src/ZF/Finite.thy
author wenzelm
Sun Nov 09 17:04:14 2014 +0100 (2014-11-09)
changeset 58957 c9e744ea8a38
parent 58871 c399ae4b836f
child 60770 240563fbf41d
permissions -rw-r--r--
proper context for match_tac etc.;
clasohm@1478
     1
(*  Title:      ZF/Finite.thy
clasohm@1478
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
lcp@516
     3
    Copyright   1994  University of Cambridge
lcp@516
     4
paulson@46953
     5
prove:  b \<in> Fin(A) ==> inj(b,b) \<subseteq> surj(b,b)
lcp@516
     6
*)
lcp@516
     7
wenzelm@58871
     8
section{*Finite Powerset Operator and Finite Function Space*}
paulson@13328
     9
krauss@26056
    10
theory Finite imports Inductive_ZF Epsilon Nat_ZF begin
paulson@9491
    11
paulson@9491
    12
(*The natural numbers as a datatype*)
paulson@13194
    13
rep_datatype
paulson@13194
    14
  elimination    natE
wenzelm@32960
    15
  induction      nat_induct
wenzelm@32960
    16
  case_eqns      nat_case_0 nat_case_succ
paulson@13194
    17
  recursor_eqns  recursor_0 recursor_succ
paulson@9491
    18
paulson@9491
    19
lcp@534
    20
consts
paulson@13194
    21
  Fin       :: "i=>i"
paulson@13194
    22
  FiniteFun :: "[i,i]=>i"         ("(_ -||>/ _)" [61, 60] 60)
lcp@534
    23
lcp@516
    24
inductive
paulson@46820
    25
  domains   "Fin(A)" \<subseteq> "Pow(A)"
paulson@13194
    26
  intros
paulson@46820
    27
    emptyI:  "0 \<in> Fin(A)"
paulson@46953
    28
    consI:   "[| a \<in> A;  b \<in> Fin(A) |] ==> cons(a,b) \<in> Fin(A)"
paulson@13194
    29
  type_intros  empty_subsetI cons_subsetI PowI
wenzelm@46471
    30
  type_elims   PowD [elim_format]
lcp@534
    31
lcp@534
    32
inductive
paulson@46820
    33
  domains   "FiniteFun(A,B)" \<subseteq> "Fin(A*B)"
paulson@13194
    34
  intros
paulson@46820
    35
    emptyI:  "0 \<in> A -||> B"
paulson@46953
    36
    consI:   "[| a \<in> A;  b \<in> B;  h \<in> A -||> B;  a \<notin> domain(h) |]
paulson@46820
    37
              ==> cons(<a,b>,h) \<in> A -||> B"
paulson@13194
    38
  type_intros Fin.intros
paulson@13194
    39
paulson@13194
    40
paulson@13356
    41
subsection {* Finite Powerset Operator *}
paulson@13194
    42
paulson@46820
    43
lemma Fin_mono: "A<=B ==> Fin(A) \<subseteq> Fin(B)"
paulson@13194
    44
apply (unfold Fin.defs)
paulson@13194
    45
apply (rule lfp_mono)
paulson@13194
    46
apply (rule Fin.bnd_mono)+
paulson@13194
    47
apply blast
paulson@13194
    48
done
paulson@13194
    49
paulson@46820
    50
(* @{term"A \<in> Fin(B) ==> A \<subseteq> B"} *)
wenzelm@45602
    51
lemmas FinD = Fin.dom_subset [THEN subsetD, THEN PowD]
paulson@13194
    52
paulson@13194
    53
(** Induction on finite sets **)
paulson@13194
    54
paulson@46820
    55
(*Discharging @{term"x\<notin>y"} entails extra work*)
wenzelm@13524
    56
lemma Fin_induct [case_names 0 cons, induct set: Fin]:
paulson@46953
    57
    "[| b \<in> Fin(A);
paulson@13194
    58
        P(0);
paulson@46953
    59
        !!x y. [| x \<in> A;  y \<in> Fin(A);  x\<notin>y;  P(y) |] ==> P(cons(x,y))
paulson@13194
    60
     |] ==> P(b)"
paulson@13194
    61
apply (erule Fin.induct, simp)
paulson@46953
    62
apply (case_tac "a \<in> b")
paulson@13194
    63
 apply (erule cons_absorb [THEN ssubst], assumption) (*backtracking!*)
paulson@13194
    64
apply simp
paulson@13194
    65
done
paulson@13194
    66
paulson@13203
    67
paulson@13194
    68
(** Simplification for Fin **)
paulson@13194
    69
declare Fin.intros [simp]
paulson@13194
    70
paulson@13203
    71
lemma Fin_0: "Fin(0) = {0}"
paulson@13203
    72
by (blast intro: Fin.emptyI dest: FinD)
paulson@13203
    73
paulson@13194
    74
(*The union of two finite sets is finite.*)
paulson@46953
    75
lemma Fin_UnI [simp]: "[| b \<in> Fin(A);  c \<in> Fin(A) |] ==> b \<union> c \<in> Fin(A)"
paulson@13194
    76
apply (erule Fin_induct)
paulson@13194
    77
apply (simp_all add: Un_cons)
paulson@13194
    78
done
paulson@13194
    79
paulson@13194
    80
paulson@13194
    81
(*The union of a set of finite sets is finite.*)
paulson@46820
    82
lemma Fin_UnionI: "C \<in> Fin(Fin(A)) ==> \<Union>(C) \<in> Fin(A)"
paulson@13194
    83
by (erule Fin_induct, simp_all)
paulson@13194
    84
paulson@13194
    85
(*Every subset of a finite set is finite.*)
paulson@46953
    86
lemma Fin_subset_lemma [rule_format]: "b \<in> Fin(A) ==> \<forall>z. z<=b \<longrightarrow> z \<in> Fin(A)"
paulson@13194
    87
apply (erule Fin_induct)
paulson@13194
    88
apply (simp add: subset_empty_iff)
paulson@13194
    89
apply (simp add: subset_cons_iff distrib_simps, safe)
paulson@13784
    90
apply (erule_tac b = z in cons_Diff [THEN subst], simp)
paulson@13194
    91
done
paulson@13194
    92
paulson@46953
    93
lemma Fin_subset: "[| c<=b;  b \<in> Fin(A) |] ==> c \<in> Fin(A)"
paulson@13194
    94
by (blast intro: Fin_subset_lemma)
paulson@13194
    95
paulson@46953
    96
lemma Fin_IntI1 [intro,simp]: "b \<in> Fin(A) ==> b \<inter> c \<in> Fin(A)"
paulson@13194
    97
by (blast intro: Fin_subset)
paulson@13194
    98
paulson@46953
    99
lemma Fin_IntI2 [intro,simp]: "c \<in> Fin(A) ==> b \<inter> c \<in> Fin(A)"
paulson@13194
   100
by (blast intro: Fin_subset)
paulson@13194
   101
paulson@13194
   102
lemma Fin_0_induct_lemma [rule_format]:
paulson@46953
   103
    "[| c \<in> Fin(A);  b \<in> Fin(A); P(b);
paulson@46953
   104
        !!x y. [| x \<in> A;  y \<in> Fin(A);  x \<in> y;  P(y) |] ==> P(y-{x})
paulson@46820
   105
     |] ==> c<=b \<longrightarrow> P(b-c)"
paulson@13194
   106
apply (erule Fin_induct, simp)
paulson@13194
   107
apply (subst Diff_cons)
paulson@13194
   108
apply (simp add: cons_subset_iff Diff_subset [THEN Fin_subset])
paulson@13194
   109
done
paulson@13194
   110
paulson@13194
   111
lemma Fin_0_induct:
paulson@46953
   112
    "[| b \<in> Fin(A);
paulson@13194
   113
        P(b);
paulson@46953
   114
        !!x y. [| x \<in> A;  y \<in> Fin(A);  x \<in> y;  P(y) |] ==> P(y-{x})
paulson@13194
   115
     |] ==> P(0)"
paulson@13194
   116
apply (rule Diff_cancel [THEN subst])
paulson@46820
   117
apply (blast intro: Fin_0_induct_lemma)
paulson@13194
   118
done
paulson@13194
   119
paulson@13194
   120
(*Functions from a finite ordinal*)
paulson@46953
   121
lemma nat_fun_subset_Fin: "n \<in> nat ==> n->A \<subseteq> Fin(nat*A)"
paulson@13194
   122
apply (induct_tac "n")
paulson@13194
   123
apply (simp add: subset_iff)
paulson@13194
   124
apply (simp add: succ_def mem_not_refl [THEN cons_fun_eq])
paulson@13194
   125
apply (fast intro!: Fin.consI)
paulson@13194
   126
done
paulson@13194
   127
paulson@13194
   128
paulson@13356
   129
subsection{*Finite Function Space*}
paulson@13194
   130
paulson@13194
   131
lemma FiniteFun_mono:
paulson@46820
   132
    "[| A<=C;  B<=D |] ==> A -||> B  \<subseteq>  C -||> D"
paulson@13194
   133
apply (unfold FiniteFun.defs)
paulson@13194
   134
apply (rule lfp_mono)
paulson@13194
   135
apply (rule FiniteFun.bnd_mono)+
paulson@13194
   136
apply (intro Fin_mono Sigma_mono basic_monos, assumption+)
paulson@13194
   137
done
paulson@13194
   138
paulson@46820
   139
lemma FiniteFun_mono1: "A<=B ==> A -||> A  \<subseteq>  B -||> B"
paulson@13194
   140
by (blast dest: FiniteFun_mono)
paulson@13194
   141
paulson@46953
   142
lemma FiniteFun_is_fun: "h \<in> A -||>B ==> h \<in> domain(h) -> B"
paulson@13194
   143
apply (erule FiniteFun.induct, simp)
paulson@13194
   144
apply (simp add: fun_extend3)
paulson@13194
   145
done
paulson@13194
   146
paulson@46953
   147
lemma FiniteFun_domain_Fin: "h \<in> A -||>B ==> domain(h) \<in> Fin(A)"
paulson@13269
   148
by (erule FiniteFun.induct, simp, simp)
paulson@13194
   149
wenzelm@45602
   150
lemmas FiniteFun_apply_type = FiniteFun_is_fun [THEN apply_type]
paulson@13194
   151
paulson@13194
   152
(*Every subset of a finite function is a finite function.*)
paulson@13194
   153
lemma FiniteFun_subset_lemma [rule_format]:
paulson@46953
   154
     "b \<in> A-||>B ==> \<forall>z. z<=b \<longrightarrow> z \<in> A-||>B"
paulson@13194
   155
apply (erule FiniteFun.induct)
paulson@13194
   156
apply (simp add: subset_empty_iff FiniteFun.intros)
paulson@13194
   157
apply (simp add: subset_cons_iff distrib_simps, safe)
paulson@13784
   158
apply (erule_tac b = z in cons_Diff [THEN subst])
paulson@13194
   159
apply (drule spec [THEN mp], assumption)
paulson@13194
   160
apply (fast intro!: FiniteFun.intros)
paulson@13194
   161
done
paulson@13194
   162
paulson@46953
   163
lemma FiniteFun_subset: "[| c<=b;  b \<in> A-||>B |] ==> c \<in> A-||>B"
paulson@13194
   164
by (blast intro: FiniteFun_subset_lemma)
paulson@13194
   165
paulson@13194
   166
(** Some further results by Sidi O. Ehmety **)
paulson@13194
   167
paulson@46953
   168
lemma fun_FiniteFunI [rule_format]: "A \<in> Fin(X) ==> \<forall>f. f \<in> A->B \<longrightarrow> f \<in> A-||>B"
paulson@13194
   169
apply (erule Fin.induct)
paulson@13269
   170
 apply (simp add: FiniteFun.intros, clarify)
paulson@46953
   171
apply (case_tac "a \<in> b")
paulson@13194
   172
 apply (simp add: cons_absorb)
paulson@46820
   173
apply (subgoal_tac "restrict (f,b) \<in> b -||> B")
paulson@13194
   174
 prefer 2 apply (blast intro: restrict_type2)
paulson@13194
   175
apply (subst fun_cons_restrict_eq, assumption)
paulson@13194
   176
apply (simp add: restrict_def lam_def)
paulson@46820
   177
apply (blast intro: apply_funtype FiniteFun.intros
paulson@13194
   178
                    FiniteFun_mono [THEN [2] rev_subsetD])
paulson@13194
   179
done
paulson@13194
   180
paulson@46953
   181
lemma lam_FiniteFun: "A \<in> Fin(X) ==> (\<lambda>x\<in>A. b(x)) \<in> A -||> {b(x). x \<in> A}"
paulson@13194
   182
by (blast intro: fun_FiniteFunI lam_funtype)
paulson@13194
   183
paulson@13194
   184
lemma FiniteFun_Collect_iff:
paulson@46953
   185
     "f \<in> FiniteFun(A, {y \<in> B. P(y)})
paulson@46821
   186
      \<longleftrightarrow> f \<in> FiniteFun(A,B) & (\<forall>x\<in>domain(f). P(f`x))"
paulson@13194
   187
apply auto
paulson@13194
   188
apply (blast intro: FiniteFun_mono [THEN [2] rev_subsetD])
paulson@13194
   189
apply (blast dest: Pair_mem_PiD FiniteFun_is_fun)
paulson@46820
   190
apply (rule_tac A1="domain(f)" in
paulson@13194
   191
       subset_refl [THEN [2] FiniteFun_mono, THEN subsetD])
paulson@13194
   192
 apply (fast dest: FiniteFun_domain_Fin Fin.dom_subset [THEN subsetD])
paulson@13194
   193
apply (rule fun_FiniteFunI)
paulson@13194
   194
apply (erule FiniteFun_domain_Fin)
paulson@13194
   195
apply (rule_tac B = "range (f) " in fun_weaken_type)
paulson@13194
   196
 apply (blast dest: FiniteFun_is_fun range_of_fun range_type apply_equality)+
paulson@13194
   197
done
paulson@13194
   198
paulson@14883
   199
paulson@14883
   200
subsection{*The Contents of a Singleton Set*}
paulson@14883
   201
wenzelm@24893
   202
definition
wenzelm@24893
   203
  contents :: "i=>i"  where
paulson@14883
   204
   "contents(X) == THE x. X = {x}"
paulson@14883
   205
paulson@14883
   206
lemma contents_eq [simp]: "contents ({x}) = x"
paulson@14883
   207
by (simp add: contents_def)
paulson@14883
   208
lcp@516
   209
end