
   529
  if !Logic.auto_rename 
wenzelm@4213
   530
  then (warning "Resetting Logic.auto_rename"; 
clasohm@1460
   531
	Logic.auto_rename := false)
clasohm@0
   532
  else ();
wenzelm@4693
   533
  case #2 (take_prefix (Symbol.is_letdig orf Symbol.is_blank) cs) of
wenzelm@4693
   534
      [] => PRIMITIVE (rename_params_rule (scanwords Symbol.is_letdig cs, i))
clasohm@0
   535
    | c::_ => error ("Illegal character: " ^ c)
clasohm@0
   536
  end;
clasohm@0
   537
paulson@1501
   538
(*Rename recent parameters using names generated from a and the suffixes,
paulson@1501
   539
  provided the string a, which represents a term, is an identifier. *)
clasohm@0
   540
fun rename_last_tac a sufs i = 
clasohm@0
   541
  let val names = map (curry op^ a) sufs
clasohm@0
   542
  in  if Syntax.is_identifier a
clasohm@0
   543
      then PRIMITIVE (rename_params_rule (names,i))
clasohm@0
   544
      else all_tac
clasohm@0
   545
  end;
clasohm@0
   546
paulson@2043
   547
(*Prunes all redundant parameters from the proof state by rewriting.
paulson@2043
   548
  DOES NOT rewrite main goal, where quantification over an unused bound
paulson@2043
   549
    variable is sometimes done to avoid the need for cut_facts_tac.*)
paulson@2043
   550
val prune_params_tac = rewrite_goals_tac [triv_forall_equality];
clasohm@0
   551
paulson@1501
   552
(*rotate_tac n i: rotate the assumptions of subgoal i by n positions, from
paulson@1501
   553
  right to left if n is positive, and from left to right if n is negative.*)
paulson@2672
   554
fun rotate_tac 0 i = all_tac
paulson@2672
   555
  | rotate_tac k i = PRIMITIVE (rotate_rule k i);
nipkow@1209
   556
paulson@7248
   557
(*Rotates the given subgoal to be the last.*)
paulson@7248
   558
fun defer_tac i = PRIMITIVE (permute_prems (i-1) 1);
paulson@7248
   559
nipkow@5974
   560
(* remove premises that do not satisfy p; fails if all prems satisfy p *)
nipkow@5974
   561
fun filter_prems_tac p =
nipkow@5974
   562
  let fun Then None tac = Some tac
nipkow@5974
   563
        | Then (Some tac) tac' = Some(tac THEN' tac');
nipkow@5974
   564
      fun thins ((tac,n),H) =
nipkow@5974
   565
        if p H then (tac,n+1)
nipkow@5974
   566
        else (Then tac (rotate_tac n THEN' etac thin_rl),0);
nipkow@5974
   567
  in SUBGOAL(fn (subg,n) =>
nipkow@5974
   568
       let val Hs = Logic.strip_assums_hyp subg
nipkow@5974
   569
       in case fst(foldl thins ((None,0),Hs)) of
nipkow@5974
   570
            None => no_tac | Some tac => tac n
nipkow@5974
   571
       end)
nipkow@5974
   572
  end;
nipkow@5974
   573
clasohm@0
   574
end;
paulson@1501
   575
paulson@1501
   576
open Tactic;