src/HOL/Nitpick.thy
author haftmann
Tue Oct 27 15:32:20 2009 +0100 (2009-10-27)
changeset 33235 cbe96b3cb3d0
parent 33192 08a39a957ed7
child 33562 b1e2830ee31a
permissions -rw-r--r--
dropped obsolete comment
blanchet@33192
     1
(*  Title:      HOL/Nitpick.thy
blanchet@33192
     2
    Author:     Jasmin Blanchette, TU Muenchen
blanchet@33192
     3
    Copyright   2008, 2009
blanchet@33192
     4
blanchet@33192
     5
Nitpick: Yet another counterexample generator for Isabelle/HOL.
blanchet@33192
     6
*)
blanchet@33192
     7
blanchet@33192
     8
header {* Nitpick: Yet Another Counterexample Generator for Isabelle/HOL *}
blanchet@33192
     9
blanchet@33192
    10
theory Nitpick
blanchet@33192
    11
imports Map SAT
blanchet@33192
    12
uses ("Tools/Nitpick/kodkod.ML")
blanchet@33192
    13
     ("Tools/Nitpick/kodkod_sat.ML")
blanchet@33192
    14
     ("Tools/Nitpick/nitpick_util.ML")
blanchet@33192
    15
     ("Tools/Nitpick/nitpick_hol.ML")
blanchet@33192
    16
     ("Tools/Nitpick/nitpick_mono.ML")
blanchet@33192
    17
     ("Tools/Nitpick/nitpick_scope.ML")
blanchet@33192
    18
     ("Tools/Nitpick/nitpick_peephole.ML")
blanchet@33192
    19
     ("Tools/Nitpick/nitpick_rep.ML")
blanchet@33192
    20
     ("Tools/Nitpick/nitpick_nut.ML")
blanchet@33192
    21
     ("Tools/Nitpick/nitpick_kodkod.ML")
blanchet@33192
    22
     ("Tools/Nitpick/nitpick_model.ML")
blanchet@33192
    23
     ("Tools/Nitpick/nitpick.ML")
blanchet@33192
    24
     ("Tools/Nitpick/nitpick_isar.ML")
blanchet@33192
    25
     ("Tools/Nitpick/nitpick_tests.ML")
blanchet@33192
    26
     ("Tools/Nitpick/minipick.ML")
blanchet@33192
    27
begin
blanchet@33192
    28
blanchet@33192
    29
typedecl bisim_iterator
blanchet@33192
    30
blanchet@33192
    31
axiomatization unknown :: 'a
blanchet@33192
    32
           and undefined_fast_The :: 'a
blanchet@33192
    33
           and undefined_fast_Eps :: 'a
blanchet@33192
    34
           and bisim :: "bisim_iterator \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
blanchet@33192
    35
           and bisim_iterator_max :: bisim_iterator
blanchet@33192
    36
           and Tha :: "('a \<Rightarrow> bool) \<Rightarrow> 'a"
blanchet@33192
    37
blanchet@33192
    38
datatype ('a, 'b) pair_box = PairBox 'a 'b
blanchet@33192
    39
datatype ('a, 'b) fun_box = FunBox "'a \<Rightarrow> 'b"
blanchet@33192
    40
blanchet@33192
    41
text {*
blanchet@33192
    42
Alternative definitions.
blanchet@33192
    43
*}
blanchet@33192
    44
blanchet@33192
    45
lemma If_def [nitpick_def]:
blanchet@33192
    46
"(if P then Q else R) \<equiv> (P \<longrightarrow> Q) \<and> (\<not> P \<longrightarrow> R)"
blanchet@33192
    47
by (rule eq_reflection) (rule if_bool_eq_conj)
blanchet@33192
    48
blanchet@33192
    49
lemma Ex1_def [nitpick_def]:
blanchet@33192
    50
"Ex1 P \<equiv> \<exists>x. P = {x}"
blanchet@33192
    51
apply (rule eq_reflection)
blanchet@33192
    52
apply (simp add: Ex1_def expand_set_eq)
blanchet@33192
    53
apply (rule iffI)
blanchet@33192
    54
 apply (erule exE)
blanchet@33192
    55
 apply (erule conjE)
blanchet@33192
    56
 apply (rule_tac x = x in exI)
blanchet@33192
    57
 apply (rule allI)
blanchet@33192
    58
 apply (rename_tac y)
blanchet@33192
    59
 apply (erule_tac x = y in allE)
blanchet@33192
    60
by (auto simp: mem_def)
blanchet@33192
    61
blanchet@33192
    62
lemma rtrancl_def [nitpick_def]: "r\<^sup>* \<equiv> (r\<^sup>+)\<^sup>="
blanchet@33192
    63
by simp
blanchet@33192
    64
blanchet@33192
    65
lemma rtranclp_def [nitpick_def]:
blanchet@33192
    66
"rtranclp r a b \<equiv> (a = b \<or> tranclp r a b)"
blanchet@33192
    67
by (rule eq_reflection) (auto dest: rtranclpD)
blanchet@33192
    68
blanchet@33192
    69
lemma tranclp_def [nitpick_def]:
blanchet@33192
    70
"tranclp r a b \<equiv> trancl (split r) (a, b)"
blanchet@33192
    71
by (simp add: trancl_def Collect_def mem_def)
blanchet@33192
    72
blanchet@33192
    73
definition refl' :: "('a \<times> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
blanchet@33192
    74
"refl' r \<equiv> \<forall>x. (x, x) \<in> r"
blanchet@33192
    75
blanchet@33192
    76
definition wf' :: "('a \<times> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
blanchet@33192
    77
"wf' r \<equiv> acyclic r \<and> (finite r \<or> unknown)"
blanchet@33192
    78
blanchet@33192
    79
axiomatization wf_wfrec :: "('a \<times> 'a \<Rightarrow> bool) \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
blanchet@33192
    80
blanchet@33192
    81
definition wf_wfrec' :: "('a \<times> 'a \<Rightarrow> bool) \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" where
blanchet@33192
    82
[nitpick_simp]: "wf_wfrec' R F x = F (Recdef.cut (wf_wfrec R F) R x) x"
blanchet@33192
    83
blanchet@33192
    84
definition wfrec' ::  "('a \<times> 'a \<Rightarrow> bool) \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" where
blanchet@33192
    85
"wfrec' R F x \<equiv> if wf R then wf_wfrec' R F x
blanchet@33192
    86
                else THE y. wfrec_rel R (%f x. F (Recdef.cut f R x) x) x y"
blanchet@33192
    87
blanchet@33192
    88
definition card' :: "('a \<Rightarrow> bool) \<Rightarrow> nat" where
blanchet@33192
    89
"card' X \<equiv> length (SOME xs. set xs = X \<and> distinct xs)"
blanchet@33192
    90
blanchet@33192
    91
definition setsum' :: "('a \<Rightarrow> 'b\<Colon>comm_monoid_add) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'b" where
blanchet@33192
    92
"setsum' f A \<equiv> if finite A then listsum (map f (SOME xs. set xs = A \<and> distinct xs)) else 0"
blanchet@33192
    93
blanchet@33192
    94
inductive fold_graph' :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'b \<Rightarrow> bool" where
blanchet@33192
    95
"fold_graph' f z {} z" |
blanchet@33192
    96
"\<lbrakk>x \<in> A; fold_graph' f z (A - {x}) y\<rbrakk> \<Longrightarrow> fold_graph' f z A (f x y)"
blanchet@33192
    97
blanchet@33192
    98
text {*
blanchet@33192
    99
The following lemmas are not strictly necessary but they help the
blanchet@33192
   100
\textit{special\_level} optimization.
blanchet@33192
   101
*}
blanchet@33192
   102
blanchet@33192
   103
lemma The_psimp [nitpick_psimp]:
blanchet@33192
   104
"P = {x} \<Longrightarrow> The P = x"
blanchet@33192
   105
by (subgoal_tac "{x} = (\<lambda>y. y = x)") (auto simp: mem_def)
blanchet@33192
   106
blanchet@33192
   107
lemma Eps_psimp [nitpick_psimp]:
blanchet@33192
   108
"\<lbrakk>P x; \<not> P y; Eps P = y\<rbrakk> \<Longrightarrow> Eps P = x"
blanchet@33192
   109
apply (case_tac "P (Eps P)")
blanchet@33192
   110
 apply auto
blanchet@33192
   111
apply (erule contrapos_np)
blanchet@33192
   112
by (rule someI)
blanchet@33192
   113
blanchet@33192
   114
lemma unit_case_def [nitpick_def]:
blanchet@33192
   115
"unit_case x u \<equiv> x"
blanchet@33192
   116
apply (subgoal_tac "u = ()")
blanchet@33192
   117
 apply (simp only: unit.cases)
blanchet@33192
   118
by simp
blanchet@33192
   119
blanchet@33192
   120
lemma nat_case_def [nitpick_def]:
blanchet@33192
   121
"nat_case x f n \<equiv> if n = 0 then x else f (n - 1)"
blanchet@33192
   122
apply (rule eq_reflection)
blanchet@33192
   123
by (case_tac n) auto
blanchet@33192
   124
blanchet@33192
   125
lemmas dvd_def = dvd_eq_mod_eq_0 [THEN eq_reflection, nitpick_def]
blanchet@33192
   126
blanchet@33192
   127
lemma list_size_simp [nitpick_simp]:
blanchet@33192
   128
"list_size f xs = (if xs = [] then 0
blanchet@33192
   129
                   else Suc (f (hd xs) + list_size f (tl xs)))"
blanchet@33192
   130
"size xs = (if xs = [] then 0 else Suc (size (tl xs)))"
blanchet@33192
   131
by (case_tac xs) auto
blanchet@33192
   132
blanchet@33192
   133
text {*
blanchet@33192
   134
Auxiliary definitions used to provide an alternative representation for
blanchet@33192
   135
@{text rat} and @{text real}.
blanchet@33192
   136
*}
blanchet@33192
   137
blanchet@33192
   138
function nat_gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
blanchet@33192
   139
[simp del]: "nat_gcd x y = (if y = 0 then x else nat_gcd y (x mod y))"
blanchet@33192
   140
by auto
blanchet@33192
   141
termination
blanchet@33192
   142
apply (relation "measure (\<lambda>(x, y). x + y + (if y > x then 1 else 0))")
blanchet@33192
   143
 apply auto
blanchet@33192
   144
 apply (metis mod_less_divisor xt1(9))
blanchet@33192
   145
by (metis mod_mod_trivial mod_self nat_neq_iff xt1(10))
blanchet@33192
   146
blanchet@33192
   147
definition nat_lcm :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
blanchet@33192
   148
"nat_lcm x y = x * y div (nat_gcd x y)"
blanchet@33192
   149
blanchet@33192
   150
definition int_gcd :: "int \<Rightarrow> int \<Rightarrow> int" where
blanchet@33192
   151
"int_gcd x y = int (nat_gcd (nat (abs x)) (nat (abs y)))"
blanchet@33192
   152
blanchet@33192
   153
definition int_lcm :: "int \<Rightarrow> int \<Rightarrow> int" where
blanchet@33192
   154
"int_lcm x y = int (nat_lcm (nat (abs x)) (nat (abs y)))"
blanchet@33192
   155
blanchet@33192
   156
definition Frac :: "int \<times> int \<Rightarrow> bool" where
blanchet@33192
   157
"Frac \<equiv> \<lambda>(a, b). b > 0 \<and> int_gcd a b = 1"
blanchet@33192
   158
blanchet@33192
   159
axiomatization Abs_Frac :: "int \<times> int \<Rightarrow> 'a"
blanchet@33192
   160
           and Rep_Frac :: "'a \<Rightarrow> int \<times> int"
blanchet@33192
   161
blanchet@33192
   162
definition zero_frac :: 'a where
blanchet@33192
   163
"zero_frac \<equiv> Abs_Frac (0, 1)"
blanchet@33192
   164
blanchet@33192
   165
definition one_frac :: 'a where
blanchet@33192
   166
"one_frac \<equiv> Abs_Frac (1, 1)"
blanchet@33192
   167
blanchet@33192
   168
definition num :: "'a \<Rightarrow> int" where
blanchet@33192
   169
"num \<equiv> fst o Rep_Frac"
blanchet@33192
   170
blanchet@33192
   171
definition denom :: "'a \<Rightarrow> int" where
blanchet@33192
   172
"denom \<equiv> snd o Rep_Frac"
blanchet@33192
   173
blanchet@33192
   174
function norm_frac :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
blanchet@33192
   175
[simp del]: "norm_frac a b = (if b < 0 then norm_frac (- a) (- b)
blanchet@33192
   176
                              else if a = 0 \<or> b = 0 then (0, 1)
blanchet@33192
   177
                              else let c = int_gcd a b in (a div c, b div c))"
blanchet@33192
   178
by pat_completeness auto
blanchet@33192
   179
termination by (relation "measure (\<lambda>(_, b). if b < 0 then 1 else 0)") auto
blanchet@33192
   180
blanchet@33192
   181
definition frac :: "int \<Rightarrow> int \<Rightarrow> 'a" where
blanchet@33192
   182
"frac a b \<equiv> Abs_Frac (norm_frac a b)"
blanchet@33192
   183
blanchet@33192
   184
definition plus_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
blanchet@33192
   185
[nitpick_simp]:
blanchet@33192
   186
"plus_frac q r = (let d = int_lcm (denom q) (denom r) in
blanchet@33192
   187
                    frac (num q * (d div denom q) + num r * (d div denom r)) d)"
blanchet@33192
   188
blanchet@33192
   189
definition times_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
blanchet@33192
   190
[nitpick_simp]:
blanchet@33192
   191
"times_frac q r = frac (num q * num r) (denom q * denom r)"
blanchet@33192
   192
blanchet@33192
   193
definition uminus_frac :: "'a \<Rightarrow> 'a" where
blanchet@33192
   194
"uminus_frac q \<equiv> Abs_Frac (- num q, denom q)"
blanchet@33192
   195
blanchet@33192
   196
definition number_of_frac :: "int \<Rightarrow> 'a" where
blanchet@33192
   197
"number_of_frac n \<equiv> Abs_Frac (n, 1)"
blanchet@33192
   198
blanchet@33192
   199
definition inverse_frac :: "'a \<Rightarrow> 'a" where
blanchet@33192
   200
"inverse_frac q \<equiv> frac (denom q) (num q)"
blanchet@33192
   201
blanchet@33192
   202
definition less_eq_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where
blanchet@33192
   203
[nitpick_simp]:
blanchet@33192
   204
"less_eq_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) \<le> 0"
blanchet@33192
   205
blanchet@33192
   206
definition of_frac :: "'a \<Rightarrow> 'b\<Colon>{inverse,ring_1}" where
blanchet@33192
   207
"of_frac q \<equiv> of_int (num q) / of_int (denom q)"
blanchet@33192
   208
blanchet@33192
   209
use "Tools/Nitpick/kodkod.ML"
blanchet@33192
   210
use "Tools/Nitpick/kodkod_sat.ML"
blanchet@33192
   211
use "Tools/Nitpick/nitpick_util.ML"
blanchet@33192
   212
use "Tools/Nitpick/nitpick_hol.ML"
blanchet@33192
   213
use "Tools/Nitpick/nitpick_mono.ML"
blanchet@33192
   214
use "Tools/Nitpick/nitpick_scope.ML"
blanchet@33192
   215
use "Tools/Nitpick/nitpick_peephole.ML"
blanchet@33192
   216
use "Tools/Nitpick/nitpick_rep.ML"
blanchet@33192
   217
use "Tools/Nitpick/nitpick_nut.ML"
blanchet@33192
   218
use "Tools/Nitpick/nitpick_kodkod.ML"
blanchet@33192
   219
use "Tools/Nitpick/nitpick_model.ML"
blanchet@33192
   220
use "Tools/Nitpick/nitpick.ML"
blanchet@33192
   221
use "Tools/Nitpick/nitpick_isar.ML"
blanchet@33192
   222
use "Tools/Nitpick/nitpick_tests.ML"
blanchet@33192
   223
use "Tools/Nitpick/minipick.ML"
blanchet@33192
   224
blanchet@33192
   225
hide (open) const unknown undefined_fast_The undefined_fast_Eps bisim 
blanchet@33192
   226
    bisim_iterator_max Tha refl' wf' wf_wfrec wf_wfrec' wfrec' card' setsum'
blanchet@33192
   227
    fold_graph' nat_gcd nat_lcm int_gcd int_lcm Frac Abs_Frac Rep_Frac zero_frac
blanchet@33192
   228
    one_frac num denom norm_frac frac plus_frac times_frac uminus_frac
blanchet@33192
   229
    number_of_frac inverse_frac less_eq_frac of_frac
blanchet@33192
   230
hide (open) type bisim_iterator pair_box fun_box
blanchet@33192
   231
hide (open) fact If_def Ex1_def rtrancl_def rtranclp_def tranclp_def refl'_def
blanchet@33192
   232
    wf'_def wf_wfrec'_def wfrec'_def card'_def setsum'_def fold_graph'_def
blanchet@33192
   233
    The_psimp Eps_psimp unit_case_def nat_case_def dvd_def list_size_simp
blanchet@33192
   234
    nat_gcd_def nat_lcm_def int_gcd_def int_lcm_def Frac_def zero_frac_def
blanchet@33192
   235
    one_frac_def num_def denom_def norm_frac_def frac_def plus_frac_def
blanchet@33192
   236
    times_frac_def uminus_frac_def number_of_frac_def inverse_frac_def
blanchet@33192
   237
    less_eq_frac_def of_frac_def
blanchet@33192
   238
blanchet@33192
   239
end