src/HOL/BNF_Examples/Stream.thy
author traytel
Thu Jun 05 11:41:38 2014 +0200 (2014-06-05)
changeset 57175 ca3475504557
parent 55873 aa50d903e0a7
child 57206 d9be905d6283
permissions -rw-r--r--
extended stream library
blanchet@55075
     1
(*  Title:      HOL/BNF_Examples/Stream.thy
traytel@50518
     2
    Author:     Dmitriy Traytel, TU Muenchen
traytel@50518
     3
    Author:     Andrei Popescu, TU Muenchen
blanchet@51778
     4
    Copyright   2012, 2013
traytel@50518
     5
traytel@50518
     6
Infinite streams.
traytel@50518
     7
*)
traytel@50518
     8
traytel@50518
     9
header {* Infinite Streams *}
traytel@50518
    10
traytel@50518
    11
theory Stream
blanchet@55076
    12
imports "~~/src/HOL/Library/Nat_Bijection"
traytel@50518
    13
begin
traytel@50518
    14
blanchet@51804
    15
codatatype (sset: 'a) stream (map: smap rel: stream_all2) =
traytel@54720
    16
  SCons (shd: 'a) (stl: "'a stream") (infixr "##" 65)
traytel@51409
    17
traytel@51462
    18
(*for code generation only*)
traytel@51462
    19
definition smember :: "'a \<Rightarrow> 'a stream \<Rightarrow> bool" where
traytel@51772
    20
  [code_abbrev]: "smember x s \<longleftrightarrow> x \<in> sset s"
traytel@51462
    21
traytel@54720
    22
lemma smember_code[code, simp]: "smember x (y ## s) = (if x = y then True else smember x s)"
traytel@51462
    23
  unfolding smember_def by auto
traytel@51462
    24
traytel@51462
    25
hide_const (open) smember
traytel@51462
    26
traytel@50518
    27
(* TODO: Provide by the package*)
traytel@51772
    28
theorem sset_induct:
traytel@55804
    29
  assumes Base: "\<And>s. P (shd s) s" and Step: "\<And>s y. \<lbrakk>y \<in> sset (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s"
traytel@55804
    30
  shows "\<forall>y \<in> sset s. P y s"
traytel@55804
    31
proof (rule stream.dtor_set_induct)
traytel@55804
    32
  fix a :: 'a and s :: "'a stream"
traytel@55804
    33
  assume "a \<in> set1_pre_stream (dtor_stream s)"
traytel@55804
    34
  then have "a = shd s"
traytel@55804
    35
    by (cases "dtor_stream s")
blanchet@55873
    36
      (auto simp: BNF_Comp.id_bnf_comp_def shd_def fsts_def set1_pre_stream_def stream.dtor_ctor SCons_def
blanchet@55873
    37
        split: stream.splits)
traytel@55804
    38
  with Base show "P a s" by simp
traytel@55804
    39
next
traytel@55804
    40
  fix a :: 'a and s' :: "'a stream"  and s :: "'a stream"
traytel@55804
    41
  assume "s' \<in> set2_pre_stream (dtor_stream s)" and prems: "a \<in> sset s'" "P a s'"
traytel@55804
    42
  then have "s' = stl s"
traytel@55804
    43
    by (cases "dtor_stream s")
blanchet@55873
    44
      (auto simp: BNF_Comp.id_bnf_comp_def stl_def snds_def set2_pre_stream_def stream.dtor_ctor SCons_def
blanchet@55873
    45
        split: stream.splits)
traytel@55804
    46
  with Step prems show "P a s" by simp
traytel@55804
    47
qed
traytel@51141
    48
traytel@57175
    49
lemmas smap_simps[simp] = stream.sel_map
traytel@57175
    50
lemmas shd_sset = stream.sel_set(1)
traytel@57175
    51
lemmas stl_sset = stream.sel_set(2)
traytel@50518
    52
traytel@50518
    53
(* only for the non-mutual case: *)
traytel@51772
    54
theorem sset_induct1[consumes 1, case_names shd stl, induct set: "sset"]:
traytel@51772
    55
  assumes "y \<in> sset s" and "\<And>s. P (shd s) s"
traytel@51772
    56
  and "\<And>s y. \<lbrakk>y \<in> sset (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s"
traytel@50518
    57
  shows "P y s"
traytel@51772
    58
  using assms sset_induct by blast
traytel@50518
    59
(* end TODO *)
traytel@50518
    60
traytel@50518
    61
traytel@50518
    62
subsection {* prepend list to stream *}
traytel@50518
    63
traytel@50518
    64
primrec shift :: "'a list \<Rightarrow> 'a stream \<Rightarrow> 'a stream" (infixr "@-" 65) where
traytel@50518
    65
  "shift [] s = s"
traytel@51023
    66
| "shift (x # xs) s = x ## shift xs s"
traytel@50518
    67
traytel@51772
    68
lemma smap_shift[simp]: "smap f (xs @- s) = map f xs @- smap f s"
traytel@51353
    69
  by (induct xs) auto
traytel@51353
    70
traytel@50518
    71
lemma shift_append[simp]: "(xs @ ys) @- s = xs @- ys @- s"
traytel@51141
    72
  by (induct xs) auto
traytel@50518
    73
traytel@50518
    74
lemma shift_simps[simp]:
traytel@50518
    75
   "shd (xs @- s) = (if xs = [] then shd s else hd xs)"
traytel@50518
    76
   "stl (xs @- s) = (if xs = [] then stl s else tl xs @- s)"
traytel@51141
    77
  by (induct xs) auto
traytel@50518
    78
traytel@51772
    79
lemma sset_shift[simp]: "sset (xs @- s) = set xs \<union> sset s"
traytel@51141
    80
  by (induct xs) auto
traytel@50518
    81
traytel@51352
    82
lemma shift_left_inj[simp]: "xs @- s1 = xs @- s2 \<longleftrightarrow> s1 = s2"
traytel@51352
    83
  by (induct xs) auto
traytel@51352
    84
traytel@50518
    85
hoelzl@54469
    86
subsection {* set of streams with elements in some fixed set *}
traytel@50518
    87
traytel@50518
    88
coinductive_set
hoelzl@54469
    89
  streams :: "'a set \<Rightarrow> 'a stream set"
traytel@50518
    90
  for A :: "'a set"
traytel@50518
    91
where
traytel@51023
    92
  Stream[intro!, simp, no_atp]: "\<lbrakk>a \<in> A; s \<in> streams A\<rbrakk> \<Longrightarrow> a ## s \<in> streams A"
traytel@50518
    93
traytel@50518
    94
lemma shift_streams: "\<lbrakk>w \<in> lists A; s \<in> streams A\<rbrakk> \<Longrightarrow> w @- s \<in> streams A"
traytel@51141
    95
  by (induct w) auto
traytel@50518
    96
hoelzl@54469
    97
lemma streams_Stream: "x ## s \<in> streams A \<longleftrightarrow> x \<in> A \<and> s \<in> streams A"
hoelzl@54469
    98
  by (auto elim: streams.cases)
hoelzl@54469
    99
hoelzl@54469
   100
lemma streams_stl: "s \<in> streams A \<Longrightarrow> stl s \<in> streams A"
hoelzl@54469
   101
  by (cases s) (auto simp: streams_Stream)
hoelzl@54469
   102
hoelzl@54469
   103
lemma streams_shd: "s \<in> streams A \<Longrightarrow> shd s \<in> A"
hoelzl@54469
   104
  by (cases s) (auto simp: streams_Stream)
hoelzl@54469
   105
traytel@51772
   106
lemma sset_streams:
traytel@51772
   107
  assumes "sset s \<subseteq> A"
traytel@50518
   108
  shows "s \<in> streams A"
traytel@54027
   109
using assms proof (coinduction arbitrary: s)
traytel@54027
   110
  case streams then show ?case by (cases s) simp
traytel@50518
   111
qed
traytel@50518
   112
hoelzl@54469
   113
lemma streams_sset:
hoelzl@54469
   114
  assumes "s \<in> streams A"
hoelzl@54469
   115
  shows "sset s \<subseteq> A"
hoelzl@54469
   116
proof
hoelzl@54469
   117
  fix x assume "x \<in> sset s" from this `s \<in> streams A` show "x \<in> A"
hoelzl@54469
   118
    by (induct s) (auto intro: streams_shd streams_stl)
hoelzl@54469
   119
qed
hoelzl@54469
   120
hoelzl@54469
   121
lemma streams_iff_sset: "s \<in> streams A \<longleftrightarrow> sset s \<subseteq> A"
hoelzl@54469
   122
  by (metis sset_streams streams_sset)
hoelzl@54469
   123
hoelzl@54469
   124
lemma streams_mono:  "s \<in> streams A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> s \<in> streams B"
hoelzl@54469
   125
  unfolding streams_iff_sset by auto
hoelzl@54469
   126
hoelzl@54469
   127
lemma smap_streams: "s \<in> streams A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> smap f s \<in> streams B"
hoelzl@54469
   128
  unfolding streams_iff_sset stream.set_map by auto
hoelzl@54469
   129
hoelzl@54469
   130
lemma streams_empty: "streams {} = {}"
hoelzl@54469
   131
  by (auto elim: streams.cases)
hoelzl@54469
   132
hoelzl@54469
   133
lemma streams_UNIV[simp]: "streams UNIV = UNIV"
hoelzl@54469
   134
  by (auto simp: streams_iff_sset)
traytel@50518
   135
traytel@51141
   136
subsection {* nth, take, drop for streams *}
traytel@51141
   137
traytel@51141
   138
primrec snth :: "'a stream \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!!" 100) where
traytel@51141
   139
  "s !! 0 = shd s"
traytel@51141
   140
| "s !! Suc n = stl s !! n"
traytel@51141
   141
traytel@51772
   142
lemma snth_smap[simp]: "smap f s !! n = f (s !! n)"
traytel@51141
   143
  by (induct n arbitrary: s) auto
traytel@51141
   144
traytel@51141
   145
lemma shift_snth_less[simp]: "p < length xs \<Longrightarrow> (xs @- s) !! p = xs ! p"
traytel@51141
   146
  by (induct p arbitrary: xs) (auto simp: hd_conv_nth nth_tl)
traytel@51141
   147
traytel@51141
   148
lemma shift_snth_ge[simp]: "p \<ge> length xs \<Longrightarrow> (xs @- s) !! p = s !! (p - length xs)"
traytel@51141
   149
  by (induct p arbitrary: xs) (auto simp: Suc_diff_eq_diff_pred)
traytel@51141
   150
traytel@57175
   151
lemma shift_snth: "(xs @- s) !! n = (if n < length xs then xs ! n else s !! (n - length xs))"
traytel@57175
   152
  by auto
traytel@57175
   153
traytel@51772
   154
lemma snth_sset[simp]: "s !! n \<in> sset s"
traytel@51772
   155
  by (induct n arbitrary: s) (auto intro: shd_sset stl_sset)
traytel@51141
   156
traytel@51772
   157
lemma sset_range: "sset s = range (snth s)"
traytel@51141
   158
proof (intro equalityI subsetI)
traytel@51772
   159
  fix x assume "x \<in> sset s"
traytel@51141
   160
  thus "x \<in> range (snth s)"
traytel@51141
   161
  proof (induct s)
traytel@51141
   162
    case (stl s x)
traytel@51141
   163
    then obtain n where "x = stl s !! n" by auto
traytel@51141
   164
    thus ?case by (auto intro: range_eqI[of _ _ "Suc n"])
traytel@51141
   165
  qed (auto intro: range_eqI[of _ _ 0])
traytel@51141
   166
qed auto
traytel@50518
   167
traytel@50518
   168
primrec stake :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a list" where
traytel@50518
   169
  "stake 0 s = []"
traytel@50518
   170
| "stake (Suc n) s = shd s # stake n (stl s)"
traytel@50518
   171
traytel@51141
   172
lemma length_stake[simp]: "length (stake n s) = n"
traytel@51141
   173
  by (induct n arbitrary: s) auto
traytel@51141
   174
traytel@51772
   175
lemma stake_smap[simp]: "stake n (smap f s) = map f (stake n s)"
traytel@51141
   176
  by (induct n arbitrary: s) auto
traytel@51141
   177
traytel@57175
   178
lemma take_stake: "take n (stake m s) = stake (min n m) s"
traytel@57175
   179
proof (induct m arbitrary: s n)
traytel@57175
   180
  case (Suc m) thus ?case by (cases n) auto
traytel@57175
   181
qed simp
traytel@57175
   182
traytel@50518
   183
primrec sdrop :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where
traytel@50518
   184
  "sdrop 0 s = s"
traytel@50518
   185
| "sdrop (Suc n) s = sdrop n (stl s)"
traytel@50518
   186
traytel@51141
   187
lemma sdrop_simps[simp]:
traytel@51141
   188
  "shd (sdrop n s) = s !! n" "stl (sdrop n s) = sdrop (Suc n) s"
traytel@51141
   189
  by (induct n arbitrary: s)  auto
traytel@51141
   190
traytel@51772
   191
lemma sdrop_smap[simp]: "sdrop n (smap f s) = smap f (sdrop n s)"
traytel@51141
   192
  by (induct n arbitrary: s) auto
traytel@50518
   193
traytel@51352
   194
lemma sdrop_stl: "sdrop n (stl s) = stl (sdrop n s)"
traytel@51352
   195
  by (induct n) auto
traytel@51352
   196
traytel@57175
   197
lemma drop_stake: "drop n (stake m s) = stake (m - n) (sdrop n s)"
traytel@57175
   198
proof (induct m arbitrary: s n)
traytel@57175
   199
  case (Suc m) thus ?case by (cases n) auto
traytel@57175
   200
qed simp
traytel@57175
   201
traytel@50518
   202
lemma stake_sdrop: "stake n s @- sdrop n s = s"
traytel@51141
   203
  by (induct n arbitrary: s) auto
traytel@51141
   204
traytel@51141
   205
lemma id_stake_snth_sdrop:
traytel@51141
   206
  "s = stake i s @- s !! i ## sdrop (Suc i) s"
traytel@51141
   207
  by (subst stake_sdrop[symmetric, of _ i]) (metis sdrop_simps stream.collapse)
traytel@50518
   208
traytel@51772
   209
lemma smap_alt: "smap f s = s' \<longleftrightarrow> (\<forall>n. f (s !! n) = s' !! n)" (is "?L = ?R")
traytel@51141
   210
proof
traytel@51141
   211
  assume ?R
traytel@54027
   212
  then have "\<And>n. smap f (sdrop n s) = sdrop n s'"
traytel@54027
   213
    by coinduction (auto intro: exI[of _ 0] simp del: sdrop.simps(2))
traytel@54027
   214
  then show ?L using sdrop.simps(1) by metis
traytel@51141
   215
qed auto
traytel@51141
   216
traytel@51141
   217
lemma stake_invert_Nil[iff]: "stake n s = [] \<longleftrightarrow> n = 0"
traytel@51141
   218
  by (induct n) auto
traytel@50518
   219
traytel@57175
   220
lemma sdrop_shift: "sdrop i (w @- s) = drop i w @- sdrop (i - length w) s"
traytel@57175
   221
  by (induct i arbitrary: w s) (auto simp: drop_tl drop_Suc neq_Nil_conv)
traytel@50518
   222
traytel@57175
   223
lemma stake_shift: "stake i (w @- s) = take i w @ stake (i - length w) s"
traytel@57175
   224
  by (induct i arbitrary: w s) (auto simp: neq_Nil_conv)
traytel@50518
   225
traytel@50518
   226
lemma stake_add[simp]: "stake m s @ stake n (sdrop m s) = stake (m + n) s"
traytel@51141
   227
  by (induct m arbitrary: s) auto
traytel@50518
   228
traytel@50518
   229
lemma sdrop_add[simp]: "sdrop n (sdrop m s) = sdrop (m + n) s"
traytel@51141
   230
  by (induct m arbitrary: s) auto
traytel@51141
   231
traytel@57175
   232
lemma sdrop_snth: "sdrop n s !! m = s !! (n + m)"
traytel@57175
   233
  by (induct n arbitrary: m s) auto
traytel@57175
   234
traytel@51430
   235
partial_function (tailrec) sdrop_while :: "('a \<Rightarrow> bool) \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where 
traytel@51430
   236
  "sdrop_while P s = (if P (shd s) then sdrop_while P (stl s) else s)"
traytel@51430
   237
traytel@54720
   238
lemma sdrop_while_SCons[code]:
traytel@54720
   239
  "sdrop_while P (a ## s) = (if P a then sdrop_while P s else a ## s)"
traytel@51430
   240
  by (subst sdrop_while.simps) simp
traytel@51430
   241
traytel@51430
   242
lemma sdrop_while_sdrop_LEAST:
traytel@51430
   243
  assumes "\<exists>n. P (s !! n)"
traytel@51430
   244
  shows "sdrop_while (Not o P) s = sdrop (LEAST n. P (s !! n)) s"
traytel@51430
   245
proof -
traytel@51430
   246
  from assms obtain m where "P (s !! m)" "\<And>n. P (s !! n) \<Longrightarrow> m \<le> n"
traytel@51430
   247
    and *: "(LEAST n. P (s !! n)) = m" by atomize_elim (auto intro: LeastI Least_le)
traytel@51430
   248
  thus ?thesis unfolding *
traytel@51430
   249
  proof (induct m arbitrary: s)
traytel@51430
   250
    case (Suc m)
traytel@51430
   251
    hence "sdrop_while (Not \<circ> P) (stl s) = sdrop m (stl s)"
traytel@51430
   252
      by (metis (full_types) not_less_eq_eq snth.simps(2))
traytel@51430
   253
    moreover from Suc(3) have "\<not> (P (s !! 0))" by blast
traytel@51430
   254
    ultimately show ?case by (subst sdrop_while.simps) simp
traytel@51430
   255
  qed (metis comp_apply sdrop.simps(1) sdrop_while.simps snth.simps(1))
traytel@51430
   256
qed
traytel@51430
   257
traytel@54027
   258
primcorec sfilter where
traytel@54027
   259
  "shd (sfilter P s) = shd (sdrop_while (Not o P) s)"
traytel@54027
   260
| "stl (sfilter P s) = sfilter P (stl (sdrop_while (Not o P) s))"
traytel@52905
   261
traytel@52905
   262
lemma sfilter_Stream: "sfilter P (x ## s) = (if P x then x ## sfilter P s else sfilter P s)"
traytel@52905
   263
proof (cases "P x")
traytel@54720
   264
  case True thus ?thesis by (subst sfilter.ctr) (simp add: sdrop_while_SCons)
traytel@52905
   265
next
traytel@54720
   266
  case False thus ?thesis by (subst (1 2) sfilter.ctr) (simp add: sdrop_while_SCons)
traytel@52905
   267
qed
traytel@52905
   268
traytel@51141
   269
traytel@51141
   270
subsection {* unary predicates lifted to streams *}
traytel@51141
   271
traytel@51141
   272
definition "stream_all P s = (\<forall>p. P (s !! p))"
traytel@51141
   273
traytel@51772
   274
lemma stream_all_iff[iff]: "stream_all P s \<longleftrightarrow> Ball (sset s) P"
traytel@51772
   275
  unfolding stream_all_def sset_range by auto
traytel@51141
   276
traytel@51141
   277
lemma stream_all_shift[simp]: "stream_all P (xs @- s) = (list_all P xs \<and> stream_all P s)"
traytel@51141
   278
  unfolding stream_all_iff list_all_iff by auto
traytel@51141
   279
hoelzl@54469
   280
lemma stream_all_Stream: "stream_all P (x ## X) \<longleftrightarrow> P x \<and> stream_all P X"
hoelzl@54469
   281
  by simp
hoelzl@54469
   282
traytel@51141
   283
traytel@51141
   284
subsection {* recurring stream out of a list *}
traytel@51141
   285
traytel@54027
   286
primcorec cycle :: "'a list \<Rightarrow> 'a stream" where
traytel@54027
   287
  "shd (cycle xs) = hd xs"
traytel@54027
   288
| "stl (cycle xs) = cycle (tl xs @ [hd xs])"
traytel@54720
   289
traytel@51141
   290
lemma cycle_decomp: "u \<noteq> [] \<Longrightarrow> cycle u = u @- cycle u"
traytel@54027
   291
proof (coinduction arbitrary: u)
traytel@54027
   292
  case Eq_stream then show ?case using stream.collapse[of "cycle u"]
traytel@54027
   293
    by (auto intro!: exI[of _ "tl u @ [hd u]"])
traytel@54027
   294
qed
traytel@51141
   295
traytel@51409
   296
lemma cycle_Cons[code]: "cycle (x # xs) = x ## cycle (xs @ [x])"
traytel@54027
   297
  by (subst cycle.ctr) simp
traytel@50518
   298
traytel@50518
   299
lemma cycle_rotated: "\<lbrakk>v \<noteq> []; cycle u = v @- s\<rbrakk> \<Longrightarrow> cycle (tl u @ [hd u]) = tl v @- s"
traytel@51141
   300
  by (auto dest: arg_cong[of _ _ stl])
traytel@50518
   301
traytel@50518
   302
lemma stake_append: "stake n (u @- s) = take (min (length u) n) u @ stake (n - length u) s"
traytel@50518
   303
proof (induct n arbitrary: u)
traytel@50518
   304
  case (Suc n) thus ?case by (cases u) auto
traytel@50518
   305
qed auto
traytel@50518
   306
traytel@50518
   307
lemma stake_cycle_le[simp]:
traytel@50518
   308
  assumes "u \<noteq> []" "n < length u"
traytel@50518
   309
  shows "stake n (cycle u) = take n u"
traytel@50518
   310
using min_absorb2[OF less_imp_le_nat[OF assms(2)]]
traytel@51141
   311
  by (subst cycle_decomp[OF assms(1)], subst stake_append) auto
traytel@50518
   312
traytel@50518
   313
lemma stake_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> stake (length u) (cycle u) = u"
traytel@57175
   314
  by (subst cycle_decomp) (auto simp: stake_shift)
traytel@50518
   315
traytel@50518
   316
lemma sdrop_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> sdrop (length u) (cycle u) = cycle u"
traytel@57175
   317
  by (subst cycle_decomp) (auto simp: sdrop_shift)
traytel@50518
   318
traytel@50518
   319
lemma stake_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
traytel@50518
   320
   stake n (cycle u) = concat (replicate (n div length u) u)"
traytel@51141
   321
  by (induct "n div length u" arbitrary: n u) (auto simp: stake_add[symmetric])
traytel@50518
   322
traytel@50518
   323
lemma sdrop_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
traytel@50518
   324
   sdrop n (cycle u) = cycle u"
traytel@51141
   325
  by (induct "n div length u" arbitrary: n u) (auto simp: sdrop_add[symmetric])
traytel@50518
   326
traytel@50518
   327
lemma stake_cycle: "u \<noteq> [] \<Longrightarrow>
traytel@50518
   328
   stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length u) u"
traytel@51141
   329
  by (subst mod_div_equality[of n "length u", symmetric], unfold stake_add[symmetric]) auto
traytel@50518
   330
traytel@50518
   331
lemma sdrop_cycle: "u \<noteq> [] \<Longrightarrow> sdrop n (cycle u) = cycle (rotate (n mod length u) u)"
traytel@51141
   332
  by (induct n arbitrary: u) (auto simp: rotate1_rotate_swap rotate1_hd_tl rotate_conv_mod[symmetric])
traytel@51141
   333
traytel@51141
   334
hoelzl@54497
   335
subsection {* iterated application of a function *}
hoelzl@54497
   336
hoelzl@54497
   337
primcorec siterate where
hoelzl@54497
   338
  "shd (siterate f x) = x"
hoelzl@54497
   339
| "stl (siterate f x) = siterate f (f x)"
hoelzl@54497
   340
hoelzl@54497
   341
lemma stake_Suc: "stake (Suc n) s = stake n s @ [s !! n]"
hoelzl@54497
   342
  by (induct n arbitrary: s) auto
hoelzl@54497
   343
hoelzl@54497
   344
lemma snth_siterate[simp]: "siterate f x !! n = (f^^n) x"
hoelzl@54497
   345
  by (induct n arbitrary: x) (auto simp: funpow_swap1)
hoelzl@54497
   346
hoelzl@54497
   347
lemma sdrop_siterate[simp]: "sdrop n (siterate f x) = siterate f ((f^^n) x)"
hoelzl@54497
   348
  by (induct n arbitrary: x) (auto simp: funpow_swap1)
hoelzl@54497
   349
hoelzl@54497
   350
lemma stake_siterate[simp]: "stake n (siterate f x) = map (\<lambda>n. (f^^n) x) [0 ..< n]"
hoelzl@54497
   351
  by (induct n arbitrary: x) (auto simp del: stake.simps(2) simp: stake_Suc)
hoelzl@54497
   352
hoelzl@54497
   353
lemma sset_siterate: "sset (siterate f x) = {(f^^n) x | n. True}"
hoelzl@54497
   354
  by (auto simp: sset_range)
hoelzl@54497
   355
hoelzl@54497
   356
lemma smap_siterate: "smap f (siterate f x) = siterate f (f x)"
hoelzl@54497
   357
  by (coinduction arbitrary: x) auto
hoelzl@54497
   358
hoelzl@54497
   359
traytel@51141
   360
subsection {* stream repeating a single element *}
traytel@51141
   361
hoelzl@54497
   362
abbreviation "sconst \<equiv> siterate id"
traytel@51141
   363
hoelzl@54497
   364
lemma shift_replicate_sconst[simp]: "replicate n x @- sconst x = sconst x"
hoelzl@54497
   365
  by (subst (3) stake_sdrop[symmetric]) (simp add: map_replicate_trivial)
traytel@51141
   366
traytel@57175
   367
lemma sset_sconst[simp]: "sset (sconst x) = {x}"
hoelzl@54497
   368
  by (simp add: sset_siterate)
traytel@51141
   369
traytel@57175
   370
lemma sconst_alt: "s = sconst x \<longleftrightarrow> sset s = {x}"
traytel@57175
   371
proof
traytel@57175
   372
  assume "sset s = {x}"
traytel@57175
   373
  then show "s = sconst x"
traytel@57175
   374
  proof (coinduction arbitrary: s)
traytel@57175
   375
    case Eq_stream
traytel@57175
   376
    then have "shd s = x" "sset (stl s) \<subseteq> {x}" by (case_tac [!] s) auto
traytel@57175
   377
    then have "sset (stl s) = {x}" by (cases "stl s") auto
traytel@57175
   378
    with `shd s = x` show ?case by auto
traytel@57175
   379
  qed
traytel@57175
   380
qed simp
traytel@57175
   381
hoelzl@54497
   382
lemma same_cycle: "sconst x = cycle [x]"
hoelzl@54497
   383
  by coinduction auto
traytel@51141
   384
hoelzl@54497
   385
lemma smap_sconst: "smap f (sconst x) = sconst (f x)"
hoelzl@54497
   386
  by coinduction auto
traytel@51141
   387
hoelzl@54497
   388
lemma sconst_streams: "x \<in> A \<Longrightarrow> sconst x \<in> streams A"
hoelzl@54497
   389
  by (simp add: streams_iff_sset)
traytel@51141
   390
traytel@51141
   391
traytel@51141
   392
subsection {* stream of natural numbers *}
traytel@51141
   393
hoelzl@54497
   394
abbreviation "fromN \<equiv> siterate Suc"
hoelzl@54469
   395
traytel@51141
   396
abbreviation "nats \<equiv> fromN 0"
traytel@51141
   397
hoelzl@54497
   398
lemma sset_fromN[simp]: "sset (fromN n) = {n ..}"
traytel@54720
   399
  by (auto simp add: sset_siterate le_iff_add)
hoelzl@54497
   400
traytel@57175
   401
lemma stream_smap_fromN: "s = smap (\<lambda>j. let i = j - n in s !! i) (fromN n)"
traytel@57175
   402
  by (coinduction arbitrary: s n)
traytel@57175
   403
    (force simp: neq_Nil_conv Let_def snth.simps(2)[symmetric] Suc_diff_Suc
traytel@57175
   404
      intro: stream.map_cong split: if_splits simp del: snth.simps(2))
traytel@57175
   405
traytel@57175
   406
lemma stream_smap_nats: "s = smap (snth s) nats"
traytel@57175
   407
  using stream_smap_fromN[where n = 0] by simp
traytel@57175
   408
traytel@51141
   409
traytel@51462
   410
subsection {* flatten a stream of lists *}
traytel@51462
   411
traytel@54027
   412
primcorec flat where
traytel@51462
   413
  "shd (flat ws) = hd (shd ws)"
traytel@54027
   414
| "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)"
traytel@51462
   415
traytel@51462
   416
lemma flat_Cons[simp, code]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)"
traytel@54027
   417
  by (subst flat.ctr) simp
traytel@51462
   418
traytel@51462
   419
lemma flat_Stream[simp]: "xs \<noteq> [] \<Longrightarrow> flat (xs ## ws) = xs @- flat ws"
traytel@51462
   420
  by (induct xs) auto
traytel@51462
   421
traytel@51462
   422
lemma flat_unfold: "shd ws \<noteq> [] \<Longrightarrow> flat ws = shd ws @- flat (stl ws)"
traytel@51462
   423
  by (cases ws) auto
traytel@51462
   424
traytel@51772
   425
lemma flat_snth: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> flat s !! n = (if n < length (shd s) then 
traytel@51462
   426
  shd s ! n else flat (stl s) !! (n - length (shd s)))"
traytel@51772
   427
  by (metis flat_unfold not_less shd_sset shift_snth_ge shift_snth_less)
traytel@51462
   428
traytel@51772
   429
lemma sset_flat[simp]: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> 
traytel@51772
   430
  sset (flat s) = (\<Union>xs \<in> sset s. set xs)" (is "?P \<Longrightarrow> ?L = ?R")
traytel@51462
   431
proof safe
traytel@51462
   432
  fix x assume ?P "x : ?L"
traytel@51772
   433
  then obtain m where "x = flat s !! m" by (metis image_iff sset_range)
traytel@51462
   434
  with `?P` obtain n m' where "x = s !! n ! m'" "m' < length (s !! n)"
traytel@51462
   435
  proof (atomize_elim, induct m arbitrary: s rule: less_induct)
traytel@51462
   436
    case (less y)
traytel@51462
   437
    thus ?case
traytel@51462
   438
    proof (cases "y < length (shd s)")
traytel@51462
   439
      case True thus ?thesis by (metis flat_snth less(2,3) snth.simps(1))
traytel@51462
   440
    next
traytel@51462
   441
      case False
traytel@51462
   442
      hence "x = flat (stl s) !! (y - length (shd s))" by (metis less(2,3) flat_snth)
traytel@51462
   443
      moreover
wenzelm@53374
   444
      { from less(2) have *: "length (shd s) > 0" by (cases s) simp_all
wenzelm@53374
   445
        with False have "y > 0" by (cases y) simp_all
wenzelm@53374
   446
        with * have "y - length (shd s) < y" by simp
traytel@51462
   447
      }
traytel@51772
   448
      moreover have "\<forall>xs \<in> sset (stl s). xs \<noteq> []" using less(2) by (cases s) auto
traytel@51462
   449
      ultimately have "\<exists>n m'. x = stl s !! n ! m' \<and> m' < length (stl s !! n)" by (intro less(1)) auto
traytel@51462
   450
      thus ?thesis by (metis snth.simps(2))
traytel@51462
   451
    qed
traytel@51462
   452
  qed
traytel@51772
   453
  thus "x \<in> ?R" by (auto simp: sset_range dest!: nth_mem)
traytel@51462
   454
next
traytel@51772
   455
  fix x xs assume "xs \<in> sset s" ?P "x \<in> set xs" thus "x \<in> ?L"
traytel@51772
   456
    by (induct rule: sset_induct1)
traytel@51772
   457
      (metis UnI1 flat_unfold shift.simps(1) sset_shift,
traytel@51772
   458
       metis UnI2 flat_unfold shd_sset stl_sset sset_shift)
traytel@51462
   459
qed
traytel@51462
   460
traytel@51462
   461
traytel@51462
   462
subsection {* merge a stream of streams *}
traytel@51462
   463
traytel@51462
   464
definition smerge :: "'a stream stream \<Rightarrow> 'a stream" where
traytel@51772
   465
  "smerge ss = flat (smap (\<lambda>n. map (\<lambda>s. s !! n) (stake (Suc n) ss) @ stake n (ss !! n)) nats)"
traytel@51462
   466
traytel@51462
   467
lemma stake_nth[simp]: "m < n \<Longrightarrow> stake n s ! m = s !! m"
traytel@51462
   468
  by (induct n arbitrary: s m) (auto simp: nth_Cons', metis Suc_pred snth.simps(2))
traytel@51462
   469
traytel@51772
   470
lemma snth_sset_smerge: "ss !! n !! m \<in> sset (smerge ss)"
traytel@51462
   471
proof (cases "n \<le> m")
traytel@51462
   472
  case False thus ?thesis unfolding smerge_def
traytel@51772
   473
    by (subst sset_flat)
blanchet@53290
   474
      (auto simp: stream.set_map in_set_conv_nth simp del: stake.simps
traytel@51462
   475
        intro!: exI[of _ n, OF disjI2] exI[of _ m, OF mp])
traytel@51462
   476
next
traytel@51462
   477
  case True thus ?thesis unfolding smerge_def
traytel@51772
   478
    by (subst sset_flat)
blanchet@53290
   479
      (auto simp: stream.set_map in_set_conv_nth image_iff simp del: stake.simps snth.simps
traytel@51462
   480
        intro!: exI[of _ m, OF disjI1] bexI[of _ "ss !! n"] exI[of _ n, OF mp])
traytel@51462
   481
qed
traytel@51462
   482
traytel@51772
   483
lemma sset_smerge: "sset (smerge ss) = UNION (sset ss) sset"
traytel@51462
   484
proof safe
traytel@51772
   485
  fix x assume "x \<in> sset (smerge ss)"
traytel@51772
   486
  thus "x \<in> UNION (sset ss) sset"
traytel@51772
   487
    unfolding smerge_def by (subst (asm) sset_flat)
blanchet@53290
   488
      (auto simp: stream.set_map in_set_conv_nth sset_range simp del: stake.simps, fast+)
traytel@51462
   489
next
traytel@51772
   490
  fix s x assume "s \<in> sset ss" "x \<in> sset s"
traytel@51772
   491
  thus "x \<in> sset (smerge ss)" using snth_sset_smerge by (auto simp: sset_range)
traytel@51462
   492
qed
traytel@51462
   493
traytel@51462
   494
traytel@51462
   495
subsection {* product of two streams *}
traytel@51462
   496
traytel@51462
   497
definition sproduct :: "'a stream \<Rightarrow> 'b stream \<Rightarrow> ('a \<times> 'b) stream" where
traytel@51772
   498
  "sproduct s1 s2 = smerge (smap (\<lambda>x. smap (Pair x) s2) s1)"
traytel@51462
   499
traytel@51772
   500
lemma sset_sproduct: "sset (sproduct s1 s2) = sset s1 \<times> sset s2"
blanchet@53290
   501
  unfolding sproduct_def sset_smerge by (auto simp: stream.set_map)
traytel@51462
   502
traytel@51462
   503
traytel@51462
   504
subsection {* interleave two streams *}
traytel@51462
   505
traytel@54027
   506
primcorec sinterleave where
traytel@54027
   507
  "shd (sinterleave s1 s2) = shd s1"
traytel@54027
   508
| "stl (sinterleave s1 s2) = sinterleave s2 (stl s1)"
traytel@51462
   509
traytel@51462
   510
lemma sinterleave_code[code]:
traytel@51462
   511
  "sinterleave (x ## s1) s2 = x ## sinterleave s2 s1"
traytel@54027
   512
  by (subst sinterleave.ctr) simp
traytel@51462
   513
traytel@51462
   514
lemma sinterleave_snth[simp]:
traytel@51462
   515
  "even n \<Longrightarrow> sinterleave s1 s2 !! n = s1 !! (n div 2)"
traytel@51462
   516
   "odd n \<Longrightarrow> sinterleave s1 s2 !! n = s2 !! (n div 2)"
traytel@51462
   517
  by (induct n arbitrary: s1 s2)
traytel@51462
   518
    (auto dest: even_nat_Suc_div_2 odd_nat_plus_one_div_two[folded nat_2])
traytel@51462
   519
traytel@51772
   520
lemma sset_sinterleave: "sset (sinterleave s1 s2) = sset s1 \<union> sset s2"
traytel@51462
   521
proof (intro equalityI subsetI)
traytel@51772
   522
  fix x assume "x \<in> sset (sinterleave s1 s2)"
traytel@51772
   523
  then obtain n where "x = sinterleave s1 s2 !! n" unfolding sset_range by blast
traytel@51772
   524
  thus "x \<in> sset s1 \<union> sset s2" by (cases "even n") auto
traytel@51462
   525
next
traytel@51772
   526
  fix x assume "x \<in> sset s1 \<union> sset s2"
traytel@51772
   527
  thus "x \<in> sset (sinterleave s1 s2)"
traytel@51462
   528
  proof
traytel@51772
   529
    assume "x \<in> sset s1"
traytel@51772
   530
    then obtain n where "x = s1 !! n" unfolding sset_range by blast
traytel@51462
   531
    hence "sinterleave s1 s2 !! (2 * n) = x" by simp
traytel@51772
   532
    thus ?thesis unfolding sset_range by blast
traytel@51462
   533
  next
traytel@51772
   534
    assume "x \<in> sset s2"
traytel@51772
   535
    then obtain n where "x = s2 !! n" unfolding sset_range by blast
traytel@51462
   536
    hence "sinterleave s1 s2 !! (2 * n + 1) = x" by simp
traytel@51772
   537
    thus ?thesis unfolding sset_range by blast
traytel@51462
   538
  qed
traytel@51462
   539
qed
traytel@51462
   540
traytel@51462
   541
traytel@51141
   542
subsection {* zip *}
traytel@51141
   543
traytel@54027
   544
primcorec szip where
traytel@54027
   545
  "shd (szip s1 s2) = (shd s1, shd s2)"
traytel@54027
   546
| "stl (szip s1 s2) = szip (stl s1) (stl s2)"
traytel@51141
   547
traytel@54720
   548
lemma szip_unfold[code]: "szip (a ## s1) (b ## s2) = (a, b) ## (szip s1 s2)"
traytel@54027
   549
  by (subst szip.ctr) simp
traytel@51409
   550
traytel@51141
   551
lemma snth_szip[simp]: "szip s1 s2 !! n = (s1 !! n, s2 !! n)"
traytel@51141
   552
  by (induct n arbitrary: s1 s2) auto
traytel@51141
   553
traytel@57175
   554
lemma stake_szip[simp]:
traytel@57175
   555
  "stake n (szip s1 s2) = zip (stake n s1) (stake n s2)"
traytel@57175
   556
  by (induct n arbitrary: s1 s2) auto
traytel@57175
   557
traytel@57175
   558
lemma sdrop_szip[simp]: "sdrop n (szip s1 s2) = szip (sdrop n s1) (sdrop n s2)"
traytel@57175
   559
  by (induct n arbitrary: s1 s2) auto
traytel@57175
   560
traytel@57175
   561
lemma smap_szip_fst:
traytel@57175
   562
  "smap (\<lambda>x. f (fst x)) (szip s1 s2) = smap f s1"
traytel@57175
   563
  by (coinduction arbitrary: s1 s2) auto
traytel@57175
   564
traytel@57175
   565
lemma smap_szip_snd:
traytel@57175
   566
  "smap (\<lambda>x. g (snd x)) (szip s1 s2) = smap g s2"
traytel@57175
   567
  by (coinduction arbitrary: s1 s2) auto
traytel@57175
   568
traytel@51141
   569
traytel@51141
   570
subsection {* zip via function *}
traytel@51141
   571
traytel@54027
   572
primcorec smap2 where
traytel@51772
   573
  "shd (smap2 f s1 s2) = f (shd s1) (shd s2)"
traytel@54027
   574
| "stl (smap2 f s1 s2) = smap2 f (stl s1) (stl s2)"
traytel@51141
   575
traytel@51772
   576
lemma smap2_unfold[code]:
traytel@54720
   577
  "smap2 f (a ## s1) (b ## s2) = f a b ## (smap2 f s1 s2)"
traytel@54027
   578
  by (subst smap2.ctr) simp
traytel@51409
   579
traytel@51772
   580
lemma smap2_szip:
traytel@51772
   581
  "smap2 f s1 s2 = smap (split f) (szip s1 s2)"
traytel@54027
   582
  by (coinduction arbitrary: s1 s2) auto
traytel@50518
   583
traytel@57175
   584
lemma smap_smap2[simp]:
traytel@57175
   585
  "smap f (smap2 g s1 s2) = smap2 (\<lambda>x y. f (g x y)) s1 s2"
traytel@57175
   586
  unfolding smap2_szip stream.map_comp o_def split_def ..
traytel@57175
   587
traytel@57175
   588
lemma smap2_alt:
traytel@57175
   589
  "(smap2 f s1 s2 = s) = (\<forall>n. f (s1 !! n) (s2 !! n) = s !! n)"
traytel@57175
   590
  unfolding smap2_szip smap_alt by auto
traytel@57175
   591
traytel@57175
   592
lemma snth_smap2[simp]:
traytel@57175
   593
  "smap2 f s1 s2 !! n = f (s1 !! n) (s2 !! n)"
traytel@57175
   594
  by (induct n arbitrary: s1 s2) auto
traytel@57175
   595
traytel@57175
   596
lemma stake_smap2[simp]:
traytel@57175
   597
  "stake n (smap2 f s1 s2) = map (split f) (zip (stake n s1) (stake n s2))"
traytel@57175
   598
  by (induct n arbitrary: s1 s2) auto
traytel@57175
   599
traytel@57175
   600
lemma sdrop_smap2[simp]:
traytel@57175
   601
  "sdrop n (smap2 f s1 s2) = smap2 f (sdrop n s1) (sdrop n s2)"
traytel@57175
   602
  by (induct n arbitrary: s1 s2) auto
traytel@57175
   603
traytel@50518
   604
end