src/HOL/Real/RealVector.thy
author huffman
Tue, 08 May 2007 04:55:19 +0200
changeset 22857 cb84e886cc90
parent 22852 2490d4b4671a
child 22876 2b4c831ceca7
permissions -rw-r--r--
add lemma abs_norm_cancel
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
     1
(*  Title       : RealVector.thy
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
     2
    ID:         $Id$
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
     3
    Author      : Brian Huffman
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
     4
*)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
     5
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
     6
header {* Vector Spaces and Algebras over the Reals *}
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
     7
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
     8
theory RealVector
20684
74e8b46abb97 add lemma norm_power
huffman
parents: 20584
diff changeset
     9
imports RealPow
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    10
begin
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    11
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    12
subsection {* Locale for additive functions *}
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    13
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    14
locale additive =
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    15
  fixes f :: "'a::ab_group_add \<Rightarrow> 'b::ab_group_add"
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    16
  assumes add: "f (x + y) = f x + f y"
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    17
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    18
lemma (in additive) zero: "f 0 = 0"
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    19
proof -
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    20
  have "f 0 = f (0 + 0)" by simp
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    21
  also have "\<dots> = f 0 + f 0" by (rule add)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    22
  finally show "f 0 = 0" by simp
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    23
qed
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    24
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    25
lemma (in additive) minus: "f (- x) = - f x"
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    26
proof -
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    27
  have "f (- x) + f x = f (- x + x)" by (rule add [symmetric])
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    28
  also have "\<dots> = - f x + f x" by (simp add: zero)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    29
  finally show "f (- x) = - f x" by (rule add_right_imp_eq)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    30
qed
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    31
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    32
lemma (in additive) diff: "f (x - y) = f x - f y"
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    33
by (simp add: diff_def add minus)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    34
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    35
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    36
subsection {* Real vector spaces *}
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    37
22636
c40465deaf20 new class syntax for scaleR and norm classes
huffman
parents: 22625
diff changeset
    38
class scaleR = type +
c40465deaf20 new class syntax for scaleR and norm classes
huffman
parents: 22625
diff changeset
    39
  fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    40
22636
c40465deaf20 new class syntax for scaleR and norm classes
huffman
parents: 22625
diff changeset
    41
notation
c40465deaf20 new class syntax for scaleR and norm classes
huffman
parents: 22625
diff changeset
    42
  scaleR (infixr "*#" 75)
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    43
20763
052b348a98a9 rearranged axioms and simp rules for scaleR
huffman
parents: 20722
diff changeset
    44
abbreviation
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    45
  divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a::scaleR" (infixl "'/#" 70) where
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
    46
  "x /# r == scaleR (inverse r) x"
20763
052b348a98a9 rearranged axioms and simp rules for scaleR
huffman
parents: 20722
diff changeset
    47
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 20828
diff changeset
    48
notation (xsymbols)
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
    49
  scaleR (infixr "*\<^sub>R" 75) and
20763
052b348a98a9 rearranged axioms and simp rules for scaleR
huffman
parents: 20722
diff changeset
    50
  divideR (infixl "'/\<^sub>R" 70)
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    51
22636
c40465deaf20 new class syntax for scaleR and norm classes
huffman
parents: 22625
diff changeset
    52
instance real :: scaleR
c40465deaf20 new class syntax for scaleR and norm classes
huffman
parents: 22625
diff changeset
    53
  real_scaleR_def: "scaleR a x \<equiv> a * x" ..
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
    54
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    55
axclass real_vector < scaleR, ab_group_add
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
    56
  scaleR_right_distrib: "scaleR a (x + y) = scaleR a x + scaleR a y"
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
    57
  scaleR_left_distrib: "scaleR (a + b) x = scaleR a x + scaleR b x"
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
    58
  scaleR_scaleR [simp]: "scaleR a (scaleR b x) = scaleR (a * b) x"
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
    59
  scaleR_one [simp]: "scaleR 1 x = x"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    60
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    61
axclass real_algebra < real_vector, ring
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
    62
  mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)"
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
    63
  mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    64
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
    65
axclass real_algebra_1 < real_algebra, ring_1
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
    66
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
    67
axclass real_div_algebra < real_algebra_1, division_ring
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
    68
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
    69
axclass real_field < real_div_algebra, field
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
    70
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
    71
instance real :: real_field
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
    72
apply (intro_classes, unfold real_scaleR_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
    73
apply (rule right_distrib)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
    74
apply (rule left_distrib)
20763
052b348a98a9 rearranged axioms and simp rules for scaleR
huffman
parents: 20722
diff changeset
    75
apply (rule mult_assoc [symmetric])
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
    76
apply (rule mult_1_left)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
    77
apply (rule mult_assoc)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
    78
apply (rule mult_left_commute)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
    79
done
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
    80
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    81
lemma scaleR_left_commute:
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    82
  fixes x :: "'a::real_vector"
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
    83
  shows "scaleR a (scaleR b x) = scaleR b (scaleR a x)"
20763
052b348a98a9 rearranged axioms and simp rules for scaleR
huffman
parents: 20722
diff changeset
    84
by (simp add: mult_commute)
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    85
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
    86
lemma additive_scaleR_right: "additive (\<lambda>x. scaleR a x::'a::real_vector)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    87
by (rule additive.intro, rule scaleR_right_distrib)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    88
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
    89
lemma additive_scaleR_left: "additive (\<lambda>a. scaleR a x::'a::real_vector)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    90
by (rule additive.intro, rule scaleR_left_distrib)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    91
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    92
lemmas scaleR_zero_left [simp] =
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    93
  additive.zero [OF additive_scaleR_left, standard]
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    94
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    95
lemmas scaleR_zero_right [simp] =
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    96
  additive.zero [OF additive_scaleR_right, standard]
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    97
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    98
lemmas scaleR_minus_left [simp] =
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    99
  additive.minus [OF additive_scaleR_left, standard]
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   100
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   101
lemmas scaleR_minus_right [simp] =
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   102
  additive.minus [OF additive_scaleR_right, standard]
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   103
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   104
lemmas scaleR_left_diff_distrib =
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   105
  additive.diff [OF additive_scaleR_left, standard]
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   106
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   107
lemmas scaleR_right_diff_distrib =
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   108
  additive.diff [OF additive_scaleR_right, standard]
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   109
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   110
lemma scaleR_eq_0_iff:
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   111
  fixes x :: "'a::real_vector"
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   112
  shows "(scaleR a x = 0) = (a = 0 \<or> x = 0)"
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   113
proof cases
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   114
  assume "a = 0" thus ?thesis by simp
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   115
next
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   116
  assume anz [simp]: "a \<noteq> 0"
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   117
  { assume "scaleR a x = 0"
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   118
    hence "scaleR (inverse a) (scaleR a x) = 0" by simp
20763
052b348a98a9 rearranged axioms and simp rules for scaleR
huffman
parents: 20722
diff changeset
   119
    hence "x = 0" by simp }
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   120
  thus ?thesis by force
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   121
qed
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   122
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   123
lemma scaleR_left_imp_eq:
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   124
  fixes x y :: "'a::real_vector"
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   125
  shows "\<lbrakk>a \<noteq> 0; scaleR a x = scaleR a y\<rbrakk> \<Longrightarrow> x = y"
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   126
proof -
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   127
  assume nonzero: "a \<noteq> 0"
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   128
  assume "scaleR a x = scaleR a y"
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   129
  hence "scaleR a (x - y) = 0"
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   130
     by (simp add: scaleR_right_diff_distrib)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   131
  hence "x - y = 0"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   132
     by (simp add: scaleR_eq_0_iff nonzero)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   133
  thus "x = y" by simp
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   134
qed
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   135
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   136
lemma scaleR_right_imp_eq:
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   137
  fixes x y :: "'a::real_vector"
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   138
  shows "\<lbrakk>x \<noteq> 0; scaleR a x = scaleR b x\<rbrakk> \<Longrightarrow> a = b"
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   139
proof -
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   140
  assume nonzero: "x \<noteq> 0"
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   141
  assume "scaleR a x = scaleR b x"
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   142
  hence "scaleR (a - b) x = 0"
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   143
     by (simp add: scaleR_left_diff_distrib)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   144
  hence "a - b = 0"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   145
     by (simp add: scaleR_eq_0_iff nonzero)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   146
  thus "a = b" by simp
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   147
qed
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   148
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   149
lemma scaleR_cancel_left:
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   150
  fixes x y :: "'a::real_vector"
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   151
  shows "(scaleR a x = scaleR a y) = (x = y \<or> a = 0)"
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   152
by (auto intro: scaleR_left_imp_eq)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   153
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   154
lemma scaleR_cancel_right:
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   155
  fixes x y :: "'a::real_vector"
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   156
  shows "(scaleR a x = scaleR b x) = (a = b \<or> x = 0)"
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   157
by (auto intro: scaleR_right_imp_eq)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   158
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   159
lemma nonzero_inverse_scaleR_distrib:
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   160
  fixes x :: "'a::real_div_algebra" shows
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   161
  "\<lbrakk>a \<noteq> 0; x \<noteq> 0\<rbrakk> \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
20763
052b348a98a9 rearranged axioms and simp rules for scaleR
huffman
parents: 20722
diff changeset
   162
by (rule inverse_unique, simp)
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   163
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   164
lemma inverse_scaleR_distrib:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   165
  fixes x :: "'a::{real_div_algebra,division_by_zero}"
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   166
  shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   167
apply (case_tac "a = 0", simp)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   168
apply (case_tac "x = 0", simp)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   169
apply (erule (1) nonzero_inverse_scaleR_distrib)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   170
done
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   171
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   172
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   173
subsection {* Embedding of the Reals into any @{text real_algebra_1}:
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   174
@{term of_real} *}
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   175
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   176
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
   177
  of_real :: "real \<Rightarrow> 'a::real_algebra_1" where
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   178
  "of_real r = scaleR r 1"
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   179
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   180
lemma scaleR_conv_of_real: "scaleR r x = of_real r * x"
20763
052b348a98a9 rearranged axioms and simp rules for scaleR
huffman
parents: 20722
diff changeset
   181
by (simp add: of_real_def)
052b348a98a9 rearranged axioms and simp rules for scaleR
huffman
parents: 20722
diff changeset
   182
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   183
lemma of_real_0 [simp]: "of_real 0 = 0"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   184
by (simp add: of_real_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   185
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   186
lemma of_real_1 [simp]: "of_real 1 = 1"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   187
by (simp add: of_real_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   188
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   189
lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   190
by (simp add: of_real_def scaleR_left_distrib)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   191
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   192
lemma of_real_minus [simp]: "of_real (- x) = - of_real x"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   193
by (simp add: of_real_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   194
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   195
lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   196
by (simp add: of_real_def scaleR_left_diff_distrib)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   197
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   198
lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y"
20763
052b348a98a9 rearranged axioms and simp rules for scaleR
huffman
parents: 20722
diff changeset
   199
by (simp add: of_real_def mult_commute)
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   200
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   201
lemma nonzero_of_real_inverse:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   202
  "x \<noteq> 0 \<Longrightarrow> of_real (inverse x) =
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   203
   inverse (of_real x :: 'a::real_div_algebra)"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   204
by (simp add: of_real_def nonzero_inverse_scaleR_distrib)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   205
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   206
lemma of_real_inverse [simp]:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   207
  "of_real (inverse x) =
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   208
   inverse (of_real x :: 'a::{real_div_algebra,division_by_zero})"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   209
by (simp add: of_real_def inverse_scaleR_distrib)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   210
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   211
lemma nonzero_of_real_divide:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   212
  "y \<noteq> 0 \<Longrightarrow> of_real (x / y) =
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   213
   (of_real x / of_real y :: 'a::real_field)"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   214
by (simp add: divide_inverse nonzero_of_real_inverse)
20722
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   215
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   216
lemma of_real_divide [simp]:
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   217
  "of_real (x / y) =
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   218
   (of_real x / of_real y :: 'a::{real_field,division_by_zero})"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   219
by (simp add: divide_inverse)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   220
20722
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   221
lemma of_real_power [simp]:
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   222
  "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1,recpower}) ^ n"
20772
7a51ed817ec7 tuned definitions/proofs;
wenzelm
parents: 20763
diff changeset
   223
by (induct n) (simp_all add: power_Suc)
20722
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   224
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   225
lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   226
by (simp add: of_real_def scaleR_cancel_right)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   227
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   228
lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified]
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   229
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   230
lemma of_real_eq_id [simp]: "of_real = (id :: real \<Rightarrow> real)"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   231
proof
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   232
  fix r
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   233
  show "of_real r = id r"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   234
    by (simp add: of_real_def real_scaleR_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   235
qed
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   236
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   237
text{*Collapse nested embeddings*}
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   238
lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n"
20772
7a51ed817ec7 tuned definitions/proofs;
wenzelm
parents: 20763
diff changeset
   239
by (induct n) auto
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   240
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   241
lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   242
by (cases z rule: int_diff_cases, simp)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   243
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   244
lemma of_real_number_of_eq:
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   245
  "of_real (number_of w) = (number_of w :: 'a::{number_ring,real_algebra_1})"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   246
by (simp add: number_of_eq)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   247
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   248
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   249
subsection {* The Set of Real Numbers *}
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   250
20772
7a51ed817ec7 tuned definitions/proofs;
wenzelm
parents: 20763
diff changeset
   251
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
   252
  Reals :: "'a::real_algebra_1 set" where
20772
7a51ed817ec7 tuned definitions/proofs;
wenzelm
parents: 20763
diff changeset
   253
  "Reals \<equiv> range of_real"
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   254
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 20828
diff changeset
   255
notation (xsymbols)
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   256
  Reals  ("\<real>")
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   257
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   258
lemma Reals_of_real [simp]: "of_real r \<in> Reals"
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   259
by (simp add: Reals_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   260
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   261
lemma Reals_of_int [simp]: "of_int z \<in> Reals"
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   262
by (subst of_real_of_int_eq [symmetric], rule Reals_of_real)
20718
4c4869e4ddb7 add lemmas of_int_in_Reals, of_nat_in_Reals
huffman
parents: 20694
diff changeset
   263
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   264
lemma Reals_of_nat [simp]: "of_nat n \<in> Reals"
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   265
by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real)
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   266
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   267
lemma Reals_number_of [simp]:
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   268
  "(number_of w::'a::{number_ring,real_algebra_1}) \<in> Reals"
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   269
by (subst of_real_number_of_eq [symmetric], rule Reals_of_real)
20718
4c4869e4ddb7 add lemmas of_int_in_Reals, of_nat_in_Reals
huffman
parents: 20694
diff changeset
   270
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   271
lemma Reals_0 [simp]: "0 \<in> Reals"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   272
apply (unfold Reals_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   273
apply (rule range_eqI)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   274
apply (rule of_real_0 [symmetric])
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   275
done
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   276
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   277
lemma Reals_1 [simp]: "1 \<in> Reals"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   278
apply (unfold Reals_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   279
apply (rule range_eqI)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   280
apply (rule of_real_1 [symmetric])
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   281
done
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   282
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   283
lemma Reals_add [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a + b \<in> Reals"
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   284
apply (auto simp add: Reals_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   285
apply (rule range_eqI)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   286
apply (rule of_real_add [symmetric])
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   287
done
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   288
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   289
lemma Reals_minus [simp]: "a \<in> Reals \<Longrightarrow> - a \<in> Reals"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   290
apply (auto simp add: Reals_def)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   291
apply (rule range_eqI)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   292
apply (rule of_real_minus [symmetric])
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   293
done
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   294
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   295
lemma Reals_diff [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a - b \<in> Reals"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   296
apply (auto simp add: Reals_def)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   297
apply (rule range_eqI)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   298
apply (rule of_real_diff [symmetric])
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   299
done
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   300
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   301
lemma Reals_mult [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a * b \<in> Reals"
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   302
apply (auto simp add: Reals_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   303
apply (rule range_eqI)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   304
apply (rule of_real_mult [symmetric])
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   305
done
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   306
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   307
lemma nonzero_Reals_inverse:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   308
  fixes a :: "'a::real_div_algebra"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   309
  shows "\<lbrakk>a \<in> Reals; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Reals"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   310
apply (auto simp add: Reals_def)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   311
apply (rule range_eqI)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   312
apply (erule nonzero_of_real_inverse [symmetric])
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   313
done
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   314
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   315
lemma Reals_inverse [simp]:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   316
  fixes a :: "'a::{real_div_algebra,division_by_zero}"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   317
  shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   318
apply (auto simp add: Reals_def)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   319
apply (rule range_eqI)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   320
apply (rule of_real_inverse [symmetric])
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   321
done
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   322
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   323
lemma nonzero_Reals_divide:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   324
  fixes a b :: "'a::real_field"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   325
  shows "\<lbrakk>a \<in> Reals; b \<in> Reals; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   326
apply (auto simp add: Reals_def)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   327
apply (rule range_eqI)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   328
apply (erule nonzero_of_real_divide [symmetric])
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   329
done
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   330
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   331
lemma Reals_divide [simp]:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   332
  fixes a b :: "'a::{real_field,division_by_zero}"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   333
  shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   334
apply (auto simp add: Reals_def)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   335
apply (rule range_eqI)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   336
apply (rule of_real_divide [symmetric])
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   337
done
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   338
20722
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   339
lemma Reals_power [simp]:
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   340
  fixes a :: "'a::{real_algebra_1,recpower}"
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   341
  shows "a \<in> Reals \<Longrightarrow> a ^ n \<in> Reals"
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   342
apply (auto simp add: Reals_def)
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   343
apply (rule range_eqI)
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   344
apply (rule of_real_power [symmetric])
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   345
done
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   346
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   347
lemma Reals_cases [cases set: Reals]:
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   348
  assumes "q \<in> \<real>"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   349
  obtains (of_real) r where "q = of_real r"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   350
  unfolding Reals_def
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   351
proof -
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   352
  from `q \<in> \<real>` have "q \<in> range of_real" unfolding Reals_def .
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   353
  then obtain r where "q = of_real r" ..
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   354
  then show thesis ..
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   355
qed
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   356
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   357
lemma Reals_induct [case_names of_real, induct set: Reals]:
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   358
  "q \<in> \<real> \<Longrightarrow> (\<And>r. P (of_real r)) \<Longrightarrow> P q"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   359
  by (rule Reals_cases) auto
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   360
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   361
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   362
subsection {* Real normed vector spaces *}
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   363
22636
c40465deaf20 new class syntax for scaleR and norm classes
huffman
parents: 22625
diff changeset
   364
class norm = type +
c40465deaf20 new class syntax for scaleR and norm classes
huffman
parents: 22625
diff changeset
   365
  fixes norm :: "'a \<Rightarrow> real"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   366
22636
c40465deaf20 new class syntax for scaleR and norm classes
huffman
parents: 22625
diff changeset
   367
instance real :: norm
c40465deaf20 new class syntax for scaleR and norm classes
huffman
parents: 22625
diff changeset
   368
  real_norm_def [simp]: "norm r \<equiv> \<bar>r\<bar>" ..
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   369
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   370
axclass real_normed_vector < real_vector, norm
20533
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   371
  norm_ge_zero [simp]: "0 \<le> norm x"
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   372
  norm_eq_zero [simp]: "(norm x = 0) = (x = 0)"
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   373
  norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y"
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   374
  norm_scaleR: "norm (scaleR a x) = \<bar>a\<bar> * norm x"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   375
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   376
axclass real_normed_algebra < real_algebra, real_normed_vector
20533
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   377
  norm_mult_ineq: "norm (x * y) \<le> norm x * norm y"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   378
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   379
axclass real_normed_algebra_1 < real_algebra_1, real_normed_algebra
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   380
  norm_one [simp]: "norm 1 = 1"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   381
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   382
axclass real_normed_div_algebra < real_div_algebra, real_normed_vector
20533
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   383
  norm_mult: "norm (x * y) = norm x * norm y"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   384
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   385
axclass real_normed_field < real_field, real_normed_div_algebra
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   386
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   387
instance real_normed_div_algebra < real_normed_algebra_1
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   388
proof
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   389
  fix x y :: 'a
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   390
  show "norm (x * y) \<le> norm x * norm y"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   391
    by (simp add: norm_mult)
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   392
next
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   393
  have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   394
    by (rule norm_mult)
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   395
  thus "norm (1::'a) = 1" by simp
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   396
qed
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   397
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   398
instance real :: real_normed_field
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   399
apply (intro_classes, unfold real_norm_def real_scaleR_def)
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   400
apply (rule abs_ge_zero)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   401
apply (rule abs_eq_0)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   402
apply (rule abs_triangle_ineq)
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   403
apply (rule abs_mult)
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   404
apply (rule abs_mult)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   405
done
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   406
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   407
lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   408
by simp
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   409
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   410
lemma zero_less_norm_iff [simp]:
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   411
  fixes x :: "'a::real_normed_vector"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   412
  shows "(0 < norm x) = (x \<noteq> 0)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   413
by (simp add: order_less_le)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   414
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   415
lemma norm_not_less_zero [simp]:
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   416
  fixes x :: "'a::real_normed_vector"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   417
  shows "\<not> norm x < 0"
20828
68ed2e514ca0 add lemmas norm_not_less_zero, norm_le_zero_iff
huffman
parents: 20772
diff changeset
   418
by (simp add: linorder_not_less)
68ed2e514ca0 add lemmas norm_not_less_zero, norm_le_zero_iff
huffman
parents: 20772
diff changeset
   419
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   420
lemma norm_le_zero_iff [simp]:
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   421
  fixes x :: "'a::real_normed_vector"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   422
  shows "(norm x \<le> 0) = (x = 0)"
20828
68ed2e514ca0 add lemmas norm_not_less_zero, norm_le_zero_iff
huffman
parents: 20772
diff changeset
   423
by (simp add: order_le_less)
68ed2e514ca0 add lemmas norm_not_less_zero, norm_le_zero_iff
huffman
parents: 20772
diff changeset
   424
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   425
lemma norm_minus_cancel [simp]:
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   426
  fixes x :: "'a::real_normed_vector"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   427
  shows "norm (- x) = norm x"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   428
proof -
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   429
  have "norm (- x) = norm (scaleR (- 1) x)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   430
    by (simp only: scaleR_minus_left scaleR_one)
20533
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   431
  also have "\<dots> = \<bar>- 1\<bar> * norm x"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   432
    by (rule norm_scaleR)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   433
  finally show ?thesis by simp
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   434
qed
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   435
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   436
lemma norm_minus_commute:
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   437
  fixes a b :: "'a::real_normed_vector"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   438
  shows "norm (a - b) = norm (b - a)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   439
proof -
20533
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   440
  have "norm (a - b) = norm (- (a - b))"
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   441
    by (simp only: norm_minus_cancel)
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   442
  also have "\<dots> = norm (b - a)" by simp
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   443
  finally show ?thesis .
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   444
qed
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   445
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   446
lemma norm_triangle_ineq2:
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   447
  fixes a b :: "'a::real_normed_vector"
20533
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   448
  shows "norm a - norm b \<le> norm (a - b)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   449
proof -
20533
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   450
  have "norm (a - b + b) \<le> norm (a - b) + norm b"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   451
    by (rule norm_triangle_ineq)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   452
  also have "(a - b + b) = a"
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   453
    by simp
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   454
  finally show ?thesis
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   455
    by (simp add: compare_rls)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   456
qed
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   457
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   458
lemma norm_triangle_ineq3:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   459
  fixes a b :: "'a::real_normed_vector"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   460
  shows "\<bar>norm a - norm b\<bar> \<le> norm (a - b)"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   461
apply (subst abs_le_iff)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   462
apply auto
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   463
apply (rule norm_triangle_ineq2)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   464
apply (subst norm_minus_commute)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   465
apply (rule norm_triangle_ineq2)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   466
done
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   467
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   468
lemma norm_triangle_ineq4:
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   469
  fixes a b :: "'a::real_normed_vector"
20533
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   470
  shows "norm (a - b) \<le> norm a + norm b"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   471
proof -
20533
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   472
  have "norm (a - b) = norm (a + - b)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   473
    by (simp only: diff_minus)
20533
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   474
  also have "\<dots> \<le> norm a + norm (- b)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   475
    by (rule norm_triangle_ineq)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   476
  finally show ?thesis
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   477
    by simp
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   478
qed
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   479
20551
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   480
lemma norm_diff_triangle_ineq:
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   481
  fixes a b c d :: "'a::real_normed_vector"
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   482
  shows "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)"
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   483
proof -
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   484
  have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))"
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   485
    by (simp add: diff_minus add_ac)
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   486
  also have "\<dots> \<le> norm (a - c) + norm (b - d)"
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   487
    by (rule norm_triangle_ineq)
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   488
  finally show ?thesis .
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   489
qed
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   490
22857
cb84e886cc90 add lemma abs_norm_cancel
huffman
parents: 22852
diff changeset
   491
lemma abs_norm_cancel [simp]:
cb84e886cc90 add lemma abs_norm_cancel
huffman
parents: 22852
diff changeset
   492
  fixes a :: "'a::real_normed_vector"
cb84e886cc90 add lemma abs_norm_cancel
huffman
parents: 22852
diff changeset
   493
  shows "\<bar>norm a\<bar> = norm a"
cb84e886cc90 add lemma abs_norm_cancel
huffman
parents: 22852
diff changeset
   494
by (rule abs_of_nonneg [OF norm_ge_zero])
cb84e886cc90 add lemma abs_norm_cancel
huffman
parents: 22852
diff changeset
   495
cb84e886cc90 add lemma abs_norm_cancel
huffman
parents: 22852
diff changeset
   496
lemma norm_of_real [simp]:
cb84e886cc90 add lemma abs_norm_cancel
huffman
parents: 22852
diff changeset
   497
  "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>"
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   498
unfolding of_real_def by (simp add: norm_scaleR)
20560
49996715bc6e norm_one is now proved from other class axioms
huffman
parents: 20554
diff changeset
   499
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   500
lemma nonzero_norm_inverse:
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   501
  fixes a :: "'a::real_normed_div_algebra"
20533
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   502
  shows "a \<noteq> 0 \<Longrightarrow> norm (inverse a) = inverse (norm a)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   503
apply (rule inverse_unique [symmetric])
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   504
apply (simp add: norm_mult [symmetric])
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   505
done
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   506
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   507
lemma norm_inverse:
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   508
  fixes a :: "'a::{real_normed_div_algebra,division_by_zero}"
20533
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   509
  shows "norm (inverse a) = inverse (norm a)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   510
apply (case_tac "a = 0", simp)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   511
apply (erule nonzero_norm_inverse)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   512
done
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   513
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   514
lemma nonzero_norm_divide:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   515
  fixes a b :: "'a::real_normed_field"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   516
  shows "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   517
by (simp add: divide_inverse norm_mult nonzero_norm_inverse)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   518
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   519
lemma norm_divide:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   520
  fixes a b :: "'a::{real_normed_field,division_by_zero}"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   521
  shows "norm (a / b) = norm a / norm b"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   522
by (simp add: divide_inverse norm_mult norm_inverse)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   523
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   524
lemma norm_power_ineq:
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   525
  fixes x :: "'a::{real_normed_algebra_1,recpower}"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   526
  shows "norm (x ^ n) \<le> norm x ^ n"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   527
proof (induct n)
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   528
  case 0 show "norm (x ^ 0) \<le> norm x ^ 0" by simp
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   529
next
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   530
  case (Suc n)
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   531
  have "norm (x * x ^ n) \<le> norm x * norm (x ^ n)"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   532
    by (rule norm_mult_ineq)
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   533
  also from Suc have "\<dots> \<le> norm x * norm x ^ n"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   534
    using norm_ge_zero by (rule mult_left_mono)
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   535
  finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   536
    by (simp add: power_Suc)
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   537
qed
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   538
20684
74e8b46abb97 add lemma norm_power
huffman
parents: 20584
diff changeset
   539
lemma norm_power:
74e8b46abb97 add lemma norm_power
huffman
parents: 20584
diff changeset
   540
  fixes x :: "'a::{real_normed_div_algebra,recpower}"
74e8b46abb97 add lemma norm_power
huffman
parents: 20584
diff changeset
   541
  shows "norm (x ^ n) = norm x ^ n"
20772
7a51ed817ec7 tuned definitions/proofs;
wenzelm
parents: 20763
diff changeset
   542
by (induct n) (simp_all add: power_Suc norm_mult)
20684
74e8b46abb97 add lemma norm_power
huffman
parents: 20584
diff changeset
   543
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   544
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   545
subsection {* Bounded Linear and Bilinear Operators *}
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   546
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   547
locale bounded_linear = additive +
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   548
  constrains f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   549
  assumes scaleR: "f (scaleR r x) = scaleR r (f x)"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   550
  assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   551
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   552
lemma (in bounded_linear) pos_bounded:
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   553
  "\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   554
proof -
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   555
  obtain K where K: "\<And>x. norm (f x) \<le> norm x * K"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   556
    using bounded by fast
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   557
  show ?thesis
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   558
  proof (intro exI impI conjI allI)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   559
    show "0 < max 1 K"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   560
      by (rule order_less_le_trans [OF zero_less_one le_maxI1])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   561
  next
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   562
    fix x
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   563
    have "norm (f x) \<le> norm x * K" using K .
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   564
    also have "\<dots> \<le> norm x * max 1 K"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   565
      by (rule mult_left_mono [OF le_maxI2 norm_ge_zero])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   566
    finally show "norm (f x) \<le> norm x * max 1 K" .
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   567
  qed
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   568
qed
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   569
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   570
lemma (in bounded_linear) nonneg_bounded:
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   571
  "\<exists>K\<ge>0. \<forall>x. norm (f x) \<le> norm x * K"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   572
proof -
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   573
  from pos_bounded
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   574
  show ?thesis by (auto intro: order_less_imp_le)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   575
qed
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   576
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   577
locale bounded_bilinear =
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   578
  fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector]
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   579
                 \<Rightarrow> 'c::real_normed_vector"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   580
    (infixl "**" 70)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   581
  assumes add_left: "prod (a + a') b = prod a b + prod a' b"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   582
  assumes add_right: "prod a (b + b') = prod a b + prod a b'"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   583
  assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   584
  assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   585
  assumes bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   586
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   587
lemma (in bounded_bilinear) pos_bounded:
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   588
  "\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   589
apply (cut_tac bounded, erule exE)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   590
apply (rule_tac x="max 1 K" in exI, safe)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   591
apply (rule order_less_le_trans [OF zero_less_one le_maxI1])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   592
apply (drule spec, drule spec, erule order_trans)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   593
apply (rule mult_left_mono [OF le_maxI2])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   594
apply (intro mult_nonneg_nonneg norm_ge_zero)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   595
done
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   596
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   597
lemma (in bounded_bilinear) nonneg_bounded:
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   598
  "\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   599
proof -
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   600
  from pos_bounded
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   601
  show ?thesis by (auto intro: order_less_imp_le)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   602
qed
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   603
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   604
lemma (in bounded_bilinear) additive_right: "additive (\<lambda>b. prod a b)"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   605
by (rule additive.intro, rule add_right)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   606
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   607
lemma (in bounded_bilinear) additive_left: "additive (\<lambda>a. prod a b)"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   608
by (rule additive.intro, rule add_left)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   609
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   610
lemma (in bounded_bilinear) zero_left: "prod 0 b = 0"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   611
by (rule additive.zero [OF additive_left])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   612
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   613
lemma (in bounded_bilinear) zero_right: "prod a 0 = 0"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   614
by (rule additive.zero [OF additive_right])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   615
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   616
lemma (in bounded_bilinear) minus_left: "prod (- a) b = - prod a b"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   617
by (rule additive.minus [OF additive_left])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   618
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   619
lemma (in bounded_bilinear) minus_right: "prod a (- b) = - prod a b"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   620
by (rule additive.minus [OF additive_right])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   621
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   622
lemma (in bounded_bilinear) diff_left:
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   623
  "prod (a - a') b = prod a b - prod a' b"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   624
by (rule additive.diff [OF additive_left])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   625
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   626
lemma (in bounded_bilinear) diff_right:
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   627
  "prod a (b - b') = prod a b - prod a b'"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   628
by (rule additive.diff [OF additive_right])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   629
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   630
lemma (in bounded_bilinear) bounded_linear_left:
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   631
  "bounded_linear (\<lambda>a. a ** b)"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   632
apply (unfold_locales)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   633
apply (rule add_left)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   634
apply (rule scaleR_left)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   635
apply (cut_tac bounded, safe)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   636
apply (rule_tac x="norm b * K" in exI)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   637
apply (simp add: mult_ac)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   638
done
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   639
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   640
lemma (in bounded_bilinear) bounded_linear_right:
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   641
  "bounded_linear (\<lambda>b. a ** b)"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   642
apply (unfold_locales)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   643
apply (rule add_right)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   644
apply (rule scaleR_right)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   645
apply (cut_tac bounded, safe)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   646
apply (rule_tac x="norm a * K" in exI)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   647
apply (simp add: mult_ac)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   648
done
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   649
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   650
lemma (in bounded_bilinear) prod_diff_prod:
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   651
  "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   652
by (simp add: diff_left diff_right)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   653
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   654
interpretation bounded_bilinear_mult:
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   655
  bounded_bilinear ["op * :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra"]
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   656
apply (rule bounded_bilinear.intro)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   657
apply (rule left_distrib)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   658
apply (rule right_distrib)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   659
apply (rule mult_scaleR_left)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   660
apply (rule mult_scaleR_right)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   661
apply (rule_tac x="1" in exI)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   662
apply (simp add: norm_mult_ineq)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   663
done
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   664
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   665
interpretation bounded_linear_mult_left:
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   666
  bounded_linear ["(\<lambda>x::'a::real_normed_algebra. x * y)"]
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   667
by (rule bounded_bilinear_mult.bounded_linear_left)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   668
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   669
interpretation bounded_linear_mult_right:
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   670
  bounded_linear ["(\<lambda>y::'a::real_normed_algebra. x * y)"]
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   671
by (rule bounded_bilinear_mult.bounded_linear_right)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   672
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   673
interpretation bounded_bilinear_scaleR:
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   674
  bounded_bilinear ["scaleR"]
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   675
apply (rule bounded_bilinear.intro)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   676
apply (rule scaleR_left_distrib)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   677
apply (rule scaleR_right_distrib)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   678
apply (simp add: real_scaleR_def)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   679
apply (rule scaleR_left_commute)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   680
apply (rule_tac x="1" in exI)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   681
apply (simp add: norm_scaleR)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   682
done
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   683
22625
a2967023d674 interpretation bounded_linear_of_real
huffman
parents: 22442
diff changeset
   684
interpretation bounded_linear_of_real:
a2967023d674 interpretation bounded_linear_of_real
huffman
parents: 22442
diff changeset
   685
  bounded_linear ["\<lambda>r. of_real r"]
a2967023d674 interpretation bounded_linear_of_real
huffman
parents: 22442
diff changeset
   686
apply (unfold of_real_def)
a2967023d674 interpretation bounded_linear_of_real
huffman
parents: 22442
diff changeset
   687
apply (rule bounded_bilinear_scaleR.bounded_linear_left)
a2967023d674 interpretation bounded_linear_of_real
huffman
parents: 22442
diff changeset
   688
done
a2967023d674 interpretation bounded_linear_of_real
huffman
parents: 22442
diff changeset
   689
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   690
end