src/HOL/Tools/Sledgehammer/clausifier.ML
author blanchet
Tue Sep 14 23:38:20 2010 +0200 (2010-09-14)
changeset 39376 ca81b7ae543c
parent 39355 104a6d9e493e
child 39561 3857a4a81fa7
permissions -rw-r--r--
tuning
blanchet@37574
     1
(*  Title:      HOL/Tools/Sledgehammer/clausifier.ML
blanchet@38027
     2
    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
blanchet@36393
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@15347
     4
wenzelm@20461
     5
Transformation of axiom rules (elim/intro/etc) into CNF forms.
paulson@15347
     6
*)
paulson@15347
     7
blanchet@37574
     8
signature CLAUSIFIER =
wenzelm@21505
     9
sig
blanchet@38632
    10
  val extensionalize_theorem : thm -> thm
blanchet@38001
    11
  val introduce_combinators_in_cterm : cterm -> thm
blanchet@38028
    12
  val introduce_combinators_in_theorem : thm -> thm
blanchet@39037
    13
  val to_definitional_cnf_with_quantifiers : theory -> thm -> thm
blanchet@39037
    14
  val cnf_axiom : theory -> thm -> thm list
wenzelm@21505
    15
end;
mengj@19196
    16
blanchet@37574
    17
structure Clausifier : CLAUSIFIER =
paulson@15997
    18
struct
paulson@15347
    19
paulson@15997
    20
(**** Transformation of Elimination Rules into First-Order Formulas****)
paulson@15347
    21
wenzelm@29064
    22
val cfalse = cterm_of @{theory HOL} HOLogic.false_const;
wenzelm@29064
    23
val ctp_false = cterm_of @{theory HOL} (HOLogic.mk_Trueprop HOLogic.false_const);
wenzelm@20461
    24
blanchet@38001
    25
(* Converts an elim-rule into an equivalent theorem that does not have the
blanchet@38001
    26
   predicate variable. Leaves other theorems unchanged. We simply instantiate
blanchet@38001
    27
   the conclusion variable to False. (Cf. "transform_elim_term" in
blanchet@38652
    28
   "Sledgehammer_Util".) *)
blanchet@38001
    29
fun transform_elim_theorem th =
paulson@21430
    30
  case concl_of th of    (*conclusion variable*)
blanchet@35963
    31
       @{const Trueprop} $ (v as Var (_, @{typ bool})) =>
wenzelm@29064
    32
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, cfalse)]) th
blanchet@35963
    33
    | v as Var(_, @{typ prop}) =>
wenzelm@29064
    34
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, ctp_false)]) th
blanchet@38001
    35
    | _ => th
paulson@15997
    36
paulson@24742
    37
(*To enforce single-threading*)
paulson@24742
    38
exception Clausify_failure of theory;
wenzelm@20461
    39
wenzelm@28544
    40
paulson@16009
    41
(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
paulson@16009
    42
blanchet@39355
    43
fun mk_skolem t =
blanchet@37436
    44
  let val T = fastype_of t in
blanchet@39355
    45
    Const (@{const_name skolem}, T --> T) $ t
blanchet@37436
    46
  end
blanchet@37410
    47
blanchet@37617
    48
fun beta_eta_under_lambdas (Abs (s, T, t')) =
blanchet@37617
    49
    Abs (s, T, beta_eta_under_lambdas t')
blanchet@37617
    50
  | beta_eta_under_lambdas t = Envir.beta_eta_contract t
blanchet@37512
    51
paulson@18141
    52
(*Traverse a theorem, accumulating Skolem function definitions.*)
blanchet@37617
    53
fun assume_skolem_funs th =
blanchet@37399
    54
  let
blanchet@39376
    55
    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (_, T, p))) rhss =
blanchet@37399
    56
        (*Existential: declare a Skolem function, then insert into body and continue*)
blanchet@37399
    57
        let
blanchet@37617
    58
          val args = OldTerm.term_frees body
blanchet@37500
    59
          (* Forms a lambda-abstraction over the formal parameters *)
blanchet@37500
    60
          val rhs =
blanchet@37500
    61
            list_abs_free (map dest_Free args,
blanchet@37617
    62
                           HOLogic.choice_const T $ beta_eta_under_lambdas body)
blanchet@39355
    63
            |> mk_skolem
blanchet@37518
    64
          val comb = list_comb (rhs, args)
blanchet@37617
    65
        in dec_sko (subst_bound (comb, p)) (rhs :: rhss) end
blanchet@37617
    66
      | dec_sko (Const (@{const_name All},_) $ Abs (a, T, p)) rhss =
blanchet@37399
    67
        (*Universal quant: insert a free variable into body and continue*)
blanchet@37399
    68
        let val fname = Name.variant (OldTerm.add_term_names (p,[])) a
blanchet@37617
    69
        in dec_sko (subst_bound (Free(fname,T), p)) rhss end
haftmann@38795
    70
      | dec_sko (@{const HOL.conj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
haftmann@38795
    71
      | dec_sko (@{const HOL.disj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
blanchet@37617
    72
      | dec_sko (@{const Trueprop} $ p) rhss = dec_sko p rhss
blanchet@37617
    73
      | dec_sko _ rhss = rhss
paulson@20419
    74
  in  dec_sko (prop_of th) []  end;
paulson@20419
    75
paulson@20419
    76
paulson@24827
    77
(**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
paulson@20419
    78
nipkow@39302
    79
val fun_cong_all = @{thm fun_eq_iff [THEN iffD1]}
paulson@20419
    80
blanchet@38001
    81
(* Removes the lambdas from an equation of the form "t = (%x. u)".
blanchet@38608
    82
   (Cf. "extensionalize_term" in "Sledgehammer_Translate".) *)
blanchet@38000
    83
fun extensionalize_theorem th =
blanchet@37540
    84
  case prop_of th of
haftmann@38864
    85
    _ $ (Const (@{const_name HOL.eq}, Type (_, [Type (@{type_name fun}, _), _]))
blanchet@39376
    86
         $ _ $ Abs _) => extensionalize_theorem (th RS fun_cong_all)
blanchet@37540
    87
  | _ => th
paulson@20419
    88
blanchet@39355
    89
fun is_quasi_lambda_free (Const (@{const_name skolem}, _) $ _) = true
blanchet@37416
    90
  | is_quasi_lambda_free (t1 $ t2) =
blanchet@37416
    91
    is_quasi_lambda_free t1 andalso is_quasi_lambda_free t2
blanchet@37416
    92
  | is_quasi_lambda_free (Abs _) = false
blanchet@37416
    93
  | is_quasi_lambda_free _ = true
wenzelm@20461
    94
wenzelm@32010
    95
val [f_B,g_B] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_B}));
wenzelm@32010
    96
val [g_C,f_C] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_C}));
wenzelm@32010
    97
val [f_S,g_S] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_S}));
paulson@20863
    98
blanchet@38282
    99
(* FIXME: Requires more use of cterm constructors. *)
paulson@24827
   100
fun abstract ct =
wenzelm@28544
   101
  let
wenzelm@28544
   102
      val thy = theory_of_cterm ct
paulson@25256
   103
      val Abs(x,_,body) = term_of ct
blanchet@35963
   104
      val Type(@{type_name fun}, [xT,bodyT]) = typ_of (ctyp_of_term ct)
blanchet@38005
   105
      val cxT = ctyp_of thy xT
blanchet@38005
   106
      val cbodyT = ctyp_of thy bodyT
blanchet@38005
   107
      fun makeK () =
blanchet@38005
   108
        instantiate' [SOME cxT, SOME cbodyT] [SOME (cterm_of thy body)]
blanchet@38005
   109
                     @{thm abs_K}
paulson@24827
   110
  in
paulson@24827
   111
      case body of
paulson@24827
   112
          Const _ => makeK()
paulson@24827
   113
        | Free _ => makeK()
paulson@24827
   114
        | Var _ => makeK()  (*though Var isn't expected*)
wenzelm@27184
   115
        | Bound 0 => instantiate' [SOME cxT] [] @{thm abs_I} (*identity: I*)
paulson@24827
   116
        | rator$rand =>
wenzelm@27184
   117
            if loose_bvar1 (rator,0) then (*C or S*)
wenzelm@27179
   118
               if loose_bvar1 (rand,0) then (*S*)
wenzelm@27179
   119
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27179
   120
                     val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27184
   121
                     val abs_S' = cterm_instantiate [(f_S,crator),(g_S,crand)] @{thm abs_S}
wenzelm@27184
   122
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_S')
wenzelm@27179
   123
                 in
wenzelm@27179
   124
                   Thm.transitive abs_S' (Conv.binop_conv abstract rhs)
wenzelm@27179
   125
                 end
wenzelm@27179
   126
               else (*C*)
wenzelm@27179
   127
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27184
   128
                     val abs_C' = cterm_instantiate [(f_C,crator),(g_C,cterm_of thy rand)] @{thm abs_C}
wenzelm@27184
   129
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_C')
wenzelm@27179
   130
                 in
wenzelm@27179
   131
                   Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv abstract) rhs)
wenzelm@27179
   132
                 end
wenzelm@27184
   133
            else if loose_bvar1 (rand,0) then (*B or eta*)
wenzelm@36945
   134
               if rand = Bound 0 then Thm.eta_conversion ct
wenzelm@27179
   135
               else (*B*)
wenzelm@27179
   136
                 let val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27179
   137
                     val crator = cterm_of thy rator
wenzelm@27184
   138
                     val abs_B' = cterm_instantiate [(f_B,crator),(g_B,crand)] @{thm abs_B}
wenzelm@27184
   139
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_B')
blanchet@37349
   140
                 in Thm.transitive abs_B' (Conv.arg_conv abstract rhs) end
wenzelm@27179
   141
            else makeK()
blanchet@37349
   142
        | _ => raise Fail "abstract: Bad term"
paulson@24827
   143
  end;
paulson@20863
   144
blanchet@37349
   145
(* Traverse a theorem, remplacing lambda-abstractions with combinators. *)
blanchet@38001
   146
fun introduce_combinators_in_cterm ct =
blanchet@37416
   147
  if is_quasi_lambda_free (term_of ct) then
blanchet@37349
   148
    Thm.reflexive ct
blanchet@37349
   149
  else case term_of ct of
blanchet@37349
   150
    Abs _ =>
blanchet@37349
   151
    let
blanchet@37349
   152
      val (cv, cta) = Thm.dest_abs NONE ct
blanchet@37349
   153
      val (v, _) = dest_Free (term_of cv)
blanchet@38001
   154
      val u_th = introduce_combinators_in_cterm cta
blanchet@37349
   155
      val cu = Thm.rhs_of u_th
blanchet@37349
   156
      val comb_eq = abstract (Thm.cabs cv cu)
blanchet@37349
   157
    in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end
blanchet@37349
   158
  | _ $ _ =>
blanchet@37349
   159
    let val (ct1, ct2) = Thm.dest_comb ct in
blanchet@38001
   160
        Thm.combination (introduce_combinators_in_cterm ct1)
blanchet@38001
   161
                        (introduce_combinators_in_cterm ct2)
blanchet@37349
   162
    end
blanchet@37349
   163
blanchet@38001
   164
fun introduce_combinators_in_theorem th =
blanchet@37416
   165
  if is_quasi_lambda_free (prop_of th) then
blanchet@37349
   166
    th
paulson@24827
   167
  else
blanchet@37349
   168
    let
blanchet@37349
   169
      val th = Drule.eta_contraction_rule th
blanchet@38001
   170
      val eqth = introduce_combinators_in_cterm (cprop_of th)
blanchet@37349
   171
    in Thm.equal_elim eqth th end
blanchet@37349
   172
    handle THM (msg, _, _) =>
blanchet@37349
   173
           (warning ("Error in the combinator translation of " ^
blanchet@37349
   174
                     Display.string_of_thm_without_context th ^
blanchet@37349
   175
                     "\nException message: " ^ msg ^ ".");
blanchet@37349
   176
            (* A type variable of sort "{}" will make abstraction fail. *)
blanchet@37349
   177
            TrueI)
paulson@16009
   178
paulson@16009
   179
(*cterms are used throughout for efficiency*)
blanchet@38280
   180
val cTrueprop = cterm_of @{theory HOL} HOLogic.Trueprop;
paulson@16009
   181
paulson@16009
   182
(*Given an abstraction over n variables, replace the bound variables by free
paulson@16009
   183
  ones. Return the body, along with the list of free variables.*)
wenzelm@20461
   184
fun c_variant_abs_multi (ct0, vars) =
paulson@16009
   185
      let val (cv,ct) = Thm.dest_abs NONE ct0
paulson@16009
   186
      in  c_variant_abs_multi (ct, cv::vars)  end
paulson@16009
   187
      handle CTERM _ => (ct0, rev vars);
paulson@16009
   188
blanchet@39355
   189
val skolem_def_raw = @{thms skolem_def_raw}
blanchet@37617
   190
blanchet@37617
   191
(* Given the definition of a Skolem function, return a theorem to replace
blanchet@37617
   192
   an existential formula by a use of that function.
paulson@18141
   193
   Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B"  [.] *)
blanchet@38016
   194
fun skolem_theorem_of_def thy rhs0 =
blanchet@37399
   195
  let
blanchet@38280
   196
    val rhs = rhs0 |> Type.legacy_freeze_thaw |> #1 |> cterm_of thy
blanchet@37617
   197
    val rhs' = rhs |> Thm.dest_comb |> snd
blanchet@37617
   198
    val (ch, frees) = c_variant_abs_multi (rhs', [])
blanchet@37617
   199
    val (hilbert, cabs) = ch |> Thm.dest_comb |>> term_of
blanchet@37617
   200
    val T =
blanchet@37617
   201
      case hilbert of
blanchet@37617
   202
        Const (@{const_name Eps}, Type (@{type_name fun}, [_, T])) => T
blanchet@37617
   203
      | _ => raise TERM ("skolem_theorem_of_def: expected \"Eps\"", [hilbert])
blanchet@38280
   204
    val cex = cterm_of thy (HOLogic.exists_const T)
blanchet@37617
   205
    val ex_tm = Thm.capply cTrueprop (Thm.capply cex cabs)
blanchet@37629
   206
    val conc =
blanchet@37617
   207
      Drule.list_comb (rhs, frees)
blanchet@37617
   208
      |> Drule.beta_conv cabs |> Thm.capply cTrueprop
blanchet@37617
   209
    fun tacf [prem] =
blanchet@39355
   210
      rewrite_goals_tac skolem_def_raw
blanchet@39355
   211
      THEN rtac ((prem |> rewrite_rule skolem_def_raw) RS @{thm someI_ex}) 1
blanchet@37617
   212
  in
blanchet@37629
   213
    Goal.prove_internal [ex_tm] conc tacf
blanchet@37629
   214
    |> forall_intr_list frees
blanchet@37629
   215
    |> Thm.forall_elim_vars 0  (*Introduce Vars, but don't discharge defs.*)
blanchet@37629
   216
    |> Thm.varifyT_global
blanchet@37617
   217
  end
paulson@24742
   218
blanchet@37995
   219
(* Converts an Isabelle theorem (intro, elim or simp format, even higher-order)
blanchet@37995
   220
   into NNF. *)
paulson@24937
   221
fun to_nnf th ctxt0 =
blanchet@38608
   222
  let
blanchet@38608
   223
    val th1 = th |> transform_elim_theorem |> zero_var_indexes
blanchet@38608
   224
    val ((_, [th2]), ctxt) = Variable.import true [th1] ctxt0
blanchet@38608
   225
    val th3 = th2 |> Conv.fconv_rule Object_Logic.atomize
blanchet@38608
   226
                  |> extensionalize_theorem
blanchet@38608
   227
                  |> Meson.make_nnf ctxt
blanchet@38608
   228
  in (th3, ctxt) end
paulson@16009
   229
blanchet@39036
   230
fun to_definitional_cnf_with_quantifiers thy th =
blanchet@39036
   231
  let
blanchet@39036
   232
    val eqth = cnf.make_cnfx_thm thy (HOLogic.dest_Trueprop (prop_of th))
blanchet@39036
   233
    val eqth = eqth RS @{thm eq_reflection}
blanchet@39036
   234
    val eqth = eqth RS @{thm TruepropI}
blanchet@39036
   235
  in Thm.equal_elim eqth th end
blanchet@39036
   236
blanchet@38278
   237
(* Convert a theorem to CNF, with Skolem functions as additional premises. *)
blanchet@38278
   238
fun cnf_axiom thy th =
blanchet@37626
   239
  let
blanchet@37626
   240
    val ctxt0 = Variable.global_thm_context th
blanchet@39036
   241
    val (nnf_th, ctxt) = to_nnf th ctxt0
blanchet@39261
   242
    fun aux th =
blanchet@39261
   243
      Meson.make_cnf (map (skolem_theorem_of_def thy) (assume_skolem_funs th))
blanchet@39261
   244
                     th ctxt
blanchet@39261
   245
    val (cnf_ths, ctxt) =
blanchet@39261
   246
      aux nnf_th
blanchet@39268
   247
      |> (fn ([], _) => aux (to_definitional_cnf_with_quantifiers thy nnf_th)
blanchet@39268
   248
           | p => p)
blanchet@37626
   249
  in
blanchet@39036
   250
    cnf_ths |> map introduce_combinators_in_theorem
blanchet@39036
   251
            |> Variable.export ctxt ctxt0
blanchet@39036
   252
            |> Meson.finish_cnf
blanchet@39036
   253
            |> map Thm.close_derivation
blanchet@37626
   254
  end
blanchet@37626
   255
  handle THM _ => []
wenzelm@27184
   256
wenzelm@20461
   257
end;