src/ZF/arith_data.ML
author wenzelm
Sun Nov 09 17:04:14 2014 +0100 (2014-11-09)
changeset 58957 c9e744ea8a38
parent 58838 59203adfc33f
child 59498 50b60f501b05
permissions -rw-r--r--
proper context for match_tac etc.;
paulson@9548
     1
(*  Title:      ZF/arith_data.ML
paulson@9548
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@9548
     3
paulson@9548
     4
Arithmetic simplification: cancellation of common terms
paulson@9548
     5
*)
paulson@9548
     6
paulson@9548
     7
signature ARITH_DATA =
paulson@9548
     8
sig
paulson@9570
     9
  (*the main outcome*)
paulson@9548
    10
  val nat_cancel: simproc list
paulson@9570
    11
  (*tools for use in similar applications*)
paulson@9570
    12
  val gen_trans_tac: thm -> thm option -> tactic
wenzelm@20113
    13
  val prove_conv: string -> tactic list -> Proof.context -> thm list -> term * term -> thm option
wenzelm@51717
    14
  val simplify_meta_eq: thm list -> Proof.context -> thm -> thm
paulson@9874
    15
  (*debugging*)
paulson@9874
    16
  structure EqCancelNumeralsData   : CANCEL_NUMERALS_DATA
paulson@9874
    17
  structure LessCancelNumeralsData : CANCEL_NUMERALS_DATA
paulson@9874
    18
  structure DiffCancelNumeralsData : CANCEL_NUMERALS_DATA
paulson@9548
    19
end;
paulson@9548
    20
paulson@9570
    21
paulson@9548
    22
structure ArithData: ARITH_DATA =
paulson@9548
    23
struct
paulson@9548
    24
paulson@9548
    25
val iT = Ind_Syntax.iT;
paulson@9548
    26
wenzelm@41310
    27
val zero = Const(@{const_name zero}, iT);
haftmann@38513
    28
val succ = Const(@{const_name succ}, iT --> iT);
paulson@9548
    29
fun mk_succ t = succ $ t;
paulson@9548
    30
val one = mk_succ zero;
paulson@9548
    31
haftmann@38513
    32
val mk_plus = FOLogic.mk_binop @{const_name Arith.add};
paulson@9548
    33
paulson@9548
    34
(*Thus mk_sum[t] yields t+#0; longer sums don't have a trailing zero*)
paulson@9548
    35
fun mk_sum []        = zero
paulson@9548
    36
  | mk_sum [t,u]     = mk_plus (t, u)
paulson@9548
    37
  | mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
paulson@9548
    38
paulson@9548
    39
(*this version ALWAYS includes a trailing zero*)
paulson@9548
    40
fun long_mk_sum []        = zero
paulson@9548
    41
  | long_mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
paulson@9548
    42
haftmann@38513
    43
val dest_plus = FOLogic.dest_bin @{const_name Arith.add} iT;
paulson@9548
    44
paulson@9548
    45
(* dest_sum *)
paulson@9548
    46
wenzelm@41310
    47
fun dest_sum (Const(@{const_name zero},_)) = []
haftmann@38513
    48
  | dest_sum (Const(@{const_name succ},_) $ t) = one :: dest_sum t
haftmann@38513
    49
  | dest_sum (Const(@{const_name Arith.add},_) $ t $ u) = dest_sum t @ dest_sum u
paulson@9548
    50
  | dest_sum tm = [tm];
paulson@9548
    51
paulson@9548
    52
(*Apply the given rewrite (if present) just once*)
skalberg@15531
    53
fun gen_trans_tac th2 NONE      = all_tac
wenzelm@58838
    54
  | gen_trans_tac th2 (SOME th) = ALLGOALS (resolve_tac [th RS th2]);
paulson@9548
    55
paulson@9548
    56
(*Use <-> or = depending on the type of t*)
paulson@9548
    57
fun mk_eq_iff(t,u) =
paulson@9548
    58
  if fastype_of t = iT then FOLogic.mk_eq(t,u)
paulson@9548
    59
                       else FOLogic.mk_iff(t,u);
paulson@9548
    60
paulson@9874
    61
(*We remove equality assumptions because they confuse the simplifier and
paulson@9874
    62
  because only type-checking assumptions are necessary.*)
wenzelm@13462
    63
fun is_eq_thm th =
wenzelm@44058
    64
    can FOLogic.dest_eq (FOLogic.dest_Trueprop (Thm.prop_of th));
paulson@9649
    65
paulson@9548
    66
fun add_chyps chyps ct = Drule.list_implies (map cprop_of chyps, ct);
paulson@9548
    67
wenzelm@20113
    68
fun prove_conv name tacs ctxt prems (t,u) =
skalberg@15531
    69
  if t aconv u then NONE
paulson@9548
    70
  else
wenzelm@33317
    71
  let val prems' = filter_out is_eq_thm prems
wenzelm@44058
    72
      val goal = Logic.list_implies (map Thm.prop_of prems',
wenzelm@12134
    73
        FOLogic.mk_Trueprop (mk_eq_iff (t, u)));
wenzelm@20113
    74
  in SOME (prems' MRS Goal.prove ctxt [] [] goal (K (EVERY tacs)))
wenzelm@18678
    75
      handle ERROR msg =>
skalberg@15531
    76
        (warning (msg ^ "\nCancellation failed: no typing information? (" ^ name ^ ")"); NONE)
paulson@9548
    77
  end;
paulson@9548
    78
wenzelm@32155
    79
fun prep_simproc thy (name, pats, proc) =
wenzelm@38715
    80
  Simplifier.simproc_global thy name pats proc;
paulson@9548
    81
paulson@9548
    82
wenzelm@13462
    83
(*** Use CancelNumerals simproc without binary numerals,
paulson@9548
    84
     just for cancellation ***)
paulson@9548
    85
haftmann@38513
    86
val mk_times = FOLogic.mk_binop @{const_name Arith.mult};
paulson@9548
    87
paulson@9548
    88
fun mk_prod [] = one
paulson@9548
    89
  | mk_prod [t] = t
paulson@9548
    90
  | mk_prod (t :: ts) = if t = one then mk_prod ts
paulson@9548
    91
                        else mk_times (t, mk_prod ts);
paulson@9548
    92
haftmann@38513
    93
val dest_times = FOLogic.dest_bin @{const_name Arith.mult} iT;
paulson@9548
    94
paulson@9548
    95
fun dest_prod t =
paulson@9548
    96
      let val (t,u) = dest_times t
paulson@9548
    97
      in  dest_prod t @ dest_prod u  end
paulson@9548
    98
      handle TERM _ => [t];
paulson@9548
    99
paulson@9548
   100
(*Dummy version: the only arguments are 0 and 1*)
wenzelm@24630
   101
fun mk_coeff (0, t) = zero
paulson@9548
   102
  | mk_coeff (1, t) = t
paulson@9548
   103
  | mk_coeff _       = raise TERM("mk_coeff", []);
paulson@9548
   104
paulson@9548
   105
(*Dummy version: the "coefficient" is always 1.
paulson@9548
   106
  In the result, the factors are sorted terms*)
wenzelm@35408
   107
fun dest_coeff t = (1, mk_prod (sort Term_Ord.term_ord (dest_prod t)));
paulson@9548
   108
paulson@9548
   109
(*Find first coefficient-term THAT MATCHES u*)
paulson@9548
   110
fun find_first_coeff past u [] = raise TERM("find_first_coeff", [])
paulson@9548
   111
  | find_first_coeff past u (t::terms) =
paulson@9548
   112
        let val (n,u') = dest_coeff t
paulson@9548
   113
        in  if u aconv u' then (n, rev past @ terms)
paulson@9548
   114
                          else find_first_coeff (t::past) u terms
paulson@9548
   115
        end
paulson@9548
   116
        handle TERM _ => find_first_coeff (t::past) u terms;
paulson@9548
   117
paulson@9548
   118
paulson@9548
   119
(*Simplify #1*n and n*#1 to n*)
wenzelm@24893
   120
val add_0s = [@{thm add_0_natify}, @{thm add_0_right_natify}];
wenzelm@24893
   121
val add_succs = [@{thm add_succ}, @{thm add_succ_right}];
wenzelm@24893
   122
val mult_1s = [@{thm mult_1_natify}, @{thm mult_1_right_natify}];
wenzelm@24893
   123
val tc_rules = [@{thm natify_in_nat}, @{thm add_type}, @{thm diff_type}, @{thm mult_type}];
wenzelm@24893
   124
val natifys = [@{thm natify_0}, @{thm natify_ident}, @{thm add_natify1}, @{thm add_natify2},
wenzelm@24893
   125
               @{thm diff_natify1}, @{thm diff_natify2}];
paulson@9548
   126
paulson@9548
   127
(*Final simplification: cancel + and **)
wenzelm@51717
   128
fun simplify_meta_eq rules ctxt =
wenzelm@51717
   129
  let val ctxt' =
wenzelm@51717
   130
    put_simpset FOL_ss ctxt
wenzelm@26287
   131
      delsimps @{thms iff_simps} (*these could erase the whole rule!*)
wenzelm@18328
   132
      addsimps rules
wenzelm@45620
   133
      |> fold Simplifier.add_eqcong [@{thm eq_cong2}, @{thm iff_cong2}]
wenzelm@51717
   134
  in mk_meta_eq o simplify ctxt' end;
paulson@9548
   135
wenzelm@24893
   136
val final_rules = add_0s @ mult_1s @ [@{thm mult_0}, @{thm mult_0_right}];
paulson@9548
   137
paulson@9548
   138
structure CancelNumeralsCommon =
paulson@9548
   139
  struct
paulson@14387
   140
  val mk_sum            = (fn T:typ => mk_sum)
paulson@9548
   141
  val dest_sum          = dest_sum
paulson@9548
   142
  val mk_coeff          = mk_coeff
paulson@9548
   143
  val dest_coeff        = dest_coeff
paulson@9548
   144
  val find_first_coeff  = find_first_coeff []
wenzelm@18328
   145
wenzelm@51717
   146
  val norm_ss1 =
wenzelm@51717
   147
    simpset_of (put_simpset ZF_ss @{context} addsimps add_0s @ add_succs @ mult_1s @ @{thms add_ac})
wenzelm@51717
   148
  val norm_ss2 =
wenzelm@51717
   149
    simpset_of (put_simpset ZF_ss @{context} addsimps add_0s @ mult_1s @ @{thms add_ac} @
wenzelm@51717
   150
      @{thms mult_ac} @ tc_rules @ natifys)
wenzelm@51717
   151
  fun norm_tac ctxt =
wenzelm@51717
   152
    ALLGOALS (asm_simp_tac (put_simpset norm_ss1 ctxt))
wenzelm@51717
   153
    THEN ALLGOALS (asm_simp_tac (put_simpset norm_ss2 ctxt))
wenzelm@51717
   154
  val numeral_simp_ss =
wenzelm@51717
   155
    simpset_of (put_simpset ZF_ss @{context} addsimps add_0s @ tc_rules @ natifys)
wenzelm@51717
   156
  fun numeral_simp_tac ctxt =
wenzelm@51717
   157
    ALLGOALS (asm_simp_tac (put_simpset numeral_simp_ss ctxt))
paulson@9548
   158
  val simplify_meta_eq  = simplify_meta_eq final_rules
paulson@9548
   159
  end;
paulson@9548
   160
paulson@9874
   161
(** The functor argumnets are declared as separate structures
paulson@9874
   162
    so that they can be exported to ease debugging. **)
paulson@9548
   163
wenzelm@13462
   164
structure EqCancelNumeralsData =
paulson@9874
   165
  struct
paulson@9874
   166
  open CancelNumeralsCommon
paulson@9548
   167
  val prove_conv = prove_conv "nateq_cancel_numerals"
paulson@9548
   168
  val mk_bal   = FOLogic.mk_eq
paulson@9649
   169
  val dest_bal = FOLogic.dest_eq
wenzelm@35409
   170
  val bal_add1 = @{thm eq_add_iff} RS @{thm iff_trans}
wenzelm@35409
   171
  val bal_add2 = @{thm eq_add_iff} RS @{thm iff_trans}
haftmann@44947
   172
  val trans_tac = gen_trans_tac @{thm iff_trans}
paulson@9874
   173
  end;
paulson@9874
   174
paulson@9874
   175
structure EqCancelNumerals = CancelNumeralsFun(EqCancelNumeralsData);
paulson@9548
   176
wenzelm@13462
   177
structure LessCancelNumeralsData =
paulson@9874
   178
  struct
paulson@9874
   179
  open CancelNumeralsCommon
paulson@9548
   180
  val prove_conv = prove_conv "natless_cancel_numerals"
haftmann@38513
   181
  val mk_bal   = FOLogic.mk_binrel @{const_name Ordinal.lt}
haftmann@38513
   182
  val dest_bal = FOLogic.dest_bin @{const_name Ordinal.lt} iT
wenzelm@35409
   183
  val bal_add1 = @{thm less_add_iff} RS @{thm iff_trans}
wenzelm@35409
   184
  val bal_add2 = @{thm less_add_iff} RS @{thm iff_trans}
haftmann@44947
   185
  val trans_tac = gen_trans_tac @{thm iff_trans}
paulson@9874
   186
  end;
paulson@9874
   187
paulson@9874
   188
structure LessCancelNumerals = CancelNumeralsFun(LessCancelNumeralsData);
paulson@9548
   189
wenzelm@13462
   190
structure DiffCancelNumeralsData =
paulson@9874
   191
  struct
paulson@9874
   192
  open CancelNumeralsCommon
paulson@9548
   193
  val prove_conv = prove_conv "natdiff_cancel_numerals"
haftmann@38513
   194
  val mk_bal   = FOLogic.mk_binop @{const_name Arith.diff}
haftmann@38513
   195
  val dest_bal = FOLogic.dest_bin @{const_name Arith.diff} iT
wenzelm@35409
   196
  val bal_add1 = @{thm diff_add_eq} RS @{thm trans}
wenzelm@35409
   197
  val bal_add2 = @{thm diff_add_eq} RS @{thm trans}
haftmann@44947
   198
  val trans_tac = gen_trans_tac @{thm trans}
paulson@9874
   199
  end;
paulson@9874
   200
paulson@9874
   201
structure DiffCancelNumerals = CancelNumeralsFun(DiffCancelNumeralsData);
paulson@9548
   202
paulson@9548
   203
paulson@9548
   204
val nat_cancel =
wenzelm@32155
   205
  map (prep_simproc @{theory})
wenzelm@13462
   206
   [("nateq_cancel_numerals",
wenzelm@13462
   207
     ["l #+ m = n", "l = m #+ n",
wenzelm@13462
   208
      "l #* m = n", "l = m #* n",
wenzelm@13462
   209
      "succ(m) = n", "m = succ(n)"],
wenzelm@51717
   210
     EqCancelNumerals.proc),
wenzelm@13462
   211
    ("natless_cancel_numerals",
wenzelm@13462
   212
     ["l #+ m < n", "l < m #+ n",
wenzelm@13462
   213
      "l #* m < n", "l < m #* n",
wenzelm@13462
   214
      "succ(m) < n", "m < succ(n)"],
wenzelm@51717
   215
     LessCancelNumerals.proc),
wenzelm@13462
   216
    ("natdiff_cancel_numerals",
wenzelm@13462
   217
     ["(l #+ m) #- n", "l #- (m #+ n)",
wenzelm@13462
   218
      "(l #* m) #- n", "l #- (m #* n)",
wenzelm@13462
   219
      "succ(m) #- n", "m #- succ(n)"],
wenzelm@51717
   220
     DiffCancelNumerals.proc)];
paulson@9548
   221
paulson@9548
   222
end;
paulson@9548
   223
wenzelm@54388
   224
val _ =
wenzelm@54388
   225
  Theory.setup (Simplifier.map_theory_simpset (fn ctxt =>
wenzelm@54388
   226
    ctxt addsimprocs ArithData.nat_cancel));
paulson@13259
   227
paulson@13259
   228
paulson@9548
   229
(*examples:
paulson@9548
   230
print_depth 22;
paulson@9548
   231
set timing;
wenzelm@40878
   232
set simp_trace;
paulson@9548
   233
fun test s = (Goal s; by (Asm_simp_tac 1));
paulson@9548
   234
paulson@9548
   235
test "x #+ y = x #+ z";
paulson@9548
   236
test "y #+ x = x #+ z";
paulson@9548
   237
test "x #+ y #+ z = x #+ z";
paulson@9548
   238
test "y #+ (z #+ x) = z #+ x";
paulson@9548
   239
test "x #+ y #+ z = (z #+ y) #+ (x #+ w)";
paulson@9548
   240
test "x#*y #+ z = (z #+ y) #+ (y#*x #+ w)";
paulson@9548
   241
paulson@9548
   242
test "x #+ succ(y) = x #+ z";
paulson@9548
   243
test "x #+ succ(y) = succ(z #+ x)";
paulson@9548
   244
test "succ(x) #+ succ(y) #+ z = succ(z #+ y) #+ succ(x #+ w)";
paulson@9548
   245
paulson@9548
   246
test "(x #+ y) #- (x #+ z) = w";
paulson@9548
   247
test "(y #+ x) #- (x #+ z) = dd";
paulson@9548
   248
test "(x #+ y #+ z) #- (x #+ z) = dd";
paulson@9548
   249
test "(y #+ (z #+ x)) #- (z #+ x) = dd";
paulson@9548
   250
test "(x #+ y #+ z) #- ((z #+ y) #+ (x #+ w)) = dd";
paulson@9548
   251
test "(x#*y #+ z) #- ((z #+ y) #+ (y#*x #+ w)) = dd";
paulson@9548
   252
paulson@9548
   253
(*BAD occurrence of natify*)
paulson@9548
   254
test "(x #+ succ(y)) #- (x #+ z) = dd";
paulson@9548
   255
paulson@9548
   256
test "x #* y2 #+ y #* x2 = y #* x2 #+ x #* y2";
paulson@9548
   257
paulson@9548
   258
test "(x #+ succ(y)) #- (succ(z #+ x)) = dd";
paulson@9548
   259
test "(succ(x) #+ succ(y) #+ z) #- (succ(z #+ y) #+ succ(x #+ w)) = dd";
paulson@9548
   260
paulson@9548
   261
(*use of typing information*)
paulson@9548
   262
test "x : nat ==> x #+ y = x";
paulson@9548
   263
test "x : nat --> x #+ y = x";
paulson@9548
   264
test "x : nat ==> x #+ y < x";
paulson@9548
   265
test "x : nat ==> x < y#+x";
paulson@13126
   266
test "x : nat ==> x le succ(x)";
paulson@9548
   267
paulson@9548
   268
(*fails: no typing information isn't visible*)
paulson@9548
   269
test "x #+ y = x";
paulson@9548
   270
paulson@9548
   271
test "x #+ y < x #+ z";
paulson@9548
   272
test "y #+ x < x #+ z";
paulson@9548
   273
test "x #+ y #+ z < x #+ z";
paulson@9548
   274
test "y #+ z #+ x < x #+ z";
paulson@9548
   275
test "y #+ (z #+ x) < z #+ x";
paulson@9548
   276
test "x #+ y #+ z < (z #+ y) #+ (x #+ w)";
paulson@9548
   277
test "x#*y #+ z < (z #+ y) #+ (y#*x #+ w)";
paulson@9548
   278
paulson@9548
   279
test "x #+ succ(y) < x #+ z";
paulson@9548
   280
test "x #+ succ(y) < succ(z #+ x)";
paulson@9548
   281
test "succ(x) #+ succ(y) #+ z < succ(z #+ y) #+ succ(x #+ w)";
paulson@9548
   282
paulson@9548
   283
test "x #+ succ(y) le succ(z #+ x)";
paulson@9548
   284
*)