src/HOL/Library/Parity.thy
author haftmann
Fri Dec 07 15:07:59 2007 +0100 (2007-12-07)
changeset 25571 c9e39eafc7a0
parent 25502 9200b36280c0
child 25594 43c718438f9f
permissions -rw-r--r--
instantiation target rather than legacy instance
wenzelm@21263
     1
(*  Title:      HOL/Library/Parity.thy
wenzelm@21256
     2
    ID:         $Id$
wenzelm@21256
     3
    Author:     Jeremy Avigad
wenzelm@21256
     4
*)
wenzelm@21256
     5
wenzelm@21256
     6
header {* Even and Odd for int and nat *}
wenzelm@21256
     7
wenzelm@21256
     8
theory Parity
wenzelm@21256
     9
imports Main
wenzelm@21256
    10
begin
wenzelm@21256
    11
haftmann@22473
    12
class even_odd = type + 
haftmann@22390
    13
  fixes even :: "'a \<Rightarrow> bool"
wenzelm@21256
    14
wenzelm@21256
    15
abbreviation
haftmann@22390
    16
  odd :: "'a\<Colon>even_odd \<Rightarrow> bool" where
haftmann@22390
    17
  "odd x \<equiv> \<not> even x"
haftmann@22390
    18
haftmann@25571
    19
instantiation int and nat :: even_odd
haftmann@25571
    20
begin
haftmann@25571
    21
haftmann@25571
    22
definition
haftmann@25571
    23
  even_def [presburger]: "even x \<longleftrightarrow> (x\<Colon>int) mod 2 = 0"
haftmann@22390
    24
haftmann@25571
    25
definition
haftmann@25571
    26
  even_nat_def [presburger]: "even x \<longleftrightarrow> even (int x)"
haftmann@25571
    27
haftmann@25571
    28
instance ..
haftmann@25571
    29
haftmann@25571
    30
end
wenzelm@21256
    31
wenzelm@21256
    32
wenzelm@21256
    33
subsection {* Even and odd are mutually exclusive *}
wenzelm@21256
    34
wenzelm@21263
    35
lemma int_pos_lt_two_imp_zero_or_one:
wenzelm@21256
    36
    "0 <= x ==> (x::int) < 2 ==> x = 0 | x = 1"
chaieb@23522
    37
  by presburger
wenzelm@21256
    38
chaieb@23522
    39
lemma neq_one_mod_two [simp, presburger]: 
chaieb@23522
    40
  "((x::int) mod 2 ~= 0) = (x mod 2 = 1)" by presburger
wenzelm@21256
    41
wenzelm@21256
    42
subsection {* Behavior under integer arithmetic operations *}
wenzelm@21256
    43
wenzelm@21256
    44
lemma even_times_anything: "even (x::int) ==> even (x * y)"
wenzelm@21256
    45
  by (simp add: even_def zmod_zmult1_eq')
wenzelm@21256
    46
wenzelm@21256
    47
lemma anything_times_even: "even (y::int) ==> even (x * y)"
wenzelm@21256
    48
  by (simp add: even_def zmod_zmult1_eq)
wenzelm@21256
    49
wenzelm@21256
    50
lemma odd_times_odd: "odd (x::int) ==> odd y ==> odd (x * y)"
wenzelm@21256
    51
  by (simp add: even_def zmod_zmult1_eq)
wenzelm@21256
    52
chaieb@23522
    53
lemma even_product[presburger]: "even((x::int) * y) = (even x | even y)"
wenzelm@21263
    54
  apply (auto simp add: even_times_anything anything_times_even)
wenzelm@21256
    55
  apply (rule ccontr)
wenzelm@21256
    56
  apply (auto simp add: odd_times_odd)
wenzelm@21256
    57
  done
wenzelm@21256
    58
wenzelm@21256
    59
lemma even_plus_even: "even (x::int) ==> even y ==> even (x + y)"
chaieb@23522
    60
  by presburger
wenzelm@21256
    61
wenzelm@21256
    62
lemma even_plus_odd: "even (x::int) ==> odd y ==> odd (x + y)"
chaieb@23522
    63
  by presburger
wenzelm@21256
    64
wenzelm@21256
    65
lemma odd_plus_even: "odd (x::int) ==> even y ==> odd (x + y)"
chaieb@23522
    66
  by presburger
wenzelm@21256
    67
chaieb@23522
    68
lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)" by presburger
wenzelm@21256
    69
chaieb@23522
    70
lemma even_sum[presburger]: "even ((x::int) + y) = ((even x & even y) | (odd x & odd y))"
chaieb@23522
    71
  by presburger
wenzelm@21256
    72
chaieb@23522
    73
lemma even_neg[presburger]: "even (-(x::int)) = even x" by presburger
wenzelm@21256
    74
wenzelm@21263
    75
lemma even_difference:
chaieb@23522
    76
    "even ((x::int) - y) = ((even x & even y) | (odd x & odd y))" by presburger
wenzelm@21256
    77
wenzelm@21263
    78
lemma even_pow_gt_zero:
wenzelm@21263
    79
    "even (x::int) ==> 0 < n ==> even (x^n)"
wenzelm@21263
    80
  by (induct n) (auto simp add: even_product)
wenzelm@21256
    81
chaieb@23522
    82
lemma odd_pow_iff[presburger]: "odd ((x::int) ^ n) \<longleftrightarrow> (n = 0 \<or> odd x)"
chaieb@23522
    83
  apply (induct n, simp_all)
chaieb@23522
    84
  apply presburger
chaieb@23522
    85
  apply (case_tac n, auto)
chaieb@23522
    86
  apply (simp_all add: even_product)
wenzelm@21256
    87
  done
wenzelm@21256
    88
chaieb@23522
    89
lemma odd_pow: "odd x ==> odd((x::int)^n)" by (simp add: odd_pow_iff)
chaieb@23522
    90
chaieb@23522
    91
lemma even_power[presburger]: "even ((x::int)^n) = (even x & 0 < n)"
wenzelm@21263
    92
  apply (auto simp add: even_pow_gt_zero)
wenzelm@21256
    93
  apply (erule contrapos_pp, erule odd_pow)
wenzelm@21256
    94
  apply (erule contrapos_pp, simp add: even_def)
wenzelm@21256
    95
  done
wenzelm@21256
    96
chaieb@23522
    97
lemma even_zero[presburger]: "even (0::int)" by presburger
wenzelm@21256
    98
chaieb@23522
    99
lemma odd_one[presburger]: "odd (1::int)" by presburger
wenzelm@21256
   100
wenzelm@21263
   101
lemmas even_odd_simps [simp] = even_def[of "number_of v",standard] even_zero
wenzelm@21256
   102
  odd_one even_product even_sum even_neg even_difference even_power
wenzelm@21256
   103
wenzelm@21256
   104
wenzelm@21256
   105
subsection {* Equivalent definitions *}
wenzelm@21256
   106
chaieb@23522
   107
lemma two_times_even_div_two: "even (x::int) ==> 2 * (x div 2) = x" 
chaieb@23522
   108
  by presburger
wenzelm@21256
   109
wenzelm@21263
   110
lemma two_times_odd_div_two_plus_one: "odd (x::int) ==>
chaieb@23522
   111
    2 * (x div 2) + 1 = x" by presburger
wenzelm@21256
   112
chaieb@23522
   113
lemma even_equiv_def: "even (x::int) = (EX y. x = 2 * y)" by presburger
wenzelm@21256
   114
chaieb@23522
   115
lemma odd_equiv_def: "odd (x::int) = (EX y. x = 2 * y + 1)" by presburger
wenzelm@21256
   116
wenzelm@21256
   117
subsection {* even and odd for nats *}
wenzelm@21256
   118
wenzelm@21256
   119
lemma pos_int_even_equiv_nat_even: "0 \<le> x ==> even x = even (nat x)"
wenzelm@21256
   120
  by (simp add: even_nat_def)
wenzelm@21256
   121
chaieb@23522
   122
lemma even_nat_product[presburger]: "even((x::nat) * y) = (even x | even y)"
huffman@23431
   123
  by (simp add: even_nat_def int_mult)
wenzelm@21256
   124
chaieb@23522
   125
lemma even_nat_sum[presburger]: "even ((x::nat) + y) =
chaieb@23522
   126
    ((even x & even y) | (odd x & odd y))" by presburger
wenzelm@21256
   127
chaieb@23522
   128
lemma even_nat_difference[presburger]:
wenzelm@21256
   129
    "even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))"
chaieb@23522
   130
by presburger
wenzelm@21256
   131
chaieb@23522
   132
lemma even_nat_Suc[presburger]: "even (Suc x) = odd x" by presburger
wenzelm@21256
   133
chaieb@23522
   134
lemma even_nat_power[presburger]: "even ((x::nat)^y) = (even x & 0 < y)"
huffman@23431
   135
  by (simp add: even_nat_def int_power)
wenzelm@21256
   136
chaieb@23522
   137
lemma even_nat_zero[presburger]: "even (0::nat)" by presburger
wenzelm@21256
   138
wenzelm@21263
   139
lemmas even_odd_nat_simps [simp] = even_nat_def[of "number_of v",standard]
wenzelm@21256
   140
  even_nat_zero even_nat_Suc even_nat_product even_nat_sum even_nat_power
wenzelm@21256
   141
wenzelm@21256
   142
wenzelm@21256
   143
subsection {* Equivalent definitions *}
wenzelm@21256
   144
wenzelm@21263
   145
lemma nat_lt_two_imp_zero_or_one: "(x::nat) < Suc (Suc 0) ==>
chaieb@23522
   146
    x = 0 | x = Suc 0" by presburger
wenzelm@21256
   147
wenzelm@21256
   148
lemma even_nat_mod_two_eq_zero: "even (x::nat) ==> x mod (Suc (Suc 0)) = 0"
chaieb@23522
   149
  by presburger
wenzelm@21256
   150
wenzelm@21256
   151
lemma odd_nat_mod_two_eq_one: "odd (x::nat) ==> x mod (Suc (Suc 0)) = Suc 0"
chaieb@23522
   152
by presburger
wenzelm@21256
   153
wenzelm@21263
   154
lemma even_nat_equiv_def: "even (x::nat) = (x mod Suc (Suc 0) = 0)"
chaieb@23522
   155
  by presburger
wenzelm@21256
   156
wenzelm@21256
   157
lemma odd_nat_equiv_def: "odd (x::nat) = (x mod Suc (Suc 0) = Suc 0)"
chaieb@23522
   158
  by presburger
wenzelm@21256
   159
wenzelm@21263
   160
lemma even_nat_div_two_times_two: "even (x::nat) ==>
chaieb@23522
   161
    Suc (Suc 0) * (x div Suc (Suc 0)) = x" by presburger
wenzelm@21256
   162
wenzelm@21263
   163
lemma odd_nat_div_two_times_two_plus_one: "odd (x::nat) ==>
chaieb@23522
   164
    Suc( Suc (Suc 0) * (x div Suc (Suc 0))) = x" by presburger
wenzelm@21256
   165
wenzelm@21256
   166
lemma even_nat_equiv_def2: "even (x::nat) = (EX y. x = Suc (Suc 0) * y)"
chaieb@23522
   167
  by presburger
wenzelm@21256
   168
wenzelm@21256
   169
lemma odd_nat_equiv_def2: "odd (x::nat) = (EX y. x = Suc(Suc (Suc 0) * y))"
chaieb@23522
   170
  by presburger
wenzelm@21256
   171
wenzelm@21256
   172
subsection {* Parity and powers *}
wenzelm@21256
   173
wenzelm@21263
   174
lemma  minus_one_even_odd_power:
wenzelm@21263
   175
     "(even x --> (- 1::'a::{comm_ring_1,recpower})^x = 1) &
wenzelm@21256
   176
      (odd x --> (- 1::'a)^x = - 1)"
wenzelm@21256
   177
  apply (induct x)
wenzelm@21256
   178
  apply (rule conjI)
wenzelm@21256
   179
  apply simp
wenzelm@21256
   180
  apply (insert even_nat_zero, blast)
wenzelm@21256
   181
  apply (simp add: power_Suc)
wenzelm@21263
   182
  done
wenzelm@21256
   183
wenzelm@21256
   184
lemma minus_one_even_power [simp]:
wenzelm@21263
   185
    "even x ==> (- 1::'a::{comm_ring_1,recpower})^x = 1"
wenzelm@21263
   186
  using minus_one_even_odd_power by blast
wenzelm@21256
   187
wenzelm@21256
   188
lemma minus_one_odd_power [simp]:
wenzelm@21263
   189
    "odd x ==> (- 1::'a::{comm_ring_1,recpower})^x = - 1"
wenzelm@21263
   190
  using minus_one_even_odd_power by blast
wenzelm@21256
   191
wenzelm@21256
   192
lemma neg_one_even_odd_power:
wenzelm@21263
   193
     "(even x --> (-1::'a::{number_ring,recpower})^x = 1) &
wenzelm@21256
   194
      (odd x --> (-1::'a)^x = -1)"
wenzelm@21256
   195
  apply (induct x)
wenzelm@21256
   196
  apply (simp, simp add: power_Suc)
wenzelm@21256
   197
  done
wenzelm@21256
   198
wenzelm@21256
   199
lemma neg_one_even_power [simp]:
wenzelm@21263
   200
    "even x ==> (-1::'a::{number_ring,recpower})^x = 1"
wenzelm@21263
   201
  using neg_one_even_odd_power by blast
wenzelm@21256
   202
wenzelm@21256
   203
lemma neg_one_odd_power [simp]:
wenzelm@21263
   204
    "odd x ==> (-1::'a::{number_ring,recpower})^x = -1"
wenzelm@21263
   205
  using neg_one_even_odd_power by blast
wenzelm@21256
   206
wenzelm@21256
   207
lemma neg_power_if:
wenzelm@21263
   208
     "(-x::'a::{comm_ring_1,recpower}) ^ n =
wenzelm@21256
   209
      (if even n then (x ^ n) else -(x ^ n))"
wenzelm@21263
   210
  apply (induct n)
wenzelm@21263
   211
  apply (simp_all split: split_if_asm add: power_Suc)
wenzelm@21263
   212
  done
wenzelm@21256
   213
wenzelm@21263
   214
lemma zero_le_even_power: "even n ==>
wenzelm@21256
   215
    0 <= (x::'a::{recpower,ordered_ring_strict}) ^ n"
wenzelm@21256
   216
  apply (simp add: even_nat_equiv_def2)
wenzelm@21256
   217
  apply (erule exE)
wenzelm@21256
   218
  apply (erule ssubst)
wenzelm@21256
   219
  apply (subst power_add)
wenzelm@21256
   220
  apply (rule zero_le_square)
wenzelm@21256
   221
  done
wenzelm@21256
   222
wenzelm@21263
   223
lemma zero_le_odd_power: "odd n ==>
wenzelm@21256
   224
    (0 <= (x::'a::{recpower,ordered_idom}) ^ n) = (0 <= x)"
wenzelm@21256
   225
  apply (simp add: odd_nat_equiv_def2)
wenzelm@21256
   226
  apply (erule exE)
wenzelm@21256
   227
  apply (erule ssubst)
wenzelm@21256
   228
  apply (subst power_Suc)
wenzelm@21256
   229
  apply (subst power_add)
wenzelm@21256
   230
  apply (subst zero_le_mult_iff)
wenzelm@21256
   231
  apply auto
nipkow@25162
   232
  apply (subgoal_tac "x = 0 & y > 0")
wenzelm@21256
   233
  apply (erule conjE, assumption)
wenzelm@21263
   234
  apply (subst power_eq_0_iff [symmetric])
wenzelm@21256
   235
  apply (subgoal_tac "0 <= x^y * x^y")
wenzelm@21256
   236
  apply simp
wenzelm@21256
   237
  apply (rule zero_le_square)+
wenzelm@21263
   238
  done
wenzelm@21256
   239
chaieb@23522
   240
lemma zero_le_power_eq[presburger]: "(0 <= (x::'a::{recpower,ordered_idom}) ^ n) =
wenzelm@21256
   241
    (even n | (odd n & 0 <= x))"
wenzelm@21256
   242
  apply auto
wenzelm@21263
   243
  apply (subst zero_le_odd_power [symmetric])
wenzelm@21256
   244
  apply assumption+
wenzelm@21256
   245
  apply (erule zero_le_even_power)
wenzelm@21263
   246
  apply (subst zero_le_odd_power)
wenzelm@21256
   247
  apply assumption+
wenzelm@21263
   248
  done
wenzelm@21256
   249
chaieb@23522
   250
lemma zero_less_power_eq[presburger]: "(0 < (x::'a::{recpower,ordered_idom}) ^ n) =
wenzelm@21256
   251
    (n = 0 | (even n & x ~= 0) | (odd n & 0 < x))"
wenzelm@21256
   252
  apply (rule iffI)
wenzelm@21256
   253
  apply clarsimp
wenzelm@21256
   254
  apply (rule conjI)
wenzelm@21256
   255
  apply clarsimp
wenzelm@21256
   256
  apply (rule ccontr)
wenzelm@21256
   257
  apply (subgoal_tac "~ (0 <= x^n)")
wenzelm@21256
   258
  apply simp
wenzelm@21256
   259
  apply (subst zero_le_odd_power)
wenzelm@21263
   260
  apply assumption
wenzelm@21256
   261
  apply simp
wenzelm@21256
   262
  apply (rule notI)
wenzelm@21256
   263
  apply (simp add: power_0_left)
wenzelm@21256
   264
  apply (rule notI)
wenzelm@21256
   265
  apply (simp add: power_0_left)
wenzelm@21256
   266
  apply auto
wenzelm@21256
   267
  apply (subgoal_tac "0 <= x^n")
wenzelm@21256
   268
  apply (frule order_le_imp_less_or_eq)
wenzelm@21256
   269
  apply simp
wenzelm@21256
   270
  apply (erule zero_le_even_power)
wenzelm@21256
   271
  apply (subgoal_tac "0 <= x^n")
wenzelm@21256
   272
  apply (frule order_le_imp_less_or_eq)
wenzelm@21256
   273
  apply auto
wenzelm@21256
   274
  apply (subst zero_le_odd_power)
wenzelm@21256
   275
  apply assumption
wenzelm@21256
   276
  apply (erule order_less_imp_le)
wenzelm@21263
   277
  done
wenzelm@21256
   278
chaieb@23522
   279
lemma power_less_zero_eq[presburger]: "((x::'a::{recpower,ordered_idom}) ^ n < 0) =
chaieb@23522
   280
    (odd n & x < 0)" 
wenzelm@21263
   281
  apply (subst linorder_not_le [symmetric])+
wenzelm@21256
   282
  apply (subst zero_le_power_eq)
wenzelm@21256
   283
  apply auto
wenzelm@21263
   284
  done
wenzelm@21256
   285
chaieb@23522
   286
lemma power_le_zero_eq[presburger]: "((x::'a::{recpower,ordered_idom}) ^ n <= 0) =
wenzelm@21256
   287
    (n ~= 0 & ((odd n & x <= 0) | (even n & x = 0)))"
wenzelm@21263
   288
  apply (subst linorder_not_less [symmetric])+
wenzelm@21256
   289
  apply (subst zero_less_power_eq)
wenzelm@21256
   290
  apply auto
wenzelm@21263
   291
  done
wenzelm@21256
   292
wenzelm@21263
   293
lemma power_even_abs: "even n ==>
wenzelm@21256
   294
    (abs (x::'a::{recpower,ordered_idom}))^n = x^n"
wenzelm@21263
   295
  apply (subst power_abs [symmetric])
wenzelm@21256
   296
  apply (simp add: zero_le_even_power)
wenzelm@21263
   297
  done
wenzelm@21256
   298
chaieb@23522
   299
lemma zero_less_power_nat_eq[presburger]: "(0 < (x::nat) ^ n) = (n = 0 | 0 < x)"
wenzelm@21263
   300
  by (induct n) auto
wenzelm@21256
   301
wenzelm@21263
   302
lemma power_minus_even [simp]: "even n ==>
wenzelm@21256
   303
    (- x)^n = (x^n::'a::{recpower,comm_ring_1})"
wenzelm@21256
   304
  apply (subst power_minus)
wenzelm@21256
   305
  apply simp
wenzelm@21263
   306
  done
wenzelm@21256
   307
wenzelm@21263
   308
lemma power_minus_odd [simp]: "odd n ==>
wenzelm@21256
   309
    (- x)^n = - (x^n::'a::{recpower,comm_ring_1})"
wenzelm@21256
   310
  apply (subst power_minus)
wenzelm@21256
   311
  apply simp
wenzelm@21263
   312
  done
wenzelm@21256
   313
wenzelm@21263
   314
wenzelm@21263
   315
text {* Simplify, when the exponent is a numeral *}
wenzelm@21256
   316
wenzelm@21256
   317
lemmas power_0_left_number_of = power_0_left [of "number_of w", standard]
wenzelm@21256
   318
declare power_0_left_number_of [simp]
wenzelm@21256
   319
wenzelm@21263
   320
lemmas zero_le_power_eq_number_of [simp] =
wenzelm@21256
   321
    zero_le_power_eq [of _ "number_of w", standard]
wenzelm@21256
   322
wenzelm@21263
   323
lemmas zero_less_power_eq_number_of [simp] =
wenzelm@21256
   324
    zero_less_power_eq [of _ "number_of w", standard]
wenzelm@21256
   325
wenzelm@21263
   326
lemmas power_le_zero_eq_number_of [simp] =
wenzelm@21256
   327
    power_le_zero_eq [of _ "number_of w", standard]
wenzelm@21256
   328
wenzelm@21263
   329
lemmas power_less_zero_eq_number_of [simp] =
wenzelm@21256
   330
    power_less_zero_eq [of _ "number_of w", standard]
wenzelm@21256
   331
wenzelm@21263
   332
lemmas zero_less_power_nat_eq_number_of [simp] =
wenzelm@21256
   333
    zero_less_power_nat_eq [of _ "number_of w", standard]
wenzelm@21256
   334
wenzelm@21263
   335
lemmas power_eq_0_iff_number_of [simp] = power_eq_0_iff [of _ "number_of w", standard]
wenzelm@21256
   336
wenzelm@21263
   337
lemmas power_even_abs_number_of [simp] = power_even_abs [of "number_of w" _, standard]
wenzelm@21256
   338
wenzelm@21256
   339
wenzelm@21256
   340
subsection {* An Equivalence for @{term [source] "0 \<le> a^n"} *}
wenzelm@21256
   341
wenzelm@21256
   342
lemma even_power_le_0_imp_0:
wenzelm@21263
   343
    "a ^ (2*k) \<le> (0::'a::{ordered_idom,recpower}) ==> a=0"
wenzelm@21263
   344
  by (induct k) (auto simp add: zero_le_mult_iff mult_le_0_iff power_Suc)
wenzelm@21256
   345
chaieb@23522
   346
lemma zero_le_power_iff[presburger]:
wenzelm@21263
   347
  "(0 \<le> a^n) = (0 \<le> (a::'a::{ordered_idom,recpower}) | even n)"
wenzelm@21256
   348
proof cases
wenzelm@21256
   349
  assume even: "even n"
wenzelm@21256
   350
  then obtain k where "n = 2*k"
wenzelm@21256
   351
    by (auto simp add: even_nat_equiv_def2 numeral_2_eq_2)
wenzelm@21263
   352
  thus ?thesis by (simp add: zero_le_even_power even)
wenzelm@21256
   353
next
wenzelm@21256
   354
  assume odd: "odd n"
wenzelm@21256
   355
  then obtain k where "n = Suc(2*k)"
wenzelm@21256
   356
    by (auto simp add: odd_nat_equiv_def2 numeral_2_eq_2)
wenzelm@21256
   357
  thus ?thesis
wenzelm@21263
   358
    by (auto simp add: power_Suc zero_le_mult_iff zero_le_even_power
wenzelm@21263
   359
             dest!: even_power_le_0_imp_0)
wenzelm@21263
   360
qed
wenzelm@21263
   361
wenzelm@21256
   362
wenzelm@21256
   363
subsection {* Miscellaneous *}
wenzelm@21256
   364
chaieb@23522
   365
lemma [presburger]:"(x + 1) div 2 = x div 2 \<longleftrightarrow> even (x::int)" by presburger
chaieb@23522
   366
lemma [presburger]: "(x + 1) div 2 = x div 2 + 1 \<longleftrightarrow> odd (x::int)" by presburger
chaieb@23522
   367
lemma even_plus_one_div_two: "even (x::int) ==> (x + 1) div 2 = x div 2"  by presburger
chaieb@23522
   368
lemma odd_plus_one_div_two: "odd (x::int) ==> (x + 1) div 2 = x div 2 + 1" by presburger
wenzelm@21256
   369
wenzelm@21263
   370
lemma div_Suc: "Suc a div c = a div c + Suc 0 div c +
chaieb@23522
   371
    (a mod c + Suc 0 mod c) div c" 
wenzelm@21256
   372
  apply (subgoal_tac "Suc a = a + Suc 0")
wenzelm@21256
   373
  apply (erule ssubst)
wenzelm@21256
   374
  apply (rule div_add1_eq, simp)
wenzelm@21256
   375
  done
wenzelm@21256
   376
chaieb@23522
   377
lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger
chaieb@23522
   378
lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger
wenzelm@21263
   379
lemma even_nat_plus_one_div_two: "even (x::nat) ==>
chaieb@23522
   380
    (Suc x) div Suc (Suc 0) = x div Suc (Suc 0)" by presburger
wenzelm@21256
   381
wenzelm@21263
   382
lemma odd_nat_plus_one_div_two: "odd (x::nat) ==>
chaieb@23522
   383
    (Suc x) div Suc (Suc 0) = Suc (x div Suc (Suc 0))" by presburger
wenzelm@21256
   384
wenzelm@21256
   385
end