src/HOL/Real/PReal.thy
author haftmann
Fri Dec 07 15:07:59 2007 +0100 (2007-12-07)
changeset 25571 c9e39eafc7a0
parent 25502 9200b36280c0
child 26511 dba7125d0fef
permissions -rw-r--r--
instantiation target rather than legacy instance
paulson@7219
     1
(*  Title       : PReal.thy
paulson@7219
     2
    ID          : $Id$
paulson@5078
     3
    Author      : Jacques D. Fleuriot
paulson@5078
     4
    Copyright   : 1998  University of Cambridge
paulson@5078
     5
    Description : The positive reals as Dedekind sections of positive
paulson@14335
     6
         rationals. Fundamentals of Abstract Analysis [Gleason- p. 121]
paulson@5078
     7
                  provides some of the definitions.
paulson@5078
     8
*)
paulson@5078
     9
huffman@17428
    10
header {* Positive real numbers *}
huffman@17428
    11
nipkow@15131
    12
theory PReal
nipkow@15140
    13
imports Rational
nipkow@15131
    14
begin
paulson@14365
    15
paulson@14365
    16
text{*Could be generalized and moved to @{text Ring_and_Field}*}
paulson@14365
    17
lemma add_eq_exists: "\<exists>x. a+x = (b::rat)"
paulson@14365
    18
by (rule_tac x="b-a" in exI, simp)
paulson@5078
    19
wenzelm@19765
    20
definition
wenzelm@21404
    21
  cut :: "rat set => bool" where
wenzelm@19765
    22
  "cut A = ({} \<subset> A &
wenzelm@19765
    23
            A < {r. 0 < r} &
wenzelm@19765
    24
            (\<forall>y \<in> A. ((\<forall>z. 0<z & z < y --> z \<in> A) & (\<exists>u \<in> A. y < u))))"
paulson@14365
    25
paulson@14365
    26
lemma cut_of_rat: 
huffman@20495
    27
  assumes q: "0 < q" shows "cut {r::rat. 0 < r & r < q}" (is "cut ?A")
paulson@14365
    28
proof -
paulson@14365
    29
  from q have pos: "?A < {r. 0 < r}" by force
paulson@14365
    30
  have nonempty: "{} \<subset> ?A"
paulson@14365
    31
  proof
paulson@14365
    32
    show "{} \<subseteq> ?A" by simp
paulson@14365
    33
    show "{} \<noteq> ?A"
paulson@14365
    34
      by (force simp only: q eq_commute [of "{}"] interval_empty_iff)
paulson@14365
    35
  qed
paulson@14365
    36
  show ?thesis
paulson@14365
    37
    by (simp add: cut_def pos nonempty,
paulson@14365
    38
        blast dest: dense intro: order_less_trans)
paulson@14365
    39
qed
paulson@14365
    40
paulson@14365
    41
paulson@14365
    42
typedef preal = "{A. cut A}"
paulson@14365
    43
  by (blast intro: cut_of_rat [OF zero_less_one])
paulson@14365
    44
huffman@23287
    45
instance preal :: "{ord, plus, minus, times, inverse, one}" ..
paulson@14365
    46
wenzelm@19765
    47
definition
wenzelm@21404
    48
  preal_of_rat :: "rat => preal" where
huffman@20495
    49
  "preal_of_rat q = Abs_preal {x::rat. 0 < x & x < q}"
paulson@5078
    50
wenzelm@21404
    51
definition
wenzelm@21404
    52
  psup :: "preal set => preal" where
huffman@20495
    53
  "psup P = Abs_preal (\<Union>X \<in> P. Rep_preal X)"
paulson@14365
    54
wenzelm@21404
    55
definition
wenzelm@21404
    56
  add_set :: "[rat set,rat set] => rat set" where
wenzelm@19765
    57
  "add_set A B = {w. \<exists>x \<in> A. \<exists>y \<in> B. w = x + y}"
paulson@14365
    58
wenzelm@21404
    59
definition
wenzelm@21404
    60
  diff_set :: "[rat set,rat set] => rat set" where
wenzelm@19765
    61
  "diff_set A B = {w. \<exists>x. 0 < w & 0 < x & x \<notin> B & x + w \<in> A}"
paulson@14365
    62
wenzelm@21404
    63
definition
wenzelm@21404
    64
  mult_set :: "[rat set,rat set] => rat set" where
wenzelm@19765
    65
  "mult_set A B = {w. \<exists>x \<in> A. \<exists>y \<in> B. w = x * y}"
paulson@14365
    66
wenzelm@21404
    67
definition
wenzelm@21404
    68
  inverse_set :: "rat set => rat set" where
wenzelm@19765
    69
  "inverse_set A = {x. \<exists>y. 0 < x & x < y & inverse y \<notin> A}"
paulson@14365
    70
paulson@5078
    71
paulson@14335
    72
defs (overloaded)
paulson@5078
    73
paulson@14365
    74
  preal_less_def:
huffman@20495
    75
    "R < S == Rep_preal R < Rep_preal S"
paulson@14365
    76
paulson@14365
    77
  preal_le_def:
huffman@20495
    78
    "R \<le> S == Rep_preal R \<subseteq> Rep_preal S"
paulson@14365
    79
paulson@14335
    80
  preal_add_def:
paulson@14365
    81
    "R + S == Abs_preal (add_set (Rep_preal R) (Rep_preal S))"
paulson@14365
    82
paulson@14365
    83
  preal_diff_def:
paulson@14365
    84
    "R - S == Abs_preal (diff_set (Rep_preal R) (Rep_preal S))"
paulson@5078
    85
paulson@14335
    86
  preal_mult_def:
huffman@20495
    87
    "R * S == Abs_preal (mult_set (Rep_preal R) (Rep_preal S))"
paulson@5078
    88
paulson@14365
    89
  preal_inverse_def:
huffman@20495
    90
    "inverse R == Abs_preal (inverse_set (Rep_preal R))"
paulson@14335
    91
huffman@23287
    92
  preal_one_def:
huffman@23287
    93
    "1 == preal_of_rat 1"
huffman@23287
    94
paulson@14335
    95
paulson@15413
    96
text{*Reduces equality on abstractions to equality on representatives*}
paulson@15413
    97
declare Abs_preal_inject [simp]
huffman@20495
    98
declare Abs_preal_inverse [simp]
huffman@20495
    99
huffman@20495
   100
lemma rat_mem_preal: "0 < q ==> {r::rat. 0 < r & r < q} \<in> preal"
huffman@20495
   101
by (simp add: preal_def cut_of_rat)
paulson@14335
   102
paulson@14365
   103
lemma preal_nonempty: "A \<in> preal ==> \<exists>x\<in>A. 0 < x"
paulson@14365
   104
by (unfold preal_def cut_def, blast)
paulson@14335
   105
huffman@20495
   106
lemma preal_Ex_mem: "A \<in> preal \<Longrightarrow> \<exists>x. x \<in> A"
huffman@20495
   107
by (drule preal_nonempty, fast)
huffman@20495
   108
paulson@14365
   109
lemma preal_imp_psubset_positives: "A \<in> preal ==> A < {r. 0 < r}"
paulson@14365
   110
by (force simp add: preal_def cut_def)
paulson@14335
   111
paulson@14365
   112
lemma preal_exists_bound: "A \<in> preal ==> \<exists>x. 0 < x & x \<notin> A"
paulson@14365
   113
by (drule preal_imp_psubset_positives, auto)
paulson@14335
   114
paulson@14365
   115
lemma preal_exists_greater: "[| A \<in> preal; y \<in> A |] ==> \<exists>u \<in> A. y < u"
paulson@14365
   116
by (unfold preal_def cut_def, blast)
paulson@14335
   117
paulson@14365
   118
lemma preal_downwards_closed: "[| A \<in> preal; y \<in> A; 0 < z; z < y |] ==> z \<in> A"
paulson@14365
   119
by (unfold preal_def cut_def, blast)
paulson@14335
   120
paulson@14365
   121
text{*Relaxing the final premise*}
paulson@14365
   122
lemma preal_downwards_closed':
paulson@14365
   123
     "[| A \<in> preal; y \<in> A; 0 < z; z \<le> y |] ==> z \<in> A"
paulson@14365
   124
apply (simp add: order_le_less)
paulson@14365
   125
apply (blast intro: preal_downwards_closed)
paulson@14365
   126
done
paulson@14335
   127
paulson@14335
   128
text{*A positive fraction not in a positive real is an upper bound.
paulson@14335
   129
 Gleason p. 122 - Remark (1)*}
paulson@14335
   130
paulson@14365
   131
lemma not_in_preal_ub:
wenzelm@19765
   132
  assumes A: "A \<in> preal"
wenzelm@19765
   133
    and notx: "x \<notin> A"
wenzelm@19765
   134
    and y: "y \<in> A"
wenzelm@19765
   135
    and pos: "0 < x"
wenzelm@19765
   136
  shows "y < x"
paulson@14365
   137
proof (cases rule: linorder_cases)
paulson@14365
   138
  assume "x<y"
paulson@14365
   139
  with notx show ?thesis
paulson@14365
   140
    by (simp add:  preal_downwards_closed [OF A y] pos)
paulson@14365
   141
next
paulson@14365
   142
  assume "x=y"
paulson@14365
   143
  with notx and y show ?thesis by simp
paulson@14365
   144
next
paulson@14365
   145
  assume "y<x"
huffman@20495
   146
  thus ?thesis .
paulson@14365
   147
qed
paulson@14365
   148
huffman@20495
   149
text {* preal lemmas instantiated to @{term "Rep_preal X"} *}
huffman@20495
   150
huffman@20495
   151
lemma mem_Rep_preal_Ex: "\<exists>x. x \<in> Rep_preal X"
huffman@20495
   152
by (rule preal_Ex_mem [OF Rep_preal])
huffman@20495
   153
huffman@20495
   154
lemma Rep_preal_exists_bound: "\<exists>x>0. x \<notin> Rep_preal X"
huffman@20495
   155
by (rule preal_exists_bound [OF Rep_preal])
huffman@20495
   156
paulson@14365
   157
lemmas not_in_Rep_preal_ub = not_in_preal_ub [OF Rep_preal]
paulson@14335
   158
paulson@14335
   159
huffman@20495
   160
huffman@20495
   161
subsection{*@{term preal_of_prat}: the Injection from prat to preal*}
huffman@20495
   162
huffman@20495
   163
lemma rat_less_set_mem_preal: "0 < y ==> {u::rat. 0 < u & u < y} \<in> preal"
huffman@20495
   164
by (simp add: preal_def cut_of_rat)
huffman@20495
   165
huffman@20495
   166
lemma rat_subset_imp_le:
huffman@20495
   167
     "[|{u::rat. 0 < u & u < x} \<subseteq> {u. 0 < u & u < y}; 0<x|] ==> x \<le> y"
huffman@20495
   168
apply (simp add: linorder_not_less [symmetric])
huffman@20495
   169
apply (blast dest: dense intro: order_less_trans)
huffman@20495
   170
done
huffman@20495
   171
huffman@20495
   172
lemma rat_set_eq_imp_eq:
huffman@20495
   173
     "[|{u::rat. 0 < u & u < x} = {u. 0 < u & u < y};
huffman@20495
   174
        0 < x; 0 < y|] ==> x = y"
huffman@20495
   175
by (blast intro: rat_subset_imp_le order_antisym)
huffman@20495
   176
huffman@20495
   177
huffman@20495
   178
huffman@20495
   179
subsection{*Properties of Ordering*}
paulson@14365
   180
paulson@14365
   181
lemma preal_le_refl: "w \<le> (w::preal)"
paulson@14365
   182
by (simp add: preal_le_def)
paulson@14335
   183
paulson@14365
   184
lemma preal_le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::preal)"
paulson@14365
   185
by (force simp add: preal_le_def)
paulson@14365
   186
paulson@14365
   187
lemma preal_le_anti_sym: "[| z \<le> w; w \<le> z |] ==> z = (w::preal)"
paulson@14365
   188
apply (simp add: preal_le_def)
paulson@14365
   189
apply (rule Rep_preal_inject [THEN iffD1], blast)
paulson@14335
   190
done
paulson@14335
   191
paulson@14365
   192
(* Axiom 'order_less_le' of class 'order': *)
paulson@14365
   193
lemma preal_less_le: "((w::preal) < z) = (w \<le> z & w \<noteq> z)"
paulson@14365
   194
by (simp add: preal_le_def preal_less_def Rep_preal_inject psubset_def)
paulson@14365
   195
paulson@14365
   196
instance preal :: order
wenzelm@14691
   197
  by intro_classes
wenzelm@14691
   198
    (assumption |
wenzelm@14691
   199
      rule preal_le_refl preal_le_trans preal_le_anti_sym preal_less_le)+
paulson@14335
   200
paulson@14365
   201
lemma preal_imp_pos: "[|A \<in> preal; r \<in> A|] ==> 0 < r"
paulson@14365
   202
by (insert preal_imp_psubset_positives, blast)
paulson@14335
   203
paulson@14365
   204
lemma preal_le_linear: "x <= y | y <= (x::preal)"
paulson@14365
   205
apply (auto simp add: preal_le_def)
paulson@14365
   206
apply (rule ccontr)
paulson@14365
   207
apply (blast dest: not_in_Rep_preal_ub intro: preal_imp_pos [OF Rep_preal]
paulson@14365
   208
             elim: order_less_asym)
paulson@14335
   209
done
paulson@14335
   210
paulson@14365
   211
instance preal :: linorder
wenzelm@14691
   212
  by intro_classes (rule preal_le_linear)
paulson@14335
   213
haftmann@25571
   214
instantiation preal :: distrib_lattice
haftmann@25571
   215
begin
haftmann@25571
   216
haftmann@25571
   217
definition
haftmann@25571
   218
  "(inf \<Colon> preal \<Rightarrow> preal \<Rightarrow> preal) = min"
haftmann@25571
   219
haftmann@25571
   220
definition
haftmann@25571
   221
  "(sup \<Colon> preal \<Rightarrow> preal \<Rightarrow> preal) = max"
haftmann@25571
   222
haftmann@25571
   223
instance
haftmann@22483
   224
  by intro_classes
haftmann@22483
   225
    (auto simp add: inf_preal_def sup_preal_def min_max.sup_inf_distrib1)
paulson@14335
   226
haftmann@25571
   227
end
paulson@14335
   228
paulson@14335
   229
subsection{*Properties of Addition*}
paulson@14335
   230
paulson@14335
   231
lemma preal_add_commute: "(x::preal) + y = y + x"
paulson@14365
   232
apply (unfold preal_add_def add_set_def)
paulson@14335
   233
apply (rule_tac f = Abs_preal in arg_cong)
paulson@14365
   234
apply (force simp add: add_commute)
paulson@14335
   235
done
paulson@14335
   236
paulson@14365
   237
text{*Lemmas for proving that addition of two positive reals gives
paulson@14365
   238
 a positive real*}
paulson@14365
   239
paulson@14365
   240
lemma empty_psubset_nonempty: "a \<in> A ==> {} \<subset> A"
paulson@14365
   241
by blast
paulson@14365
   242
paulson@14365
   243
text{*Part 1 of Dedekind sections definition*}
paulson@14365
   244
lemma add_set_not_empty:
paulson@14365
   245
     "[|A \<in> preal; B \<in> preal|] ==> {} \<subset> add_set A B"
huffman@20495
   246
apply (drule preal_nonempty)+
paulson@14365
   247
apply (auto simp add: add_set_def)
paulson@14335
   248
done
paulson@14335
   249
paulson@14365
   250
text{*Part 2 of Dedekind sections definition.  A structured version of
paulson@14365
   251
this proof is @{text preal_not_mem_mult_set_Ex} below.*}
paulson@14365
   252
lemma preal_not_mem_add_set_Ex:
huffman@20495
   253
     "[|A \<in> preal; B \<in> preal|] ==> \<exists>q>0. q \<notin> add_set A B"
paulson@14365
   254
apply (insert preal_exists_bound [of A] preal_exists_bound [of B], auto) 
paulson@14365
   255
apply (rule_tac x = "x+xa" in exI)
paulson@14365
   256
apply (simp add: add_set_def, clarify)
huffman@20495
   257
apply (drule (3) not_in_preal_ub)+
paulson@14365
   258
apply (force dest: add_strict_mono)
paulson@14335
   259
done
paulson@14335
   260
paulson@14365
   261
lemma add_set_not_rat_set:
paulson@14365
   262
   assumes A: "A \<in> preal" 
paulson@14365
   263
       and B: "B \<in> preal"
paulson@14365
   264
     shows "add_set A B < {r. 0 < r}"
paulson@14365
   265
proof
paulson@14365
   266
  from preal_imp_pos [OF A] preal_imp_pos [OF B]
paulson@14365
   267
  show "add_set A B \<subseteq> {r. 0 < r}" by (force simp add: add_set_def) 
paulson@14365
   268
next
paulson@14365
   269
  show "add_set A B \<noteq> {r. 0 < r}"
paulson@14365
   270
    by (insert preal_not_mem_add_set_Ex [OF A B], blast) 
paulson@14365
   271
qed
paulson@14365
   272
paulson@14335
   273
text{*Part 3 of Dedekind sections definition*}
paulson@14365
   274
lemma add_set_lemma3:
paulson@14365
   275
     "[|A \<in> preal; B \<in> preal; u \<in> add_set A B; 0 < z; z < u|] 
paulson@14365
   276
      ==> z \<in> add_set A B"
paulson@14365
   277
proof (unfold add_set_def, clarify)
paulson@14365
   278
  fix x::rat and y::rat
paulson@14365
   279
  assume A: "A \<in> preal" 
wenzelm@19765
   280
    and B: "B \<in> preal"
wenzelm@19765
   281
    and [simp]: "0 < z"
wenzelm@19765
   282
    and zless: "z < x + y"
wenzelm@19765
   283
    and x:  "x \<in> A"
wenzelm@19765
   284
    and y:  "y \<in> B"
paulson@14365
   285
  have xpos [simp]: "0<x" by (rule preal_imp_pos [OF A x])
paulson@14365
   286
  have ypos [simp]: "0<y" by (rule preal_imp_pos [OF B y])
paulson@14365
   287
  have xypos [simp]: "0 < x+y" by (simp add: pos_add_strict)
paulson@14365
   288
  let ?f = "z/(x+y)"
paulson@14365
   289
  have fless: "?f < 1" by (simp add: zless pos_divide_less_eq)
paulson@14365
   290
  show "\<exists>x' \<in> A. \<exists>y'\<in>B. z = x' + y'"
huffman@20495
   291
  proof (intro bexI)
huffman@20495
   292
    show "z = x*?f + y*?f"
huffman@20495
   293
      by (simp add: left_distrib [symmetric] divide_inverse mult_ac
huffman@20495
   294
          order_less_imp_not_eq2)
huffman@20495
   295
  next
huffman@20495
   296
    show "y * ?f \<in> B"
huffman@20495
   297
    proof (rule preal_downwards_closed [OF B y])
huffman@20495
   298
      show "0 < y * ?f"
huffman@20495
   299
        by (simp add: divide_inverse zero_less_mult_iff)
paulson@14365
   300
    next
huffman@20495
   301
      show "y * ?f < y"
huffman@20495
   302
        by (insert mult_strict_left_mono [OF fless ypos], simp)
paulson@14365
   303
    qed
paulson@14365
   304
  next
paulson@14365
   305
    show "x * ?f \<in> A"
paulson@14365
   306
    proof (rule preal_downwards_closed [OF A x])
paulson@14365
   307
      show "0 < x * ?f"
paulson@14430
   308
	by (simp add: divide_inverse zero_less_mult_iff)
paulson@14365
   309
    next
paulson@14365
   310
      show "x * ?f < x"
paulson@14365
   311
	by (insert mult_strict_left_mono [OF fless xpos], simp)
paulson@14365
   312
    qed
paulson@14365
   313
  qed
paulson@14365
   314
qed
paulson@14365
   315
paulson@14365
   316
text{*Part 4 of Dedekind sections definition*}
paulson@14365
   317
lemma add_set_lemma4:
paulson@14365
   318
     "[|A \<in> preal; B \<in> preal; y \<in> add_set A B|] ==> \<exists>u \<in> add_set A B. y < u"
paulson@14365
   319
apply (auto simp add: add_set_def)
paulson@14365
   320
apply (frule preal_exists_greater [of A], auto) 
paulson@14365
   321
apply (rule_tac x="u + y" in exI)
paulson@14365
   322
apply (auto intro: add_strict_left_mono)
paulson@14335
   323
done
paulson@14335
   324
paulson@14365
   325
lemma mem_add_set:
paulson@14365
   326
     "[|A \<in> preal; B \<in> preal|] ==> add_set A B \<in> preal"
paulson@14365
   327
apply (simp (no_asm_simp) add: preal_def cut_def)
paulson@14365
   328
apply (blast intro!: add_set_not_empty add_set_not_rat_set
paulson@14365
   329
                     add_set_lemma3 add_set_lemma4)
paulson@14335
   330
done
paulson@14335
   331
paulson@14335
   332
lemma preal_add_assoc: "((x::preal) + y) + z = x + (y + z)"
paulson@14365
   333
apply (simp add: preal_add_def mem_add_set Rep_preal)
paulson@14365
   334
apply (force simp add: add_set_def add_ac)
paulson@14335
   335
done
paulson@14335
   336
huffman@23287
   337
instance preal :: ab_semigroup_add
huffman@23287
   338
proof
huffman@23287
   339
  fix a b c :: preal
huffman@23287
   340
  show "(a + b) + c = a + (b + c)" by (rule preal_add_assoc)
huffman@23287
   341
  show "a + b = b + a" by (rule preal_add_commute)
huffman@23287
   342
qed
huffman@23287
   343
paulson@14335
   344
lemma preal_add_left_commute: "x + (y + z) = y + ((x + z)::preal)"
huffman@23287
   345
by (rule add_left_commute)
paulson@14335
   346
paulson@14365
   347
text{* Positive Real addition is an AC operator *}
paulson@14335
   348
lemmas preal_add_ac = preal_add_assoc preal_add_commute preal_add_left_commute
paulson@14335
   349
paulson@14335
   350
paulson@14335
   351
subsection{*Properties of Multiplication*}
paulson@14335
   352
paulson@14335
   353
text{*Proofs essentially same as for addition*}
paulson@14335
   354
paulson@14335
   355
lemma preal_mult_commute: "(x::preal) * y = y * x"
paulson@14365
   356
apply (unfold preal_mult_def mult_set_def)
paulson@14335
   357
apply (rule_tac f = Abs_preal in arg_cong)
paulson@14365
   358
apply (force simp add: mult_commute)
paulson@14335
   359
done
paulson@14335
   360
nipkow@15055
   361
text{*Multiplication of two positive reals gives a positive real.*}
paulson@14335
   362
paulson@14335
   363
text{*Lemmas for proving positive reals multiplication set in @{typ preal}*}
paulson@14335
   364
paulson@14335
   365
text{*Part 1 of Dedekind sections definition*}
paulson@14365
   366
lemma mult_set_not_empty:
paulson@14365
   367
     "[|A \<in> preal; B \<in> preal|] ==> {} \<subset> mult_set A B"
paulson@14365
   368
apply (insert preal_nonempty [of A] preal_nonempty [of B]) 
paulson@14365
   369
apply (auto simp add: mult_set_def)
paulson@14335
   370
done
paulson@14335
   371
paulson@14335
   372
text{*Part 2 of Dedekind sections definition*}
paulson@14335
   373
lemma preal_not_mem_mult_set_Ex:
paulson@14365
   374
   assumes A: "A \<in> preal" 
paulson@14365
   375
       and B: "B \<in> preal"
paulson@14365
   376
     shows "\<exists>q. 0 < q & q \<notin> mult_set A B"
paulson@14365
   377
proof -
paulson@14365
   378
  from preal_exists_bound [OF A]
paulson@14365
   379
  obtain x where [simp]: "0 < x" "x \<notin> A" by blast
paulson@14365
   380
  from preal_exists_bound [OF B]
paulson@14365
   381
  obtain y where [simp]: "0 < y" "y \<notin> B" by blast
paulson@14365
   382
  show ?thesis
paulson@14365
   383
  proof (intro exI conjI)
avigad@16775
   384
    show "0 < x*y" by (simp add: mult_pos_pos)
paulson@14365
   385
    show "x * y \<notin> mult_set A B"
paulson@14377
   386
    proof -
paulson@14377
   387
      { fix u::rat and v::rat
kleing@14550
   388
	      assume "u \<in> A" and "v \<in> B" and "x*y = u*v"
kleing@14550
   389
	      moreover
kleing@14550
   390
	      with prems have "u<x" and "v<y" by (blast dest: not_in_preal_ub)+
kleing@14550
   391
	      moreover
kleing@14550
   392
	      with prems have "0\<le>v"
kleing@14550
   393
	        by (blast intro: preal_imp_pos [OF B]  order_less_imp_le prems)
kleing@14550
   394
	      moreover
kleing@14550
   395
        from calculation
kleing@14550
   396
	      have "u*v < x*y" by (blast intro: mult_strict_mono prems)
kleing@14550
   397
	      ultimately have False by force }
paulson@14377
   398
      thus ?thesis by (auto simp add: mult_set_def)
paulson@14365
   399
    qed
paulson@14365
   400
  qed
paulson@14365
   401
qed
paulson@14335
   402
paulson@14365
   403
lemma mult_set_not_rat_set:
wenzelm@19765
   404
  assumes A: "A \<in> preal" 
wenzelm@19765
   405
    and B: "B \<in> preal"
wenzelm@19765
   406
  shows "mult_set A B < {r. 0 < r}"
paulson@14365
   407
proof
paulson@14365
   408
  show "mult_set A B \<subseteq> {r. 0 < r}"
paulson@14365
   409
    by (force simp add: mult_set_def
wenzelm@19765
   410
      intro: preal_imp_pos [OF A] preal_imp_pos [OF B] mult_pos_pos)
paulson@14365
   411
  show "mult_set A B \<noteq> {r. 0 < r}"
wenzelm@19765
   412
    using preal_not_mem_mult_set_Ex [OF A B] by blast
paulson@14365
   413
qed
paulson@14365
   414
paulson@14365
   415
paulson@14335
   416
paulson@14335
   417
text{*Part 3 of Dedekind sections definition*}
paulson@14365
   418
lemma mult_set_lemma3:
paulson@14365
   419
     "[|A \<in> preal; B \<in> preal; u \<in> mult_set A B; 0 < z; z < u|] 
paulson@14365
   420
      ==> z \<in> mult_set A B"
paulson@14365
   421
proof (unfold mult_set_def, clarify)
paulson@14365
   422
  fix x::rat and y::rat
paulson@14365
   423
  assume A: "A \<in> preal" 
wenzelm@19765
   424
    and B: "B \<in> preal"
wenzelm@19765
   425
    and [simp]: "0 < z"
wenzelm@19765
   426
    and zless: "z < x * y"
wenzelm@19765
   427
    and x:  "x \<in> A"
wenzelm@19765
   428
    and y:  "y \<in> B"
paulson@14365
   429
  have [simp]: "0<y" by (rule preal_imp_pos [OF B y])
paulson@14365
   430
  show "\<exists>x' \<in> A. \<exists>y' \<in> B. z = x' * y'"
paulson@14365
   431
  proof
paulson@14365
   432
    show "\<exists>y'\<in>B. z = (z/y) * y'"
paulson@14365
   433
    proof
paulson@14365
   434
      show "z = (z/y)*y"
paulson@14430
   435
	by (simp add: divide_inverse mult_commute [of y] mult_assoc
paulson@14365
   436
		      order_less_imp_not_eq2)
wenzelm@23389
   437
      show "y \<in> B" by fact
paulson@14365
   438
    qed
paulson@14365
   439
  next
paulson@14365
   440
    show "z/y \<in> A"
paulson@14365
   441
    proof (rule preal_downwards_closed [OF A x])
paulson@14365
   442
      show "0 < z/y"
paulson@14365
   443
	by (simp add: zero_less_divide_iff)
paulson@14365
   444
      show "z/y < x" by (simp add: pos_divide_less_eq zless)
paulson@14365
   445
    qed
paulson@14365
   446
  qed
paulson@14365
   447
qed
paulson@14365
   448
paulson@14365
   449
text{*Part 4 of Dedekind sections definition*}
paulson@14365
   450
lemma mult_set_lemma4:
paulson@14365
   451
     "[|A \<in> preal; B \<in> preal; y \<in> mult_set A B|] ==> \<exists>u \<in> mult_set A B. y < u"
paulson@14365
   452
apply (auto simp add: mult_set_def)
paulson@14365
   453
apply (frule preal_exists_greater [of A], auto) 
paulson@14365
   454
apply (rule_tac x="u * y" in exI)
paulson@14365
   455
apply (auto intro: preal_imp_pos [of A] preal_imp_pos [of B] 
paulson@14365
   456
                   mult_strict_right_mono)
paulson@14335
   457
done
paulson@14335
   458
paulson@14335
   459
paulson@14365
   460
lemma mem_mult_set:
paulson@14365
   461
     "[|A \<in> preal; B \<in> preal|] ==> mult_set A B \<in> preal"
paulson@14365
   462
apply (simp (no_asm_simp) add: preal_def cut_def)
paulson@14365
   463
apply (blast intro!: mult_set_not_empty mult_set_not_rat_set
paulson@14365
   464
                     mult_set_lemma3 mult_set_lemma4)
paulson@14335
   465
done
paulson@14335
   466
paulson@14335
   467
lemma preal_mult_assoc: "((x::preal) * y) * z = x * (y * z)"
paulson@14365
   468
apply (simp add: preal_mult_def mem_mult_set Rep_preal)
paulson@14365
   469
apply (force simp add: mult_set_def mult_ac)
paulson@14335
   470
done
paulson@14335
   471
huffman@23287
   472
instance preal :: ab_semigroup_mult
huffman@23287
   473
proof
huffman@23287
   474
  fix a b c :: preal
huffman@23287
   475
  show "(a * b) * c = a * (b * c)" by (rule preal_mult_assoc)
huffman@23287
   476
  show "a * b = b * a" by (rule preal_mult_commute)
huffman@23287
   477
qed
huffman@23287
   478
paulson@14335
   479
lemma preal_mult_left_commute: "x * (y * z) = y * ((x * z)::preal)"
huffman@23287
   480
by (rule mult_left_commute)
paulson@14335
   481
paulson@14365
   482
paulson@14365
   483
text{* Positive Real multiplication is an AC operator *}
paulson@14335
   484
lemmas preal_mult_ac =
paulson@14335
   485
       preal_mult_assoc preal_mult_commute preal_mult_left_commute
paulson@14335
   486
paulson@14365
   487
paulson@14365
   488
text{* Positive real 1 is the multiplicative identity element *}
paulson@14365
   489
huffman@23287
   490
lemma preal_mult_1: "(1::preal) * z = z"
huffman@23287
   491
unfolding preal_one_def
paulson@14365
   492
proof (induct z)
paulson@14365
   493
  fix A :: "rat set"
paulson@14365
   494
  assume A: "A \<in> preal"
paulson@14365
   495
  have "{w. \<exists>u. 0 < u \<and> u < 1 & (\<exists>v \<in> A. w = u * v)} = A" (is "?lhs = A")
paulson@14365
   496
  proof
paulson@14365
   497
    show "?lhs \<subseteq> A"
paulson@14365
   498
    proof clarify
paulson@14365
   499
      fix x::rat and u::rat and v::rat
paulson@14365
   500
      assume upos: "0<u" and "u<1" and v: "v \<in> A"
paulson@14365
   501
      have vpos: "0<v" by (rule preal_imp_pos [OF A v])
paulson@14365
   502
      hence "u*v < 1*v" by (simp only: mult_strict_right_mono prems)
paulson@14365
   503
      thus "u * v \<in> A"
avigad@16775
   504
        by (force intro: preal_downwards_closed [OF A v] mult_pos_pos 
avigad@16775
   505
          upos vpos)
paulson@14365
   506
    qed
paulson@14365
   507
  next
paulson@14365
   508
    show "A \<subseteq> ?lhs"
paulson@14365
   509
    proof clarify
paulson@14365
   510
      fix x::rat
paulson@14365
   511
      assume x: "x \<in> A"
paulson@14365
   512
      have xpos: "0<x" by (rule preal_imp_pos [OF A x])
paulson@14365
   513
      from preal_exists_greater [OF A x]
paulson@14365
   514
      obtain v where v: "v \<in> A" and xlessv: "x < v" ..
paulson@14365
   515
      have vpos: "0<v" by (rule preal_imp_pos [OF A v])
paulson@14365
   516
      show "\<exists>u. 0 < u \<and> u < 1 \<and> (\<exists>v\<in>A. x = u * v)"
paulson@14365
   517
      proof (intro exI conjI)
paulson@14365
   518
        show "0 < x/v"
paulson@14365
   519
          by (simp add: zero_less_divide_iff xpos vpos)
paulson@14365
   520
	show "x / v < 1"
paulson@14365
   521
          by (simp add: pos_divide_less_eq vpos xlessv)
paulson@14365
   522
        show "\<exists>v'\<in>A. x = (x / v) * v'"
paulson@14365
   523
        proof
paulson@14365
   524
          show "x = (x/v)*v"
paulson@14430
   525
	    by (simp add: divide_inverse mult_assoc vpos
paulson@14365
   526
                          order_less_imp_not_eq2)
wenzelm@23389
   527
          show "v \<in> A" by fact
paulson@14365
   528
        qed
paulson@14365
   529
      qed
paulson@14365
   530
    qed
paulson@14365
   531
  qed
paulson@14365
   532
  thus "preal_of_rat 1 * Abs_preal A = Abs_preal A"
paulson@14365
   533
    by (simp add: preal_of_rat_def preal_mult_def mult_set_def 
paulson@14365
   534
                  rat_mem_preal A)
paulson@14365
   535
qed
paulson@14365
   536
huffman@23287
   537
instance preal :: comm_monoid_mult
huffman@23287
   538
by intro_classes (rule preal_mult_1)
paulson@14365
   539
huffman@23287
   540
lemma preal_mult_1_right: "z * (1::preal) = z"
huffman@23287
   541
by (rule mult_1_right)
paulson@14335
   542
paulson@14335
   543
paulson@14335
   544
subsection{*Distribution of Multiplication across Addition*}
paulson@14335
   545
paulson@14335
   546
lemma mem_Rep_preal_add_iff:
paulson@14365
   547
      "(z \<in> Rep_preal(R+S)) = (\<exists>x \<in> Rep_preal R. \<exists>y \<in> Rep_preal S. z = x + y)"
paulson@14365
   548
apply (simp add: preal_add_def mem_add_set Rep_preal)
paulson@14365
   549
apply (simp add: add_set_def) 
paulson@14335
   550
done
paulson@14335
   551
paulson@14335
   552
lemma mem_Rep_preal_mult_iff:
paulson@14365
   553
      "(z \<in> Rep_preal(R*S)) = (\<exists>x \<in> Rep_preal R. \<exists>y \<in> Rep_preal S. z = x * y)"
paulson@14365
   554
apply (simp add: preal_mult_def mem_mult_set Rep_preal)
paulson@14365
   555
apply (simp add: mult_set_def) 
paulson@14365
   556
done
paulson@14335
   557
paulson@14365
   558
lemma distrib_subset1:
paulson@14365
   559
     "Rep_preal (w * (x + y)) \<subseteq> Rep_preal (w * x + w * y)"
paulson@14365
   560
apply (auto simp add: Bex_def mem_Rep_preal_add_iff mem_Rep_preal_mult_iff)
paulson@14365
   561
apply (force simp add: right_distrib)
paulson@14335
   562
done
paulson@14335
   563
paulson@14365
   564
lemma preal_add_mult_distrib_mean:
paulson@14365
   565
  assumes a: "a \<in> Rep_preal w"
wenzelm@19765
   566
    and b: "b \<in> Rep_preal w"
wenzelm@19765
   567
    and d: "d \<in> Rep_preal x"
wenzelm@19765
   568
    and e: "e \<in> Rep_preal y"
wenzelm@19765
   569
  shows "\<exists>c \<in> Rep_preal w. a * d + b * e = c * (d + e)"
paulson@14365
   570
proof
paulson@14365
   571
  let ?c = "(a*d + b*e)/(d+e)"
paulson@14365
   572
  have [simp]: "0<a" "0<b" "0<d" "0<e" "0<d+e"
paulson@14365
   573
    by (blast intro: preal_imp_pos [OF Rep_preal] a b d e pos_add_strict)+
paulson@14365
   574
  have cpos: "0 < ?c"
paulson@14365
   575
    by (simp add: zero_less_divide_iff zero_less_mult_iff pos_add_strict)
paulson@14365
   576
  show "a * d + b * e = ?c * (d + e)"
paulson@14430
   577
    by (simp add: divide_inverse mult_assoc order_less_imp_not_eq2)
paulson@14365
   578
  show "?c \<in> Rep_preal w"
huffman@20495
   579
  proof (cases rule: linorder_le_cases)
huffman@20495
   580
    assume "a \<le> b"
huffman@20495
   581
    hence "?c \<le> b"
huffman@20495
   582
      by (simp add: pos_divide_le_eq right_distrib mult_right_mono
huffman@20495
   583
                    order_less_imp_le)
huffman@20495
   584
    thus ?thesis by (rule preal_downwards_closed' [OF Rep_preal b cpos])
huffman@20495
   585
  next
huffman@20495
   586
    assume "b \<le> a"
huffman@20495
   587
    hence "?c \<le> a"
huffman@20495
   588
      by (simp add: pos_divide_le_eq right_distrib mult_right_mono
huffman@20495
   589
                    order_less_imp_le)
huffman@20495
   590
    thus ?thesis by (rule preal_downwards_closed' [OF Rep_preal a cpos])
paulson@14365
   591
  qed
huffman@20495
   592
qed
paulson@14365
   593
paulson@14365
   594
lemma distrib_subset2:
paulson@14365
   595
     "Rep_preal (w * x + w * y) \<subseteq> Rep_preal (w * (x + y))"
paulson@14365
   596
apply (auto simp add: Bex_def mem_Rep_preal_add_iff mem_Rep_preal_mult_iff)
paulson@14365
   597
apply (drule_tac w=w and x=x and y=y in preal_add_mult_distrib_mean, auto)
paulson@14335
   598
done
paulson@14335
   599
paulson@14365
   600
lemma preal_add_mult_distrib2: "(w * ((x::preal) + y)) = (w * x) + (w * y)"
paulson@15413
   601
apply (rule Rep_preal_inject [THEN iffD1])
paulson@14365
   602
apply (rule equalityI [OF distrib_subset1 distrib_subset2])
paulson@14335
   603
done
paulson@14335
   604
paulson@14365
   605
lemma preal_add_mult_distrib: "(((x::preal) + y) * w) = (x * w) + (y * w)"
paulson@14365
   606
by (simp add: preal_mult_commute preal_add_mult_distrib2)
paulson@14365
   607
huffman@23287
   608
instance preal :: comm_semiring
huffman@23287
   609
by intro_classes (rule preal_add_mult_distrib)
huffman@23287
   610
paulson@14335
   611
paulson@14335
   612
subsection{*Existence of Inverse, a Positive Real*}
paulson@14335
   613
paulson@14365
   614
lemma mem_inv_set_ex:
paulson@14365
   615
  assumes A: "A \<in> preal" shows "\<exists>x y. 0 < x & x < y & inverse y \<notin> A"
paulson@14365
   616
proof -
paulson@14365
   617
  from preal_exists_bound [OF A]
paulson@14365
   618
  obtain x where [simp]: "0<x" "x \<notin> A" by blast
paulson@14365
   619
  show ?thesis
paulson@14365
   620
  proof (intro exI conjI)
paulson@14365
   621
    show "0 < inverse (x+1)"
paulson@14365
   622
      by (simp add: order_less_trans [OF _ less_add_one]) 
paulson@14365
   623
    show "inverse(x+1) < inverse x"
paulson@14365
   624
      by (simp add: less_imp_inverse_less less_add_one)
paulson@14365
   625
    show "inverse (inverse x) \<notin> A"
paulson@14365
   626
      by (simp add: order_less_imp_not_eq2)
paulson@14365
   627
  qed
paulson@14365
   628
qed
paulson@14335
   629
paulson@14335
   630
text{*Part 1 of Dedekind sections definition*}
paulson@14365
   631
lemma inverse_set_not_empty:
paulson@14365
   632
     "A \<in> preal ==> {} \<subset> inverse_set A"
paulson@14365
   633
apply (insert mem_inv_set_ex [of A])
paulson@14365
   634
apply (auto simp add: inverse_set_def)
paulson@14335
   635
done
paulson@14335
   636
paulson@14335
   637
text{*Part 2 of Dedekind sections definition*}
paulson@14335
   638
paulson@14365
   639
lemma preal_not_mem_inverse_set_Ex:
paulson@14365
   640
   assumes A: "A \<in> preal"  shows "\<exists>q. 0 < q & q \<notin> inverse_set A"
paulson@14365
   641
proof -
paulson@14365
   642
  from preal_nonempty [OF A]
paulson@14365
   643
  obtain x where x: "x \<in> A" and  xpos [simp]: "0<x" ..
paulson@14365
   644
  show ?thesis
paulson@14365
   645
  proof (intro exI conjI)
paulson@14365
   646
    show "0 < inverse x" by simp
paulson@14365
   647
    show "inverse x \<notin> inverse_set A"
paulson@14377
   648
    proof -
paulson@14377
   649
      { fix y::rat 
paulson@14377
   650
	assume ygt: "inverse x < y"
paulson@14377
   651
	have [simp]: "0 < y" by (simp add: order_less_trans [OF _ ygt])
paulson@14377
   652
	have iyless: "inverse y < x" 
paulson@14377
   653
	  by (simp add: inverse_less_imp_less [of x] ygt)
paulson@14377
   654
	have "inverse y \<in> A"
paulson@14377
   655
	  by (simp add: preal_downwards_closed [OF A x] iyless)}
paulson@14377
   656
     thus ?thesis by (auto simp add: inverse_set_def)
paulson@14365
   657
    qed
paulson@14365
   658
  qed
paulson@14365
   659
qed
paulson@14335
   660
paulson@14365
   661
lemma inverse_set_not_rat_set:
paulson@14365
   662
   assumes A: "A \<in> preal"  shows "inverse_set A < {r. 0 < r}"
paulson@14365
   663
proof
paulson@14365
   664
  show "inverse_set A \<subseteq> {r. 0 < r}"  by (force simp add: inverse_set_def)
paulson@14365
   665
next
paulson@14365
   666
  show "inverse_set A \<noteq> {r. 0 < r}"
paulson@14365
   667
    by (insert preal_not_mem_inverse_set_Ex [OF A], blast)
paulson@14365
   668
qed
paulson@14335
   669
paulson@14335
   670
text{*Part 3 of Dedekind sections definition*}
paulson@14365
   671
lemma inverse_set_lemma3:
paulson@14365
   672
     "[|A \<in> preal; u \<in> inverse_set A; 0 < z; z < u|] 
paulson@14365
   673
      ==> z \<in> inverse_set A"
paulson@14365
   674
apply (auto simp add: inverse_set_def)
paulson@14365
   675
apply (auto intro: order_less_trans)
paulson@14335
   676
done
paulson@14335
   677
paulson@14365
   678
text{*Part 4 of Dedekind sections definition*}
paulson@14365
   679
lemma inverse_set_lemma4:
paulson@14365
   680
     "[|A \<in> preal; y \<in> inverse_set A|] ==> \<exists>u \<in> inverse_set A. y < u"
paulson@14365
   681
apply (auto simp add: inverse_set_def)
paulson@14365
   682
apply (drule dense [of y]) 
paulson@14365
   683
apply (blast intro: order_less_trans)
paulson@14335
   684
done
paulson@14335
   685
paulson@14365
   686
paulson@14365
   687
lemma mem_inverse_set:
paulson@14365
   688
     "A \<in> preal ==> inverse_set A \<in> preal"
paulson@14365
   689
apply (simp (no_asm_simp) add: preal_def cut_def)
paulson@14365
   690
apply (blast intro!: inverse_set_not_empty inverse_set_not_rat_set
paulson@14365
   691
                     inverse_set_lemma3 inverse_set_lemma4)
paulson@14335
   692
done
paulson@14335
   693
paulson@14365
   694
paulson@14335
   695
subsection{*Gleason's Lemma 9-3.4, page 122*}
paulson@14335
   696
paulson@14365
   697
lemma Gleason9_34_exists:
paulson@14365
   698
  assumes A: "A \<in> preal"
wenzelm@19765
   699
    and "\<forall>x\<in>A. x + u \<in> A"
wenzelm@19765
   700
    and "0 \<le> z"
wenzelm@19765
   701
  shows "\<exists>b\<in>A. b + (of_int z) * u \<in> A"
paulson@14369
   702
proof (cases z rule: int_cases)
paulson@14369
   703
  case (nonneg n)
paulson@14365
   704
  show ?thesis
paulson@14365
   705
  proof (simp add: prems, induct n)
paulson@14365
   706
    case 0
paulson@14365
   707
      from preal_nonempty [OF A]
paulson@14365
   708
      show ?case  by force 
paulson@14365
   709
    case (Suc k)
paulson@15013
   710
      from this obtain b where "b \<in> A" "b + of_nat k * u \<in> A" ..
paulson@14378
   711
      hence "b + of_int (int k)*u + u \<in> A" by (simp add: prems)
paulson@14365
   712
      thus ?case by (force simp add: left_distrib add_ac prems) 
paulson@14365
   713
  qed
paulson@14365
   714
next
paulson@14369
   715
  case (neg n)
paulson@14369
   716
  with prems show ?thesis by simp
paulson@14365
   717
qed
paulson@14365
   718
paulson@14365
   719
lemma Gleason9_34_contra:
paulson@14365
   720
  assumes A: "A \<in> preal"
paulson@14365
   721
    shows "[|\<forall>x\<in>A. x + u \<in> A; 0 < u; 0 < y; y \<notin> A|] ==> False"
paulson@14365
   722
proof (induct u, induct y)
paulson@14365
   723
  fix a::int and b::int
paulson@14365
   724
  fix c::int and d::int
paulson@14365
   725
  assume bpos [simp]: "0 < b"
wenzelm@19765
   726
    and dpos [simp]: "0 < d"
wenzelm@19765
   727
    and closed: "\<forall>x\<in>A. x + (Fract c d) \<in> A"
wenzelm@19765
   728
    and upos: "0 < Fract c d"
wenzelm@19765
   729
    and ypos: "0 < Fract a b"
wenzelm@19765
   730
    and notin: "Fract a b \<notin> A"
paulson@14365
   731
  have cpos [simp]: "0 < c" 
paulson@14365
   732
    by (simp add: zero_less_Fract_iff [OF dpos, symmetric] upos) 
paulson@14365
   733
  have apos [simp]: "0 < a" 
paulson@14365
   734
    by (simp add: zero_less_Fract_iff [OF bpos, symmetric] ypos) 
paulson@14365
   735
  let ?k = "a*d"
paulson@14378
   736
  have frle: "Fract a b \<le> Fract ?k 1 * (Fract c d)" 
paulson@14365
   737
  proof -
paulson@14365
   738
    have "?thesis = ((a * d * b * d) \<le> c * b * (a * d * b * d))"
paulson@14378
   739
      by (simp add: mult_rat le_rat order_less_imp_not_eq2 mult_ac) 
paulson@14365
   740
    moreover
paulson@14365
   741
    have "(1 * (a * d * b * d)) \<le> c * b * (a * d * b * d)"
paulson@14365
   742
      by (rule mult_mono, 
paulson@14365
   743
          simp_all add: int_one_le_iff_zero_less zero_less_mult_iff 
paulson@14365
   744
                        order_less_imp_le)
paulson@14365
   745
    ultimately
paulson@14365
   746
    show ?thesis by simp
paulson@14365
   747
  qed
paulson@14365
   748
  have k: "0 \<le> ?k" by (simp add: order_less_imp_le zero_less_mult_iff)  
paulson@14365
   749
  from Gleason9_34_exists [OF A closed k]
paulson@14365
   750
  obtain z where z: "z \<in> A" 
paulson@14378
   751
             and mem: "z + of_int ?k * Fract c d \<in> A" ..
paulson@14378
   752
  have less: "z + of_int ?k * Fract c d < Fract a b"
paulson@14365
   753
    by (rule not_in_preal_ub [OF A notin mem ypos])
paulson@14365
   754
  have "0<z" by (rule preal_imp_pos [OF A z])
paulson@14378
   755
  with frle and less show False by (simp add: Fract_of_int_eq) 
paulson@14365
   756
qed
paulson@14335
   757
paulson@14335
   758
paulson@14365
   759
lemma Gleason9_34:
paulson@14365
   760
  assumes A: "A \<in> preal"
wenzelm@19765
   761
    and upos: "0 < u"
wenzelm@19765
   762
  shows "\<exists>r \<in> A. r + u \<notin> A"
paulson@14365
   763
proof (rule ccontr, simp)
paulson@14365
   764
  assume closed: "\<forall>r\<in>A. r + u \<in> A"
paulson@14365
   765
  from preal_exists_bound [OF A]
paulson@14365
   766
  obtain y where y: "y \<notin> A" and ypos: "0 < y" by blast
paulson@14365
   767
  show False
paulson@14365
   768
    by (rule Gleason9_34_contra [OF A closed upos ypos y])
paulson@14365
   769
qed
paulson@14365
   770
paulson@14335
   771
paulson@14335
   772
paulson@14335
   773
subsection{*Gleason's Lemma 9-3.6*}
paulson@14335
   774
paulson@14365
   775
lemma lemma_gleason9_36:
paulson@14365
   776
  assumes A: "A \<in> preal"
wenzelm@19765
   777
    and x: "1 < x"
wenzelm@19765
   778
  shows "\<exists>r \<in> A. r*x \<notin> A"
paulson@14365
   779
proof -
paulson@14365
   780
  from preal_nonempty [OF A]
paulson@14365
   781
  obtain y where y: "y \<in> A" and  ypos: "0<y" ..
paulson@14365
   782
  show ?thesis 
paulson@14365
   783
  proof (rule classical)
paulson@14365
   784
    assume "~(\<exists>r\<in>A. r * x \<notin> A)"
paulson@14365
   785
    with y have ymem: "y * x \<in> A" by blast 
paulson@14365
   786
    from ypos mult_strict_left_mono [OF x]
paulson@14365
   787
    have yless: "y < y*x" by simp 
paulson@14365
   788
    let ?d = "y*x - y"
paulson@14365
   789
    from yless have dpos: "0 < ?d" and eq: "y + ?d = y*x" by auto
paulson@14365
   790
    from Gleason9_34 [OF A dpos]
paulson@14365
   791
    obtain r where r: "r\<in>A" and notin: "r + ?d \<notin> A" ..
paulson@14365
   792
    have rpos: "0<r" by (rule preal_imp_pos [OF A r])
paulson@14365
   793
    with dpos have rdpos: "0 < r + ?d" by arith
paulson@14365
   794
    have "~ (r + ?d \<le> y + ?d)"
paulson@14365
   795
    proof
paulson@14365
   796
      assume le: "r + ?d \<le> y + ?d" 
paulson@14365
   797
      from ymem have yd: "y + ?d \<in> A" by (simp add: eq)
paulson@14365
   798
      have "r + ?d \<in> A" by (rule preal_downwards_closed' [OF A yd rdpos le])
paulson@14365
   799
      with notin show False by simp
paulson@14365
   800
    qed
paulson@14365
   801
    hence "y < r" by simp
paulson@14365
   802
    with ypos have  dless: "?d < (r * ?d)/y"
paulson@14365
   803
      by (simp add: pos_less_divide_eq mult_commute [of ?d]
paulson@14365
   804
                    mult_strict_right_mono dpos)
paulson@14365
   805
    have "r + ?d < r*x"
paulson@14365
   806
    proof -
paulson@14365
   807
      have "r + ?d < r + (r * ?d)/y" by (simp add: dless)
paulson@14365
   808
      also with ypos have "... = (r/y) * (y + ?d)"
paulson@14430
   809
	by (simp only: right_distrib divide_inverse mult_ac, simp)
paulson@14365
   810
      also have "... = r*x" using ypos
paulson@15234
   811
	by (simp add: times_divide_eq_left) 
paulson@14365
   812
      finally show "r + ?d < r*x" .
paulson@14365
   813
    qed
paulson@14365
   814
    with r notin rdpos
paulson@14365
   815
    show "\<exists>r\<in>A. r * x \<notin> A" by (blast dest:  preal_downwards_closed [OF A])
paulson@14365
   816
  qed  
paulson@14365
   817
qed
paulson@14335
   818
paulson@14365
   819
subsection{*Existence of Inverse: Part 2*}
paulson@14365
   820
paulson@14365
   821
lemma mem_Rep_preal_inverse_iff:
paulson@14365
   822
      "(z \<in> Rep_preal(inverse R)) = 
paulson@14365
   823
       (0 < z \<and> (\<exists>y. z < y \<and> inverse y \<notin> Rep_preal R))"
paulson@14365
   824
apply (simp add: preal_inverse_def mem_inverse_set Rep_preal)
paulson@14365
   825
apply (simp add: inverse_set_def) 
paulson@14335
   826
done
paulson@14335
   827
paulson@14365
   828
lemma Rep_preal_of_rat:
paulson@14365
   829
     "0 < q ==> Rep_preal (preal_of_rat q) = {x. 0 < x \<and> x < q}"
paulson@14365
   830
by (simp add: preal_of_rat_def rat_mem_preal) 
paulson@14365
   831
paulson@14365
   832
lemma subset_inverse_mult_lemma:
wenzelm@19765
   833
  assumes xpos: "0 < x" and xless: "x < 1"
wenzelm@19765
   834
  shows "\<exists>r u y. 0 < r & r < y & inverse y \<notin> Rep_preal R & 
wenzelm@19765
   835
    u \<in> Rep_preal R & x = r * u"
paulson@14365
   836
proof -
paulson@14365
   837
  from xpos and xless have "1 < inverse x" by (simp add: one_less_inverse_iff)
paulson@14365
   838
  from lemma_gleason9_36 [OF Rep_preal this]
paulson@14365
   839
  obtain r where r: "r \<in> Rep_preal R" 
paulson@14365
   840
             and notin: "r * (inverse x) \<notin> Rep_preal R" ..
paulson@14365
   841
  have rpos: "0<r" by (rule preal_imp_pos [OF Rep_preal r])
paulson@14365
   842
  from preal_exists_greater [OF Rep_preal r]
paulson@14365
   843
  obtain u where u: "u \<in> Rep_preal R" and rless: "r < u" ..
paulson@14365
   844
  have upos: "0<u" by (rule preal_imp_pos [OF Rep_preal u])
paulson@14365
   845
  show ?thesis
paulson@14365
   846
  proof (intro exI conjI)
paulson@14365
   847
    show "0 < x/u" using xpos upos
paulson@14365
   848
      by (simp add: zero_less_divide_iff)  
paulson@14365
   849
    show "x/u < x/r" using xpos upos rpos
paulson@14430
   850
      by (simp add: divide_inverse mult_less_cancel_left rless) 
paulson@14365
   851
    show "inverse (x / r) \<notin> Rep_preal R" using notin
paulson@14430
   852
      by (simp add: divide_inverse mult_commute) 
paulson@14365
   853
    show "u \<in> Rep_preal R" by (rule u) 
paulson@14365
   854
    show "x = x / u * u" using upos 
paulson@14430
   855
      by (simp add: divide_inverse mult_commute) 
paulson@14365
   856
  qed
paulson@14365
   857
qed
paulson@14365
   858
paulson@14365
   859
lemma subset_inverse_mult: 
paulson@14365
   860
     "Rep_preal(preal_of_rat 1) \<subseteq> Rep_preal(inverse R * R)"
paulson@14365
   861
apply (auto simp add: Bex_def Rep_preal_of_rat mem_Rep_preal_inverse_iff 
paulson@14365
   862
                      mem_Rep_preal_mult_iff)
paulson@14365
   863
apply (blast dest: subset_inverse_mult_lemma) 
paulson@14335
   864
done
paulson@14335
   865
paulson@14365
   866
lemma inverse_mult_subset_lemma:
wenzelm@19765
   867
  assumes rpos: "0 < r" 
wenzelm@19765
   868
    and rless: "r < y"
wenzelm@19765
   869
    and notin: "inverse y \<notin> Rep_preal R"
wenzelm@19765
   870
    and q: "q \<in> Rep_preal R"
wenzelm@19765
   871
  shows "r*q < 1"
paulson@14365
   872
proof -
paulson@14365
   873
  have "q < inverse y" using rpos rless
paulson@14365
   874
    by (simp add: not_in_preal_ub [OF Rep_preal notin] q)
paulson@14365
   875
  hence "r * q < r/y" using rpos
paulson@14430
   876
    by (simp add: divide_inverse mult_less_cancel_left)
paulson@14365
   877
  also have "... \<le> 1" using rpos rless
paulson@14365
   878
    by (simp add: pos_divide_le_eq)
paulson@14365
   879
  finally show ?thesis .
paulson@14365
   880
qed
paulson@14365
   881
paulson@14365
   882
lemma inverse_mult_subset:
paulson@14365
   883
     "Rep_preal(inverse R * R) \<subseteq> Rep_preal(preal_of_rat 1)"
paulson@14365
   884
apply (auto simp add: Bex_def Rep_preal_of_rat mem_Rep_preal_inverse_iff 
paulson@14365
   885
                      mem_Rep_preal_mult_iff)
paulson@14365
   886
apply (simp add: zero_less_mult_iff preal_imp_pos [OF Rep_preal]) 
paulson@14365
   887
apply (blast intro: inverse_mult_subset_lemma) 
paulson@14365
   888
done
paulson@14365
   889
huffman@23287
   890
lemma preal_mult_inverse: "inverse R * R = (1::preal)"
huffman@23287
   891
unfolding preal_one_def
paulson@15413
   892
apply (rule Rep_preal_inject [THEN iffD1])
paulson@14365
   893
apply (rule equalityI [OF inverse_mult_subset subset_inverse_mult]) 
paulson@14365
   894
done
paulson@14365
   895
huffman@23287
   896
lemma preal_mult_inverse_right: "R * inverse R = (1::preal)"
paulson@14365
   897
apply (rule preal_mult_commute [THEN subst])
paulson@14365
   898
apply (rule preal_mult_inverse)
paulson@14335
   899
done
paulson@14335
   900
paulson@14335
   901
paulson@14365
   902
text{*Theorems needing @{text Gleason9_34}*}
paulson@14335
   903
paulson@14365
   904
lemma Rep_preal_self_subset: "Rep_preal (R) \<subseteq> Rep_preal(R + S)"
paulson@14365
   905
proof 
paulson@14365
   906
  fix r
paulson@14365
   907
  assume r: "r \<in> Rep_preal R"
paulson@14365
   908
  have rpos: "0<r" by (rule preal_imp_pos [OF Rep_preal r])
paulson@14365
   909
  from mem_Rep_preal_Ex 
paulson@14365
   910
  obtain y where y: "y \<in> Rep_preal S" ..
paulson@14365
   911
  have ypos: "0<y" by (rule preal_imp_pos [OF Rep_preal y])
paulson@14365
   912
  have ry: "r+y \<in> Rep_preal(R + S)" using r y
paulson@14365
   913
    by (auto simp add: mem_Rep_preal_add_iff)
paulson@14365
   914
  show "r \<in> Rep_preal(R + S)" using r ypos rpos 
paulson@14365
   915
    by (simp add:  preal_downwards_closed [OF Rep_preal ry]) 
paulson@14365
   916
qed
paulson@14335
   917
paulson@14365
   918
lemma Rep_preal_sum_not_subset: "~ Rep_preal (R + S) \<subseteq> Rep_preal(R)"
paulson@14365
   919
proof -
paulson@14365
   920
  from mem_Rep_preal_Ex 
paulson@14365
   921
  obtain y where y: "y \<in> Rep_preal S" ..
paulson@14365
   922
  have ypos: "0<y" by (rule preal_imp_pos [OF Rep_preal y])
paulson@14365
   923
  from  Gleason9_34 [OF Rep_preal ypos]
paulson@14365
   924
  obtain r where r: "r \<in> Rep_preal R" and notin: "r + y \<notin> Rep_preal R" ..
paulson@14365
   925
  have "r + y \<in> Rep_preal (R + S)" using r y
paulson@14365
   926
    by (auto simp add: mem_Rep_preal_add_iff)
paulson@14365
   927
  thus ?thesis using notin by blast
paulson@14365
   928
qed
paulson@14335
   929
paulson@14365
   930
lemma Rep_preal_sum_not_eq: "Rep_preal (R + S) \<noteq> Rep_preal(R)"
paulson@14365
   931
by (insert Rep_preal_sum_not_subset, blast)
paulson@14335
   932
paulson@14335
   933
text{*at last, Gleason prop. 9-3.5(iii) page 123*}
paulson@14365
   934
lemma preal_self_less_add_left: "(R::preal) < R + S"
paulson@14335
   935
apply (unfold preal_less_def psubset_def)
paulson@14335
   936
apply (simp add: Rep_preal_self_subset Rep_preal_sum_not_eq [THEN not_sym])
paulson@14335
   937
done
paulson@14335
   938
paulson@14365
   939
lemma preal_self_less_add_right: "(R::preal) < S + R"
paulson@14365
   940
by (simp add: preal_add_commute preal_self_less_add_left)
paulson@14365
   941
paulson@14365
   942
lemma preal_not_eq_self: "x \<noteq> x + (y::preal)"
paulson@14365
   943
by (insert preal_self_less_add_left [of x y], auto)
paulson@14335
   944
paulson@14335
   945
paulson@14365
   946
subsection{*Subtraction for Positive Reals*}
paulson@14335
   947
wenzelm@22710
   948
text{*Gleason prop. 9-3.5(iv), page 123: proving @{prop "A < B ==> \<exists>D. A + D =
paulson@14365
   949
B"}. We define the claimed @{term D} and show that it is a positive real*}
paulson@14335
   950
paulson@14335
   951
text{*Part 1 of Dedekind sections definition*}
paulson@14365
   952
lemma diff_set_not_empty:
paulson@14365
   953
     "R < S ==> {} \<subset> diff_set (Rep_preal S) (Rep_preal R)"
paulson@14365
   954
apply (auto simp add: preal_less_def diff_set_def elim!: equalityE) 
paulson@14365
   955
apply (frule_tac x1 = S in Rep_preal [THEN preal_exists_greater])
paulson@14365
   956
apply (drule preal_imp_pos [OF Rep_preal], clarify)
paulson@14365
   957
apply (cut_tac a=x and b=u in add_eq_exists, force) 
paulson@14335
   958
done
paulson@14335
   959
paulson@14335
   960
text{*Part 2 of Dedekind sections definition*}
paulson@14365
   961
lemma diff_set_nonempty:
paulson@14365
   962
     "\<exists>q. 0 < q & q \<notin> diff_set (Rep_preal S) (Rep_preal R)"
paulson@14365
   963
apply (cut_tac X = S in Rep_preal_exists_bound)
paulson@14335
   964
apply (erule exE)
paulson@14335
   965
apply (rule_tac x = x in exI, auto)
paulson@14365
   966
apply (simp add: diff_set_def) 
paulson@14365
   967
apply (auto dest: Rep_preal [THEN preal_downwards_closed])
paulson@14335
   968
done
paulson@14335
   969
paulson@14365
   970
lemma diff_set_not_rat_set:
wenzelm@19765
   971
  "diff_set (Rep_preal S) (Rep_preal R) < {r. 0 < r}" (is "?lhs < ?rhs")
paulson@14365
   972
proof
paulson@14365
   973
  show "?lhs \<subseteq> ?rhs" by (auto simp add: diff_set_def) 
paulson@14365
   974
  show "?lhs \<noteq> ?rhs" using diff_set_nonempty by blast
paulson@14365
   975
qed
paulson@14335
   976
paulson@14335
   977
text{*Part 3 of Dedekind sections definition*}
paulson@14365
   978
lemma diff_set_lemma3:
paulson@14365
   979
     "[|R < S; u \<in> diff_set (Rep_preal S) (Rep_preal R); 0 < z; z < u|] 
paulson@14365
   980
      ==> z \<in> diff_set (Rep_preal S) (Rep_preal R)"
paulson@14365
   981
apply (auto simp add: diff_set_def) 
paulson@14365
   982
apply (rule_tac x=x in exI) 
paulson@14365
   983
apply (drule Rep_preal [THEN preal_downwards_closed], auto)
paulson@14335
   984
done
paulson@14335
   985
paulson@14365
   986
text{*Part 4 of Dedekind sections definition*}
paulson@14365
   987
lemma diff_set_lemma4:
paulson@14365
   988
     "[|R < S; y \<in> diff_set (Rep_preal S) (Rep_preal R)|] 
paulson@14365
   989
      ==> \<exists>u \<in> diff_set (Rep_preal S) (Rep_preal R). y < u"
paulson@14365
   990
apply (auto simp add: diff_set_def) 
paulson@14365
   991
apply (drule Rep_preal [THEN preal_exists_greater], clarify) 
paulson@14365
   992
apply (cut_tac a="x+y" and b=u in add_eq_exists, clarify)  
paulson@14365
   993
apply (rule_tac x="y+xa" in exI) 
paulson@14365
   994
apply (auto simp add: add_ac)
paulson@14335
   995
done
paulson@14335
   996
paulson@14365
   997
lemma mem_diff_set:
paulson@14365
   998
     "R < S ==> diff_set (Rep_preal S) (Rep_preal R) \<in> preal"
paulson@14365
   999
apply (unfold preal_def cut_def)
paulson@14365
  1000
apply (blast intro!: diff_set_not_empty diff_set_not_rat_set
paulson@14365
  1001
                     diff_set_lemma3 diff_set_lemma4)
paulson@14365
  1002
done
paulson@14365
  1003
paulson@14365
  1004
lemma mem_Rep_preal_diff_iff:
paulson@14365
  1005
      "R < S ==>
paulson@14365
  1006
       (z \<in> Rep_preal(S-R)) = 
paulson@14365
  1007
       (\<exists>x. 0 < x & 0 < z & x \<notin> Rep_preal R & x + z \<in> Rep_preal S)"
paulson@14365
  1008
apply (simp add: preal_diff_def mem_diff_set Rep_preal)
paulson@14365
  1009
apply (force simp add: diff_set_def) 
paulson@14335
  1010
done
paulson@14335
  1011
paulson@14365
  1012
paulson@14365
  1013
text{*proving that @{term "R + D \<le> S"}*}
paulson@14365
  1014
paulson@14365
  1015
lemma less_add_left_lemma:
paulson@14365
  1016
  assumes Rless: "R < S"
wenzelm@19765
  1017
    and a: "a \<in> Rep_preal R"
wenzelm@19765
  1018
    and cb: "c + b \<in> Rep_preal S"
wenzelm@19765
  1019
    and "c \<notin> Rep_preal R"
wenzelm@19765
  1020
    and "0 < b"
wenzelm@19765
  1021
    and "0 < c"
paulson@14365
  1022
  shows "a + b \<in> Rep_preal S"
paulson@14365
  1023
proof -
paulson@14365
  1024
  have "0<a" by (rule preal_imp_pos [OF Rep_preal a])
paulson@14365
  1025
  moreover
paulson@14365
  1026
  have "a < c" using prems
paulson@14365
  1027
    by (blast intro: not_in_Rep_preal_ub ) 
paulson@14365
  1028
  ultimately show ?thesis using prems
paulson@14365
  1029
    by (simp add: preal_downwards_closed [OF Rep_preal cb]) 
paulson@14365
  1030
qed
paulson@14365
  1031
paulson@14365
  1032
lemma less_add_left_le1:
paulson@14365
  1033
       "R < (S::preal) ==> R + (S-R) \<le> S"
paulson@14365
  1034
apply (auto simp add: Bex_def preal_le_def mem_Rep_preal_add_iff 
paulson@14365
  1035
                      mem_Rep_preal_diff_iff)
paulson@14365
  1036
apply (blast intro: less_add_left_lemma) 
paulson@14335
  1037
done
paulson@14335
  1038
paulson@14365
  1039
subsection{*proving that @{term "S \<le> R + D"} --- trickier*}
paulson@14335
  1040
paulson@14335
  1041
lemma lemma_sum_mem_Rep_preal_ex:
paulson@14365
  1042
     "x \<in> Rep_preal S ==> \<exists>e. 0 < e & x + e \<in> Rep_preal S"
paulson@14365
  1043
apply (drule Rep_preal [THEN preal_exists_greater], clarify) 
paulson@14365
  1044
apply (cut_tac a=x and b=u in add_eq_exists, auto) 
paulson@14335
  1045
done
paulson@14335
  1046
paulson@14365
  1047
lemma less_add_left_lemma2:
paulson@14365
  1048
  assumes Rless: "R < S"
wenzelm@19765
  1049
    and x:     "x \<in> Rep_preal S"
wenzelm@19765
  1050
    and xnot: "x \<notin>  Rep_preal R"
paulson@14365
  1051
  shows "\<exists>u v z. 0 < v & 0 < z & u \<in> Rep_preal R & z \<notin> Rep_preal R & 
paulson@14365
  1052
                     z + v \<in> Rep_preal S & x = u + v"
paulson@14365
  1053
proof -
paulson@14365
  1054
  have xpos: "0<x" by (rule preal_imp_pos [OF Rep_preal x])
paulson@14365
  1055
  from lemma_sum_mem_Rep_preal_ex [OF x]
paulson@14365
  1056
  obtain e where epos: "0 < e" and xe: "x + e \<in> Rep_preal S" by blast
paulson@14365
  1057
  from  Gleason9_34 [OF Rep_preal epos]
paulson@14365
  1058
  obtain r where r: "r \<in> Rep_preal R" and notin: "r + e \<notin> Rep_preal R" ..
paulson@14365
  1059
  with x xnot xpos have rless: "r < x" by (blast intro: not_in_Rep_preal_ub)
paulson@14365
  1060
  from add_eq_exists [of r x]
paulson@14365
  1061
  obtain y where eq: "x = r+y" by auto
paulson@14365
  1062
  show ?thesis 
paulson@14365
  1063
  proof (intro exI conjI)
paulson@14365
  1064
    show "r \<in> Rep_preal R" by (rule r)
paulson@14365
  1065
    show "r + e \<notin> Rep_preal R" by (rule notin)
paulson@14365
  1066
    show "r + e + y \<in> Rep_preal S" using xe eq by (simp add: add_ac)
paulson@14365
  1067
    show "x = r + y" by (simp add: eq)
paulson@14365
  1068
    show "0 < r + e" using epos preal_imp_pos [OF Rep_preal r]
paulson@14365
  1069
      by simp
paulson@14365
  1070
    show "0 < y" using rless eq by arith
paulson@14365
  1071
  qed
paulson@14365
  1072
qed
paulson@14365
  1073
paulson@14365
  1074
lemma less_add_left_le2: "R < (S::preal) ==> S \<le> R + (S-R)"
paulson@14365
  1075
apply (auto simp add: preal_le_def)
paulson@14365
  1076
apply (case_tac "x \<in> Rep_preal R")
paulson@14365
  1077
apply (cut_tac Rep_preal_self_subset [of R], force)
paulson@14365
  1078
apply (auto simp add: Bex_def mem_Rep_preal_add_iff mem_Rep_preal_diff_iff)
paulson@14365
  1079
apply (blast dest: less_add_left_lemma2)
paulson@14335
  1080
done
paulson@14335
  1081
paulson@14365
  1082
lemma less_add_left: "R < (S::preal) ==> R + (S-R) = S"
paulson@14365
  1083
by (blast intro: preal_le_anti_sym [OF less_add_left_le1 less_add_left_le2])
paulson@14335
  1084
paulson@14365
  1085
lemma less_add_left_Ex: "R < (S::preal) ==> \<exists>D. R + D = S"
paulson@14365
  1086
by (fast dest: less_add_left)
paulson@14335
  1087
paulson@14365
  1088
lemma preal_add_less2_mono1: "R < (S::preal) ==> R + T < S + T"
paulson@14365
  1089
apply (auto dest!: less_add_left_Ex simp add: preal_add_assoc)
paulson@14335
  1090
apply (rule_tac y1 = D in preal_add_commute [THEN subst])
paulson@14335
  1091
apply (auto intro: preal_self_less_add_left simp add: preal_add_assoc [symmetric])
paulson@14335
  1092
done
paulson@14335
  1093
paulson@14365
  1094
lemma preal_add_less2_mono2: "R < (S::preal) ==> T + R < T + S"
paulson@14365
  1095
by (auto intro: preal_add_less2_mono1 simp add: preal_add_commute [of T])
paulson@14335
  1096
paulson@14365
  1097
lemma preal_add_right_less_cancel: "R + T < S + T ==> R < (S::preal)"
paulson@14365
  1098
apply (insert linorder_less_linear [of R S], auto)
paulson@14365
  1099
apply (drule_tac R = S and T = T in preal_add_less2_mono1)
paulson@14365
  1100
apply (blast dest: order_less_trans) 
paulson@14335
  1101
done
paulson@14335
  1102
paulson@14365
  1103
lemma preal_add_left_less_cancel: "T + R < T + S ==> R <  (S::preal)"
paulson@14365
  1104
by (auto elim: preal_add_right_less_cancel simp add: preal_add_commute [of T])
paulson@14335
  1105
paulson@14365
  1106
lemma preal_add_less_cancel_right: "((R::preal) + T < S + T) = (R < S)"
paulson@14335
  1107
by (blast intro: preal_add_less2_mono1 preal_add_right_less_cancel)
paulson@14335
  1108
paulson@14365
  1109
lemma preal_add_less_cancel_left: "(T + (R::preal) < T + S) = (R < S)"
paulson@14335
  1110
by (blast intro: preal_add_less2_mono2 preal_add_left_less_cancel)
paulson@14335
  1111
paulson@14365
  1112
lemma preal_add_le_cancel_right: "((R::preal) + T \<le> S + T) = (R \<le> S)"
paulson@14365
  1113
by (simp add: linorder_not_less [symmetric] preal_add_less_cancel_right) 
paulson@14365
  1114
paulson@14365
  1115
lemma preal_add_le_cancel_left: "(T + (R::preal) \<le> T + S) = (R \<le> S)"
paulson@14365
  1116
by (simp add: linorder_not_less [symmetric] preal_add_less_cancel_left) 
paulson@14365
  1117
paulson@14335
  1118
lemma preal_add_less_mono:
paulson@14335
  1119
     "[| x1 < y1; x2 < y2 |] ==> x1 + x2 < y1 + (y2::preal)"
paulson@14365
  1120
apply (auto dest!: less_add_left_Ex simp add: preal_add_ac)
paulson@14335
  1121
apply (rule preal_add_assoc [THEN subst])
paulson@14335
  1122
apply (rule preal_self_less_add_right)
paulson@14335
  1123
done
paulson@14335
  1124
paulson@14365
  1125
lemma preal_add_right_cancel: "(R::preal) + T = S + T ==> R = S"
paulson@14365
  1126
apply (insert linorder_less_linear [of R S], safe)
paulson@14365
  1127
apply (drule_tac [!] T = T in preal_add_less2_mono1, auto)
paulson@14335
  1128
done
paulson@14335
  1129
paulson@14365
  1130
lemma preal_add_left_cancel: "C + A = C + B ==> A = (B::preal)"
paulson@14335
  1131
by (auto intro: preal_add_right_cancel simp add: preal_add_commute)
paulson@14335
  1132
paulson@14365
  1133
lemma preal_add_left_cancel_iff: "(C + A = C + B) = ((A::preal) = B)"
paulson@14335
  1134
by (fast intro: preal_add_left_cancel)
paulson@14335
  1135
paulson@14365
  1136
lemma preal_add_right_cancel_iff: "(A + C = B + C) = ((A::preal) = B)"
paulson@14335
  1137
by (fast intro: preal_add_right_cancel)
paulson@14335
  1138
paulson@14365
  1139
lemmas preal_cancels =
paulson@14365
  1140
    preal_add_less_cancel_right preal_add_less_cancel_left
paulson@14365
  1141
    preal_add_le_cancel_right preal_add_le_cancel_left
paulson@14365
  1142
    preal_add_left_cancel_iff preal_add_right_cancel_iff
paulson@14335
  1143
huffman@23285
  1144
instance preal :: ordered_cancel_ab_semigroup_add
huffman@23285
  1145
proof
huffman@23285
  1146
  fix a b c :: preal
huffman@23285
  1147
  show "a + b = a + c \<Longrightarrow> b = c" by (rule preal_add_left_cancel)
huffman@23287
  1148
  show "a \<le> b \<Longrightarrow> c + a \<le> c + b" by (simp only: preal_add_le_cancel_left)
huffman@23285
  1149
qed
huffman@23285
  1150
paulson@14335
  1151
paulson@14335
  1152
subsection{*Completeness of type @{typ preal}*}
paulson@14335
  1153
paulson@14335
  1154
text{*Prove that supremum is a cut*}
paulson@14335
  1155
paulson@14365
  1156
text{*Part 1 of Dedekind sections definition*}
paulson@14365
  1157
paulson@14365
  1158
lemma preal_sup_set_not_empty:
paulson@14365
  1159
     "P \<noteq> {} ==> {} \<subset> (\<Union>X \<in> P. Rep_preal(X))"
paulson@14365
  1160
apply auto
paulson@14365
  1161
apply (cut_tac X = x in mem_Rep_preal_Ex, auto)
paulson@14335
  1162
done
paulson@14335
  1163
paulson@14335
  1164
paulson@14335
  1165
text{*Part 2 of Dedekind sections definition*}
paulson@14365
  1166
paulson@14365
  1167
lemma preal_sup_not_exists:
paulson@14365
  1168
     "\<forall>X \<in> P. X \<le> Y ==> \<exists>q. 0 < q & q \<notin> (\<Union>X \<in> P. Rep_preal(X))"
paulson@14365
  1169
apply (cut_tac X = Y in Rep_preal_exists_bound)
paulson@14365
  1170
apply (auto simp add: preal_le_def)
paulson@14335
  1171
done
paulson@14335
  1172
paulson@14365
  1173
lemma preal_sup_set_not_rat_set:
paulson@14365
  1174
     "\<forall>X \<in> P. X \<le> Y ==> (\<Union>X \<in> P. Rep_preal(X)) < {r. 0 < r}"
paulson@14365
  1175
apply (drule preal_sup_not_exists)
paulson@14365
  1176
apply (blast intro: preal_imp_pos [OF Rep_preal])  
paulson@14335
  1177
done
paulson@14335
  1178
paulson@14335
  1179
text{*Part 3 of Dedekind sections definition*}
paulson@14335
  1180
lemma preal_sup_set_lemma3:
paulson@14365
  1181
     "[|P \<noteq> {}; \<forall>X \<in> P. X \<le> Y; u \<in> (\<Union>X \<in> P. Rep_preal(X)); 0 < z; z < u|]
paulson@14365
  1182
      ==> z \<in> (\<Union>X \<in> P. Rep_preal(X))"
paulson@14365
  1183
by (auto elim: Rep_preal [THEN preal_downwards_closed])
paulson@14335
  1184
paulson@14365
  1185
text{*Part 4 of Dedekind sections definition*}
paulson@14335
  1186
lemma preal_sup_set_lemma4:
paulson@14365
  1187
     "[|P \<noteq> {}; \<forall>X \<in> P. X \<le> Y; y \<in> (\<Union>X \<in> P. Rep_preal(X)) |]
paulson@14365
  1188
          ==> \<exists>u \<in> (\<Union>X \<in> P. Rep_preal(X)). y < u"
paulson@14365
  1189
by (blast dest: Rep_preal [THEN preal_exists_greater])
paulson@14335
  1190
paulson@14335
  1191
lemma preal_sup:
paulson@14365
  1192
     "[|P \<noteq> {}; \<forall>X \<in> P. X \<le> Y|] ==> (\<Union>X \<in> P. Rep_preal(X)) \<in> preal"
paulson@14365
  1193
apply (unfold preal_def cut_def)
paulson@14365
  1194
apply (blast intro!: preal_sup_set_not_empty preal_sup_set_not_rat_set
paulson@14365
  1195
                     preal_sup_set_lemma3 preal_sup_set_lemma4)
paulson@14335
  1196
done
paulson@14335
  1197
paulson@14365
  1198
lemma preal_psup_le:
paulson@14365
  1199
     "[| \<forall>X \<in> P. X \<le> Y;  x \<in> P |] ==> x \<le> psup P"
paulson@14365
  1200
apply (simp (no_asm_simp) add: preal_le_def) 
paulson@14365
  1201
apply (subgoal_tac "P \<noteq> {}") 
paulson@14365
  1202
apply (auto simp add: psup_def preal_sup) 
paulson@14335
  1203
done
paulson@14335
  1204
paulson@14365
  1205
lemma psup_le_ub: "[| P \<noteq> {}; \<forall>X \<in> P. X \<le> Y |] ==> psup P \<le> Y"
paulson@14365
  1206
apply (simp (no_asm_simp) add: preal_le_def)
paulson@14365
  1207
apply (simp add: psup_def preal_sup) 
paulson@14335
  1208
apply (auto simp add: preal_le_def)
paulson@14335
  1209
done
paulson@14335
  1210
paulson@14335
  1211
text{*Supremum property*}
paulson@14335
  1212
lemma preal_complete:
paulson@14365
  1213
     "[| P \<noteq> {}; \<forall>X \<in> P. X \<le> Y |] ==> (\<exists>X \<in> P. Z < X) = (Z < psup P)"
paulson@14365
  1214
apply (simp add: preal_less_def psup_def preal_sup)
paulson@14365
  1215
apply (auto simp add: preal_le_def)
paulson@14365
  1216
apply (rename_tac U) 
paulson@14365
  1217
apply (cut_tac x = U and y = Z in linorder_less_linear)
paulson@14365
  1218
apply (auto simp add: preal_less_def)
paulson@14335
  1219
done
paulson@14335
  1220
paulson@14335
  1221
huffman@20495
  1222
subsection{*The Embedding from @{typ rat} into @{typ preal}*}
paulson@14335
  1223
paulson@14365
  1224
lemma preal_of_rat_add_lemma1:
paulson@14365
  1225
     "[|x < y + z; 0 < x; 0 < y|] ==> x * y * inverse (y + z) < (y::rat)"
paulson@14365
  1226
apply (frule_tac c = "y * inverse (y + z) " in mult_strict_right_mono)
paulson@14365
  1227
apply (simp add: zero_less_mult_iff) 
paulson@14365
  1228
apply (simp add: mult_ac)
paulson@14335
  1229
done
paulson@14335
  1230
paulson@14365
  1231
lemma preal_of_rat_add_lemma2:
paulson@14365
  1232
  assumes "u < x + y"
wenzelm@19765
  1233
    and "0 < x"
wenzelm@19765
  1234
    and "0 < y"
wenzelm@19765
  1235
    and "0 < u"
paulson@14365
  1236
  shows "\<exists>v w::rat. w < y & 0 < v & v < x & 0 < w & u = v + w"
paulson@14365
  1237
proof (intro exI conjI)
paulson@14365
  1238
  show "u * x * inverse(x+y) < x" using prems 
paulson@14365
  1239
    by (simp add: preal_of_rat_add_lemma1) 
paulson@14365
  1240
  show "u * y * inverse(x+y) < y" using prems 
paulson@14365
  1241
    by (simp add: preal_of_rat_add_lemma1 add_commute [of x]) 
paulson@14365
  1242
  show "0 < u * x * inverse (x + y)" using prems
paulson@14365
  1243
    by (simp add: zero_less_mult_iff) 
paulson@14365
  1244
  show "0 < u * y * inverse (x + y)" using prems
paulson@14365
  1245
    by (simp add: zero_less_mult_iff) 
paulson@14365
  1246
  show "u = u * x * inverse (x + y) + u * y * inverse (x + y)" using prems
paulson@14365
  1247
    by (simp add: left_distrib [symmetric] right_distrib [symmetric] mult_ac)
paulson@14365
  1248
qed
paulson@14365
  1249
paulson@14365
  1250
lemma preal_of_rat_add:
paulson@14365
  1251
     "[| 0 < x; 0 < y|] 
paulson@14365
  1252
      ==> preal_of_rat ((x::rat) + y) = preal_of_rat x + preal_of_rat y"
paulson@14365
  1253
apply (unfold preal_of_rat_def preal_add_def)
paulson@14365
  1254
apply (simp add: rat_mem_preal) 
paulson@14335
  1255
apply (rule_tac f = Abs_preal in arg_cong)
paulson@14365
  1256
apply (auto simp add: add_set_def) 
paulson@14365
  1257
apply (blast dest: preal_of_rat_add_lemma2) 
paulson@14365
  1258
done
paulson@14365
  1259
paulson@14365
  1260
lemma preal_of_rat_mult_lemma1:
paulson@14365
  1261
     "[|x < y; 0 < x; 0 < z|] ==> x * z * inverse y < (z::rat)"
paulson@14365
  1262
apply (frule_tac c = "z * inverse y" in mult_strict_right_mono)
paulson@14365
  1263
apply (simp add: zero_less_mult_iff)
paulson@14365
  1264
apply (subgoal_tac "y * (z * inverse y) = z * (y * inverse y)")
paulson@14365
  1265
apply (simp_all add: mult_ac)
paulson@14335
  1266
done
paulson@14335
  1267
paulson@14365
  1268
lemma preal_of_rat_mult_lemma2: 
paulson@14365
  1269
  assumes xless: "x < y * z"
wenzelm@19765
  1270
    and xpos: "0 < x"
wenzelm@19765
  1271
    and ypos: "0 < y"
paulson@14365
  1272
  shows "x * z * inverse y * inverse z < (z::rat)"
paulson@14365
  1273
proof -
paulson@14365
  1274
  have "0 < y * z" using prems by simp
paulson@14365
  1275
  hence zpos:  "0 < z" using prems by (simp add: zero_less_mult_iff)
paulson@14365
  1276
  have "x * z * inverse y * inverse z = x * inverse y * (z * inverse z)"
paulson@14365
  1277
    by (simp add: mult_ac)
paulson@14365
  1278
  also have "... = x/y" using zpos
paulson@14430
  1279
    by (simp add: divide_inverse)
wenzelm@23389
  1280
  also from xless have "... < z"
wenzelm@23389
  1281
    by (simp add: pos_divide_less_eq [OF ypos] mult_commute)
paulson@14365
  1282
  finally show ?thesis .
paulson@14365
  1283
qed
paulson@14335
  1284
paulson@14365
  1285
lemma preal_of_rat_mult_lemma3:
paulson@14365
  1286
  assumes uless: "u < x * y"
wenzelm@19765
  1287
    and "0 < x"
wenzelm@19765
  1288
    and "0 < y"
wenzelm@19765
  1289
    and "0 < u"
paulson@14365
  1290
  shows "\<exists>v w::rat. v < x & w < y & 0 < v & 0 < w & u = v * w"
paulson@14365
  1291
proof -
paulson@14365
  1292
  from dense [OF uless] 
paulson@14365
  1293
  obtain r where "u < r" "r < x * y" by blast
paulson@14365
  1294
  thus ?thesis
paulson@14365
  1295
  proof (intro exI conjI)
paulson@14365
  1296
  show "u * x * inverse r < x" using prems 
paulson@14365
  1297
    by (simp add: preal_of_rat_mult_lemma1) 
paulson@14365
  1298
  show "r * y * inverse x * inverse y < y" using prems
paulson@14365
  1299
    by (simp add: preal_of_rat_mult_lemma2)
paulson@14365
  1300
  show "0 < u * x * inverse r" using prems
paulson@14365
  1301
    by (simp add: zero_less_mult_iff) 
paulson@14365
  1302
  show "0 < r * y * inverse x * inverse y" using prems
paulson@14365
  1303
    by (simp add: zero_less_mult_iff) 
paulson@14365
  1304
  have "u * x * inverse r * (r * y * inverse x * inverse y) =
paulson@14365
  1305
        u * (r * inverse r) * (x * inverse x) * (y * inverse y)"
paulson@14365
  1306
    by (simp only: mult_ac)
paulson@14365
  1307
  thus "u = u * x * inverse r * (r * y * inverse x * inverse y)" using prems
paulson@14365
  1308
    by simp
paulson@14365
  1309
  qed
paulson@14365
  1310
qed
paulson@14365
  1311
paulson@14365
  1312
lemma preal_of_rat_mult:
paulson@14365
  1313
     "[| 0 < x; 0 < y|] 
paulson@14365
  1314
      ==> preal_of_rat ((x::rat) * y) = preal_of_rat x * preal_of_rat y"
paulson@14365
  1315
apply (unfold preal_of_rat_def preal_mult_def)
paulson@14365
  1316
apply (simp add: rat_mem_preal) 
paulson@14365
  1317
apply (rule_tac f = Abs_preal in arg_cong)
paulson@14365
  1318
apply (auto simp add: zero_less_mult_iff mult_strict_mono mult_set_def) 
paulson@14365
  1319
apply (blast dest: preal_of_rat_mult_lemma3) 
paulson@14335
  1320
done
paulson@14335
  1321
paulson@14365
  1322
lemma preal_of_rat_less_iff:
paulson@14365
  1323
      "[| 0 < x; 0 < y|] ==> (preal_of_rat x < preal_of_rat y) = (x < y)"
paulson@14365
  1324
by (force simp add: preal_of_rat_def preal_less_def rat_mem_preal) 
paulson@14335
  1325
paulson@14365
  1326
lemma preal_of_rat_le_iff:
paulson@14365
  1327
      "[| 0 < x; 0 < y|] ==> (preal_of_rat x \<le> preal_of_rat y) = (x \<le> y)"
paulson@14365
  1328
by (simp add: preal_of_rat_less_iff linorder_not_less [symmetric]) 
paulson@14365
  1329
paulson@14365
  1330
lemma preal_of_rat_eq_iff:
paulson@14365
  1331
      "[| 0 < x; 0 < y|] ==> (preal_of_rat x = preal_of_rat y) = (x = y)"
paulson@14365
  1332
by (simp add: preal_of_rat_le_iff order_eq_iff) 
paulson@14335
  1333
paulson@5078
  1334
end