src/HOL/GCD.thy
author haftmann
Fri Jul 04 20:18:47 2014 +0200 (2014-07-04)
changeset 57512 cc97b347b301
parent 56218 1c3f1f2431f9
child 57514 bdc2c6b40bf2
permissions -rw-r--r--
reduced name variants for assoc and commute on plus and mult
haftmann@32479
     1
(*  Authors:    Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb,
nipkow@31798
     2
                Thomas M. Rasmussen, Jeremy Avigad, Tobias Nipkow
huffman@31706
     3
huffman@31706
     4
haftmann@32479
     5
This file deals with the functions gcd and lcm.  Definitions and
haftmann@32479
     6
lemmas are proved uniformly for the natural numbers and integers.
huffman@31706
     7
huffman@31706
     8
This file combines and revises a number of prior developments.
huffman@31706
     9
huffman@31706
    10
The original theories "GCD" and "Primes" were by Christophe Tabacznyj
huffman@31706
    11
and Lawrence C. Paulson, based on \cite{davenport92}. They introduced
huffman@31706
    12
gcd, lcm, and prime for the natural numbers.
huffman@31706
    13
huffman@31706
    14
The original theory "IntPrimes" was by Thomas M. Rasmussen, and
huffman@31706
    15
extended gcd, lcm, primes to the integers. Amine Chaieb provided
huffman@31706
    16
another extension of the notions to the integers, and added a number
huffman@31706
    17
of results to "Primes" and "GCD". IntPrimes also defined and developed
huffman@31706
    18
the congruence relations on the integers. The notion was extended to
berghofe@34915
    19
the natural numbers by Chaieb.
huffman@31706
    20
avigad@32036
    21
Jeremy Avigad combined all of these, made everything uniform for the
avigad@32036
    22
natural numbers and the integers, and added a number of new theorems.
avigad@32036
    23
nipkow@31798
    24
Tobias Nipkow cleaned up a lot.
wenzelm@21256
    25
*)
wenzelm@21256
    26
huffman@31706
    27
berghofe@34915
    28
header {* Greatest common divisor and least common multiple *}
wenzelm@21256
    29
wenzelm@21256
    30
theory GCD
haftmann@33318
    31
imports Fact Parity
huffman@31706
    32
begin
huffman@31706
    33
huffman@31706
    34
declare One_nat_def [simp del]
huffman@31706
    35
haftmann@34030
    36
subsection {* GCD and LCM definitions *}
huffman@31706
    37
nipkow@31992
    38
class gcd = zero + one + dvd +
wenzelm@41550
    39
  fixes gcd :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
wenzelm@41550
    40
    and lcm :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
wenzelm@21256
    41
begin
wenzelm@21256
    42
huffman@31706
    43
abbreviation
huffman@31706
    44
  coprime :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
huffman@31706
    45
where
huffman@31706
    46
  "coprime x y == (gcd x y = 1)"
huffman@31706
    47
huffman@31706
    48
end
huffman@31706
    49
huffman@31706
    50
instantiation nat :: gcd
huffman@31706
    51
begin
wenzelm@21256
    52
huffman@31706
    53
fun
huffman@31706
    54
  gcd_nat  :: "nat \<Rightarrow> nat \<Rightarrow> nat"
huffman@31706
    55
where
huffman@31706
    56
  "gcd_nat x y =
huffman@31706
    57
   (if y = 0 then x else gcd y (x mod y))"
huffman@31706
    58
huffman@31706
    59
definition
huffman@31706
    60
  lcm_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"
huffman@31706
    61
where
huffman@31706
    62
  "lcm_nat x y = x * y div (gcd x y)"
huffman@31706
    63
huffman@31706
    64
instance proof qed
huffman@31706
    65
huffman@31706
    66
end
huffman@31706
    67
huffman@31706
    68
instantiation int :: gcd
huffman@31706
    69
begin
wenzelm@21256
    70
huffman@31706
    71
definition
huffman@31706
    72
  gcd_int  :: "int \<Rightarrow> int \<Rightarrow> int"
huffman@31706
    73
where
huffman@31706
    74
  "gcd_int x y = int (gcd (nat (abs x)) (nat (abs y)))"
haftmann@23687
    75
huffman@31706
    76
definition
huffman@31706
    77
  lcm_int :: "int \<Rightarrow> int \<Rightarrow> int"
huffman@31706
    78
where
huffman@31706
    79
  "lcm_int x y = int (lcm (nat (abs x)) (nat (abs y)))"
haftmann@23687
    80
huffman@31706
    81
instance proof qed
huffman@31706
    82
huffman@31706
    83
end
haftmann@23687
    84
haftmann@23687
    85
haftmann@34030
    86
subsection {* Transfer setup *}
huffman@31706
    87
huffman@31706
    88
lemma transfer_nat_int_gcd:
huffman@31706
    89
  "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> gcd (nat x) (nat y) = nat (gcd x y)"
huffman@31706
    90
  "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> lcm (nat x) (nat y) = nat (lcm x y)"
haftmann@32479
    91
  unfolding gcd_int_def lcm_int_def
huffman@31706
    92
  by auto
haftmann@23687
    93
huffman@31706
    94
lemma transfer_nat_int_gcd_closures:
huffman@31706
    95
  "x >= (0::int) \<Longrightarrow> y >= 0 \<Longrightarrow> gcd x y >= 0"
huffman@31706
    96
  "x >= (0::int) \<Longrightarrow> y >= 0 \<Longrightarrow> lcm x y >= 0"
huffman@31706
    97
  by (auto simp add: gcd_int_def lcm_int_def)
huffman@31706
    98
haftmann@35644
    99
declare transfer_morphism_nat_int[transfer add return:
huffman@31706
   100
    transfer_nat_int_gcd transfer_nat_int_gcd_closures]
huffman@31706
   101
huffman@31706
   102
lemma transfer_int_nat_gcd:
huffman@31706
   103
  "gcd (int x) (int y) = int (gcd x y)"
huffman@31706
   104
  "lcm (int x) (int y) = int (lcm x y)"
haftmann@32479
   105
  by (unfold gcd_int_def lcm_int_def, auto)
huffman@31706
   106
huffman@31706
   107
lemma transfer_int_nat_gcd_closures:
huffman@31706
   108
  "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> gcd x y >= 0"
huffman@31706
   109
  "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> lcm x y >= 0"
huffman@31706
   110
  by (auto simp add: gcd_int_def lcm_int_def)
huffman@31706
   111
haftmann@35644
   112
declare transfer_morphism_int_nat[transfer add return:
huffman@31706
   113
    transfer_int_nat_gcd transfer_int_nat_gcd_closures]
huffman@31706
   114
huffman@31706
   115
haftmann@34030
   116
subsection {* GCD properties *}
huffman@31706
   117
huffman@31706
   118
(* was gcd_induct *)
nipkow@31952
   119
lemma gcd_nat_induct:
haftmann@23687
   120
  fixes m n :: nat
haftmann@23687
   121
  assumes "\<And>m. P m 0"
haftmann@23687
   122
    and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n"
haftmann@23687
   123
  shows "P m n"
huffman@31706
   124
  apply (rule gcd_nat.induct)
huffman@31706
   125
  apply (case_tac "y = 0")
huffman@31706
   126
  using assms apply simp_all
huffman@31706
   127
done
huffman@31706
   128
huffman@31706
   129
(* specific to int *)
huffman@31706
   130
nipkow@31952
   131
lemma gcd_neg1_int [simp]: "gcd (-x::int) y = gcd x y"
huffman@31706
   132
  by (simp add: gcd_int_def)
huffman@31706
   133
nipkow@31952
   134
lemma gcd_neg2_int [simp]: "gcd (x::int) (-y) = gcd x y"
huffman@31706
   135
  by (simp add: gcd_int_def)
huffman@31706
   136
haftmann@54489
   137
lemma gcd_neg_numeral_1_int [simp]:
haftmann@54489
   138
  "gcd (- numeral n :: int) x = gcd (numeral n) x"
haftmann@54489
   139
  by (fact gcd_neg1_int)
haftmann@54489
   140
haftmann@54489
   141
lemma gcd_neg_numeral_2_int [simp]:
haftmann@54489
   142
  "gcd x (- numeral n :: int) = gcd x (numeral n)"
haftmann@54489
   143
  by (fact gcd_neg2_int)
haftmann@54489
   144
nipkow@31813
   145
lemma abs_gcd_int[simp]: "abs(gcd (x::int) y) = gcd x y"
nipkow@31813
   146
by(simp add: gcd_int_def)
nipkow@31813
   147
nipkow@31952
   148
lemma gcd_abs_int: "gcd (x::int) y = gcd (abs x) (abs y)"
nipkow@31813
   149
by (simp add: gcd_int_def)
nipkow@31813
   150
nipkow@31813
   151
lemma gcd_abs1_int[simp]: "gcd (abs x) (y::int) = gcd x y"
nipkow@31952
   152
by (metis abs_idempotent gcd_abs_int)
nipkow@31813
   153
nipkow@31813
   154
lemma gcd_abs2_int[simp]: "gcd x (abs y::int) = gcd x y"
nipkow@31952
   155
by (metis abs_idempotent gcd_abs_int)
huffman@31706
   156
nipkow@31952
   157
lemma gcd_cases_int:
huffman@31706
   158
  fixes x :: int and y
huffman@31706
   159
  assumes "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (gcd x y)"
huffman@31706
   160
      and "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (gcd x (-y))"
huffman@31706
   161
      and "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (gcd (-x) y)"
huffman@31706
   162
      and "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (gcd (-x) (-y))"
huffman@31706
   163
  shows "P (gcd x y)"
huffman@35216
   164
by (insert assms, auto, arith)
wenzelm@21256
   165
nipkow@31952
   166
lemma gcd_ge_0_int [simp]: "gcd (x::int) y >= 0"
huffman@31706
   167
  by (simp add: gcd_int_def)
huffman@31706
   168
nipkow@31952
   169
lemma lcm_neg1_int: "lcm (-x::int) y = lcm x y"
huffman@31706
   170
  by (simp add: lcm_int_def)
huffman@31706
   171
nipkow@31952
   172
lemma lcm_neg2_int: "lcm (x::int) (-y) = lcm x y"
huffman@31706
   173
  by (simp add: lcm_int_def)
huffman@31706
   174
nipkow@31952
   175
lemma lcm_abs_int: "lcm (x::int) y = lcm (abs x) (abs y)"
huffman@31706
   176
  by (simp add: lcm_int_def)
wenzelm@21256
   177
nipkow@31814
   178
lemma abs_lcm_int [simp]: "abs (lcm i j::int) = lcm i j"
nipkow@31814
   179
by(simp add:lcm_int_def)
nipkow@31814
   180
nipkow@31814
   181
lemma lcm_abs1_int[simp]: "lcm (abs x) (y::int) = lcm x y"
nipkow@31814
   182
by (metis abs_idempotent lcm_int_def)
nipkow@31814
   183
nipkow@31814
   184
lemma lcm_abs2_int[simp]: "lcm x (abs y::int) = lcm x y"
nipkow@31814
   185
by (metis abs_idempotent lcm_int_def)
nipkow@31814
   186
nipkow@31952
   187
lemma lcm_cases_int:
huffman@31706
   188
  fixes x :: int and y
huffman@31706
   189
  assumes "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (lcm x y)"
huffman@31706
   190
      and "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (lcm x (-y))"
huffman@31706
   191
      and "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (lcm (-x) y)"
huffman@31706
   192
      and "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (lcm (-x) (-y))"
huffman@31706
   193
  shows "P (lcm x y)"
wenzelm@41550
   194
  using assms by (auto simp add: lcm_neg1_int lcm_neg2_int) arith
huffman@31706
   195
nipkow@31952
   196
lemma lcm_ge_0_int [simp]: "lcm (x::int) y >= 0"
huffman@31706
   197
  by (simp add: lcm_int_def)
huffman@31706
   198
huffman@31706
   199
(* was gcd_0, etc. *)
haftmann@54867
   200
lemma gcd_0_nat: "gcd (x::nat) 0 = x"
haftmann@23687
   201
  by simp
haftmann@23687
   202
huffman@31706
   203
(* was igcd_0, etc. *)
nipkow@31952
   204
lemma gcd_0_int [simp]: "gcd (x::int) 0 = abs x"
huffman@31706
   205
  by (unfold gcd_int_def, auto)
huffman@31706
   206
haftmann@54867
   207
lemma gcd_0_left_nat: "gcd 0 (x::nat) = x"
haftmann@23687
   208
  by simp
haftmann@23687
   209
nipkow@31952
   210
lemma gcd_0_left_int [simp]: "gcd 0 (x::int) = abs x"
huffman@31706
   211
  by (unfold gcd_int_def, auto)
huffman@31706
   212
nipkow@31952
   213
lemma gcd_red_nat: "gcd (x::nat) y = gcd y (x mod y)"
huffman@31706
   214
  by (case_tac "y = 0", auto)
huffman@31706
   215
huffman@31706
   216
(* weaker, but useful for the simplifier *)
huffman@31706
   217
nipkow@31952
   218
lemma gcd_non_0_nat: "y ~= (0::nat) \<Longrightarrow> gcd (x::nat) y = gcd y (x mod y)"
huffman@31706
   219
  by simp
huffman@31706
   220
nipkow@31952
   221
lemma gcd_1_nat [simp]: "gcd (m::nat) 1 = 1"
wenzelm@21263
   222
  by simp
wenzelm@21256
   223
nipkow@31952
   224
lemma gcd_Suc_0 [simp]: "gcd (m::nat) (Suc 0) = Suc 0"
huffman@31706
   225
  by (simp add: One_nat_def)
huffman@31706
   226
nipkow@31952
   227
lemma gcd_1_int [simp]: "gcd (m::int) 1 = 1"
huffman@31706
   228
  by (simp add: gcd_int_def)
huffman@30082
   229
nipkow@31952
   230
lemma gcd_idem_nat: "gcd (x::nat) x = x"
nipkow@31798
   231
by simp
huffman@31706
   232
nipkow@31952
   233
lemma gcd_idem_int: "gcd (x::int) x = abs x"
nipkow@31813
   234
by (auto simp add: gcd_int_def)
huffman@31706
   235
huffman@31706
   236
declare gcd_nat.simps [simp del]
wenzelm@21256
   237
wenzelm@21256
   238
text {*
haftmann@27556
   239
  \medskip @{term "gcd m n"} divides @{text m} and @{text n}.  The
wenzelm@21256
   240
  conjunctions don't seem provable separately.
wenzelm@21256
   241
*}
wenzelm@21256
   242
nipkow@31952
   243
lemma gcd_dvd1_nat [iff]: "(gcd (m::nat)) n dvd m"
nipkow@31952
   244
  and gcd_dvd2_nat [iff]: "(gcd m n) dvd n"
nipkow@31952
   245
  apply (induct m n rule: gcd_nat_induct)
haftmann@54867
   246
  apply (simp_all add: gcd_non_0_nat gcd_0_nat)
wenzelm@21256
   247
  apply (blast dest: dvd_mod_imp_dvd)
huffman@31706
   248
done
huffman@31706
   249
nipkow@31952
   250
lemma gcd_dvd1_int [iff]: "gcd (x::int) y dvd x"
nipkow@31952
   251
by (metis gcd_int_def int_dvd_iff gcd_dvd1_nat)
wenzelm@21256
   252
nipkow@31952
   253
lemma gcd_dvd2_int [iff]: "gcd (x::int) y dvd y"
nipkow@31952
   254
by (metis gcd_int_def int_dvd_iff gcd_dvd2_nat)
huffman@31706
   255
nipkow@31730
   256
lemma dvd_gcd_D1_nat: "k dvd gcd m n \<Longrightarrow> (k::nat) dvd m"
nipkow@31952
   257
by(metis gcd_dvd1_nat dvd_trans)
nipkow@31730
   258
nipkow@31730
   259
lemma dvd_gcd_D2_nat: "k dvd gcd m n \<Longrightarrow> (k::nat) dvd n"
nipkow@31952
   260
by(metis gcd_dvd2_nat dvd_trans)
nipkow@31730
   261
nipkow@31730
   262
lemma dvd_gcd_D1_int: "i dvd gcd m n \<Longrightarrow> (i::int) dvd m"
nipkow@31952
   263
by(metis gcd_dvd1_int dvd_trans)
nipkow@31730
   264
nipkow@31730
   265
lemma dvd_gcd_D2_int: "i dvd gcd m n \<Longrightarrow> (i::int) dvd n"
nipkow@31952
   266
by(metis gcd_dvd2_int dvd_trans)
nipkow@31730
   267
nipkow@31952
   268
lemma gcd_le1_nat [simp]: "a \<noteq> 0 \<Longrightarrow> gcd (a::nat) b \<le> a"
huffman@31706
   269
  by (rule dvd_imp_le, auto)
huffman@31706
   270
nipkow@31952
   271
lemma gcd_le2_nat [simp]: "b \<noteq> 0 \<Longrightarrow> gcd (a::nat) b \<le> b"
huffman@31706
   272
  by (rule dvd_imp_le, auto)
huffman@31706
   273
nipkow@31952
   274
lemma gcd_le1_int [simp]: "a > 0 \<Longrightarrow> gcd (a::int) b \<le> a"
huffman@31706
   275
  by (rule zdvd_imp_le, auto)
wenzelm@21256
   276
nipkow@31952
   277
lemma gcd_le2_int [simp]: "b > 0 \<Longrightarrow> gcd (a::int) b \<le> b"
huffman@31706
   278
  by (rule zdvd_imp_le, auto)
huffman@31706
   279
nipkow@31952
   280
lemma gcd_greatest_nat: "(k::nat) dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd gcd m n"
haftmann@54867
   281
by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat dvd_mod gcd_0_nat)
huffman@31706
   282
nipkow@31952
   283
lemma gcd_greatest_int:
nipkow@31813
   284
  "(k::int) dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd gcd m n"
nipkow@31952
   285
  apply (subst gcd_abs_int)
huffman@31706
   286
  apply (subst abs_dvd_iff [symmetric])
nipkow@31952
   287
  apply (rule gcd_greatest_nat [transferred])
nipkow@31813
   288
  apply auto
huffman@31706
   289
done
wenzelm@21256
   290
nipkow@31952
   291
lemma gcd_greatest_iff_nat [iff]: "(k dvd gcd (m::nat) n) =
huffman@31706
   292
    (k dvd m & k dvd n)"
nipkow@31952
   293
  by (blast intro!: gcd_greatest_nat intro: dvd_trans)
huffman@31706
   294
nipkow@31952
   295
lemma gcd_greatest_iff_int: "((k::int) dvd gcd m n) = (k dvd m & k dvd n)"
nipkow@31952
   296
  by (blast intro!: gcd_greatest_int intro: dvd_trans)
wenzelm@21256
   297
nipkow@31952
   298
lemma gcd_zero_nat [simp]: "(gcd (m::nat) n = 0) = (m = 0 & n = 0)"
nipkow@31952
   299
  by (simp only: dvd_0_left_iff [symmetric] gcd_greatest_iff_nat)
wenzelm@21256
   300
nipkow@31952
   301
lemma gcd_zero_int [simp]: "(gcd (m::int) n = 0) = (m = 0 & n = 0)"
huffman@31706
   302
  by (auto simp add: gcd_int_def)
wenzelm@21256
   303
nipkow@31952
   304
lemma gcd_pos_nat [simp]: "(gcd (m::nat) n > 0) = (m ~= 0 | n ~= 0)"
nipkow@31952
   305
  by (insert gcd_zero_nat [of m n], arith)
wenzelm@21256
   306
nipkow@31952
   307
lemma gcd_pos_int [simp]: "(gcd (m::int) n > 0) = (m ~= 0 | n ~= 0)"
nipkow@31952
   308
  by (insert gcd_zero_int [of m n], insert gcd_ge_0_int [of m n], arith)
huffman@31706
   309
nipkow@31952
   310
lemma gcd_unique_nat: "(d::nat) dvd a \<and> d dvd b \<and>
huffman@31706
   311
    (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
huffman@31706
   312
  apply auto
nipkow@33657
   313
  apply (rule dvd_antisym)
nipkow@31952
   314
  apply (erule (1) gcd_greatest_nat)
huffman@31706
   315
  apply auto
huffman@31706
   316
done
wenzelm@21256
   317
nipkow@31952
   318
lemma gcd_unique_int: "d >= 0 & (d::int) dvd a \<and> d dvd b \<and>
huffman@31706
   319
    (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
nipkow@33657
   320
apply (case_tac "d = 0")
nipkow@33657
   321
 apply simp
nipkow@33657
   322
apply (rule iffI)
nipkow@33657
   323
 apply (rule zdvd_antisym_nonneg)
nipkow@33657
   324
 apply (auto intro: gcd_greatest_int)
huffman@31706
   325
done
huffman@30082
   326
haftmann@54867
   327
interpretation gcd_nat: abel_semigroup "gcd :: nat \<Rightarrow> nat \<Rightarrow> nat"
haftmann@54867
   328
  + gcd_nat: semilattice_neutr_order "gcd :: nat \<Rightarrow> nat \<Rightarrow> nat" 0 "op dvd" "(\<lambda>m n. m dvd n \<and> \<not> n dvd m)"
haftmann@54867
   329
apply default
haftmann@54867
   330
apply (auto intro: dvd_antisym dvd_trans)[4]
haftmann@54867
   331
apply (metis dvd.dual_order.refl gcd_unique_nat)
haftmann@54867
   332
apply (auto intro: dvdI elim: dvdE)
haftmann@54867
   333
done
haftmann@54867
   334
haftmann@54867
   335
interpretation gcd_int: abel_semigroup "gcd :: int \<Rightarrow> int \<Rightarrow> int"
haftmann@54867
   336
proof
haftmann@54867
   337
qed (simp_all add: gcd_int_def gcd_nat.assoc gcd_nat.commute gcd_nat.left_commute)
haftmann@54867
   338
haftmann@54867
   339
lemmas gcd_assoc_nat = gcd_nat.assoc
haftmann@54867
   340
lemmas gcd_commute_nat = gcd_nat.commute
haftmann@54867
   341
lemmas gcd_left_commute_nat = gcd_nat.left_commute
haftmann@54867
   342
lemmas gcd_assoc_int = gcd_int.assoc
haftmann@54867
   343
lemmas gcd_commute_int = gcd_int.commute
haftmann@54867
   344
lemmas gcd_left_commute_int = gcd_int.left_commute
haftmann@54867
   345
haftmann@54867
   346
lemmas gcd_ac_nat = gcd_assoc_nat gcd_commute_nat gcd_left_commute_nat
haftmann@54867
   347
haftmann@54867
   348
lemmas gcd_ac_int = gcd_assoc_int gcd_commute_int gcd_left_commute_int
haftmann@54867
   349
nipkow@31798
   350
lemma gcd_proj1_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> gcd x y = x"
haftmann@54867
   351
  by (fact gcd_nat.absorb1)
nipkow@31798
   352
nipkow@31798
   353
lemma gcd_proj2_if_dvd_nat [simp]: "(y::nat) dvd x \<Longrightarrow> gcd x y = y"
haftmann@54867
   354
  by (fact gcd_nat.absorb2)
nipkow@31798
   355
haftmann@54867
   356
lemma gcd_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> gcd (x::int) y = abs x"
haftmann@54867
   357
  by (metis abs_dvd_iff gcd_0_left_int gcd_abs_int gcd_unique_int)
nipkow@31798
   358
haftmann@54867
   359
lemma gcd_proj2_if_dvd_int [simp]: "y dvd x \<Longrightarrow> gcd (x::int) y = abs y"
haftmann@54867
   360
  by (metis gcd_proj1_if_dvd_int gcd_commute_int)
nipkow@31798
   361
wenzelm@21256
   362
text {*
wenzelm@21256
   363
  \medskip Multiplication laws
wenzelm@21256
   364
*}
wenzelm@21256
   365
nipkow@31952
   366
lemma gcd_mult_distrib_nat: "(k::nat) * gcd m n = gcd (k * m) (k * n)"
wenzelm@21256
   367
    -- {* \cite[page 27]{davenport92} *}
nipkow@31952
   368
  apply (induct m n rule: gcd_nat_induct)
huffman@31706
   369
  apply simp
wenzelm@21256
   370
  apply (case_tac "k = 0")
huffman@45270
   371
  apply (simp_all add: gcd_non_0_nat)
huffman@31706
   372
done
wenzelm@21256
   373
nipkow@31952
   374
lemma gcd_mult_distrib_int: "abs (k::int) * gcd m n = gcd (k * m) (k * n)"
nipkow@31952
   375
  apply (subst (1 2) gcd_abs_int)
nipkow@31813
   376
  apply (subst (1 2) abs_mult)
nipkow@31952
   377
  apply (rule gcd_mult_distrib_nat [transferred])
huffman@31706
   378
  apply auto
huffman@31706
   379
done
wenzelm@21256
   380
nipkow@31952
   381
lemma coprime_dvd_mult_nat: "coprime (k::nat) n \<Longrightarrow> k dvd m * n \<Longrightarrow> k dvd m"
nipkow@31952
   382
  apply (insert gcd_mult_distrib_nat [of m k n])
wenzelm@21256
   383
  apply simp
wenzelm@21256
   384
  apply (erule_tac t = m in ssubst)
wenzelm@21256
   385
  apply simp
wenzelm@21256
   386
  done
wenzelm@21256
   387
nipkow@31952
   388
lemma coprime_dvd_mult_int:
nipkow@31813
   389
  "coprime (k::int) n \<Longrightarrow> k dvd m * n \<Longrightarrow> k dvd m"
nipkow@31813
   390
apply (subst abs_dvd_iff [symmetric])
nipkow@31813
   391
apply (subst dvd_abs_iff [symmetric])
nipkow@31952
   392
apply (subst (asm) gcd_abs_int)
nipkow@31952
   393
apply (rule coprime_dvd_mult_nat [transferred])
nipkow@31813
   394
    prefer 4 apply assumption
nipkow@31813
   395
   apply auto
nipkow@31813
   396
apply (subst abs_mult [symmetric], auto)
huffman@31706
   397
done
huffman@31706
   398
nipkow@31952
   399
lemma coprime_dvd_mult_iff_nat: "coprime (k::nat) n \<Longrightarrow>
huffman@31706
   400
    (k dvd m * n) = (k dvd m)"
nipkow@31952
   401
  by (auto intro: coprime_dvd_mult_nat)
huffman@31706
   402
nipkow@31952
   403
lemma coprime_dvd_mult_iff_int: "coprime (k::int) n \<Longrightarrow>
huffman@31706
   404
    (k dvd m * n) = (k dvd m)"
nipkow@31952
   405
  by (auto intro: coprime_dvd_mult_int)
huffman@31706
   406
nipkow@31952
   407
lemma gcd_mult_cancel_nat: "coprime k n \<Longrightarrow> gcd ((k::nat) * m) n = gcd m n"
nipkow@33657
   408
  apply (rule dvd_antisym)
nipkow@31952
   409
  apply (rule gcd_greatest_nat)
nipkow@31952
   410
  apply (rule_tac n = k in coprime_dvd_mult_nat)
nipkow@31952
   411
  apply (simp add: gcd_assoc_nat)
nipkow@31952
   412
  apply (simp add: gcd_commute_nat)
haftmann@57512
   413
  apply (simp_all add: mult.commute)
huffman@31706
   414
done
wenzelm@21256
   415
nipkow@31952
   416
lemma gcd_mult_cancel_int:
nipkow@31813
   417
  "coprime (k::int) n \<Longrightarrow> gcd (k * m) n = gcd m n"
nipkow@31952
   418
apply (subst (1 2) gcd_abs_int)
nipkow@31813
   419
apply (subst abs_mult)
nipkow@31952
   420
apply (rule gcd_mult_cancel_nat [transferred], auto)
huffman@31706
   421
done
wenzelm@21256
   422
haftmann@35368
   423
lemma coprime_crossproduct_nat:
haftmann@35368
   424
  fixes a b c d :: nat
haftmann@35368
   425
  assumes "coprime a d" and "coprime b c"
haftmann@35368
   426
  shows "a * c = b * d \<longleftrightarrow> a = b \<and> c = d" (is "?lhs \<longleftrightarrow> ?rhs")
haftmann@35368
   427
proof
haftmann@35368
   428
  assume ?rhs then show ?lhs by simp
haftmann@35368
   429
next
haftmann@35368
   430
  assume ?lhs
haftmann@35368
   431
  from `?lhs` have "a dvd b * d" by (auto intro: dvdI dest: sym)
haftmann@35368
   432
  with `coprime a d` have "a dvd b" by (simp add: coprime_dvd_mult_iff_nat)
haftmann@35368
   433
  from `?lhs` have "b dvd a * c" by (auto intro: dvdI dest: sym)
haftmann@35368
   434
  with `coprime b c` have "b dvd a" by (simp add: coprime_dvd_mult_iff_nat)
haftmann@57512
   435
  from `?lhs` have "c dvd d * b" by (auto intro: dvdI dest: sym simp add: mult.commute)
haftmann@35368
   436
  with `coprime b c` have "c dvd d" by (simp add: coprime_dvd_mult_iff_nat gcd_commute_nat)
haftmann@57512
   437
  from `?lhs` have "d dvd c * a" by (auto intro: dvdI dest: sym simp add: mult.commute)
haftmann@35368
   438
  with `coprime a d` have "d dvd c" by (simp add: coprime_dvd_mult_iff_nat gcd_commute_nat)
haftmann@35368
   439
  from `a dvd b` `b dvd a` have "a = b" by (rule Nat.dvd.antisym)
haftmann@35368
   440
  moreover from `c dvd d` `d dvd c` have "c = d" by (rule Nat.dvd.antisym)
haftmann@35368
   441
  ultimately show ?rhs ..
haftmann@35368
   442
qed
haftmann@35368
   443
haftmann@35368
   444
lemma coprime_crossproduct_int:
haftmann@35368
   445
  fixes a b c d :: int
haftmann@35368
   446
  assumes "coprime a d" and "coprime b c"
haftmann@35368
   447
  shows "\<bar>a\<bar> * \<bar>c\<bar> = \<bar>b\<bar> * \<bar>d\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>b\<bar> \<and> \<bar>c\<bar> = \<bar>d\<bar>"
haftmann@35368
   448
  using assms by (intro coprime_crossproduct_nat [transferred]) auto
haftmann@35368
   449
wenzelm@21256
   450
text {* \medskip Addition laws *}
wenzelm@21256
   451
nipkow@31952
   452
lemma gcd_add1_nat [simp]: "gcd ((m::nat) + n) n = gcd m n"
huffman@31706
   453
  apply (case_tac "n = 0")
nipkow@31952
   454
  apply (simp_all add: gcd_non_0_nat)
huffman@31706
   455
done
huffman@31706
   456
nipkow@31952
   457
lemma gcd_add2_nat [simp]: "gcd (m::nat) (m + n) = gcd m n"
nipkow@31952
   458
  apply (subst (1 2) gcd_commute_nat)
haftmann@57512
   459
  apply (subst add.commute)
huffman@31706
   460
  apply simp
huffman@31706
   461
done
huffman@31706
   462
huffman@31706
   463
(* to do: add the other variations? *)
huffman@31706
   464
nipkow@31952
   465
lemma gcd_diff1_nat: "(m::nat) >= n \<Longrightarrow> gcd (m - n) n = gcd m n"
nipkow@31952
   466
  by (subst gcd_add1_nat [symmetric], auto)
huffman@31706
   467
nipkow@31952
   468
lemma gcd_diff2_nat: "(n::nat) >= m \<Longrightarrow> gcd (n - m) n = gcd m n"
nipkow@31952
   469
  apply (subst gcd_commute_nat)
nipkow@31952
   470
  apply (subst gcd_diff1_nat [symmetric])
huffman@31706
   471
  apply auto
nipkow@31952
   472
  apply (subst gcd_commute_nat)
nipkow@31952
   473
  apply (subst gcd_diff1_nat)
huffman@31706
   474
  apply assumption
nipkow@31952
   475
  apply (rule gcd_commute_nat)
huffman@31706
   476
done
huffman@31706
   477
nipkow@31952
   478
lemma gcd_non_0_int: "(y::int) > 0 \<Longrightarrow> gcd x y = gcd y (x mod y)"
huffman@31706
   479
  apply (frule_tac b = y and a = x in pos_mod_sign)
huffman@31706
   480
  apply (simp del: pos_mod_sign add: gcd_int_def abs_if nat_mod_distrib)
nipkow@31952
   481
  apply (auto simp add: gcd_non_0_nat nat_mod_distrib [symmetric]
huffman@31706
   482
    zmod_zminus1_eq_if)
huffman@31706
   483
  apply (frule_tac a = x in pos_mod_bound)
nipkow@31952
   484
  apply (subst (1 2) gcd_commute_nat)
nipkow@31952
   485
  apply (simp del: pos_mod_bound add: nat_diff_distrib gcd_diff2_nat
huffman@31706
   486
    nat_le_eq_zle)
huffman@31706
   487
done
wenzelm@21256
   488
nipkow@31952
   489
lemma gcd_red_int: "gcd (x::int) y = gcd y (x mod y)"
huffman@31706
   490
  apply (case_tac "y = 0")
huffman@31706
   491
  apply force
huffman@31706
   492
  apply (case_tac "y > 0")
nipkow@31952
   493
  apply (subst gcd_non_0_int, auto)
nipkow@31952
   494
  apply (insert gcd_non_0_int [of "-y" "-x"])
huffman@35216
   495
  apply auto
huffman@31706
   496
done
huffman@31706
   497
nipkow@31952
   498
lemma gcd_add1_int [simp]: "gcd ((m::int) + n) n = gcd m n"
haftmann@57512
   499
by (metis gcd_red_int mod_add_self1 add.commute)
huffman@31706
   500
nipkow@31952
   501
lemma gcd_add2_int [simp]: "gcd m ((m::int) + n) = gcd m n"
haftmann@57512
   502
by (metis gcd_add1_int gcd_commute_int add.commute)
wenzelm@21256
   503
nipkow@31952
   504
lemma gcd_add_mult_nat: "gcd (m::nat) (k * m + n) = gcd m n"
nipkow@31952
   505
by (metis mod_mult_self3 gcd_commute_nat gcd_red_nat)
wenzelm@21256
   506
nipkow@31952
   507
lemma gcd_add_mult_int: "gcd (m::int) (k * m + n) = gcd m n"
haftmann@57512
   508
by (metis gcd_commute_int gcd_red_int mod_mult_self1 add.commute)
nipkow@31798
   509
wenzelm@21256
   510
huffman@31706
   511
(* to do: differences, and all variations of addition rules
huffman@31706
   512
    as simplification rules for nat and int *)
huffman@31706
   513
nipkow@31798
   514
(* FIXME remove iff *)
nipkow@31952
   515
lemma gcd_dvd_prod_nat [iff]: "gcd (m::nat) n dvd k * n"
haftmann@23687
   516
  using mult_dvd_mono [of 1] by auto
chaieb@22027
   517
huffman@31706
   518
(* to do: add the three variations of these, and for ints? *)
huffman@31706
   519
nipkow@31992
   520
lemma finite_divisors_nat[simp]:
nipkow@31992
   521
  assumes "(m::nat) ~= 0" shows "finite{d. d dvd m}"
nipkow@31734
   522
proof-
nipkow@31734
   523
  have "finite{d. d <= m}" by(blast intro: bounded_nat_set_is_finite)
nipkow@31734
   524
  from finite_subset[OF _ this] show ?thesis using assms
nipkow@31734
   525
    by(bestsimp intro!:dvd_imp_le)
nipkow@31734
   526
qed
nipkow@31734
   527
nipkow@31995
   528
lemma finite_divisors_int[simp]:
nipkow@31734
   529
  assumes "(i::int) ~= 0" shows "finite{d. d dvd i}"
nipkow@31734
   530
proof-
nipkow@31734
   531
  have "{d. abs d <= abs i} = {- abs i .. abs i}" by(auto simp:abs_if)
nipkow@31734
   532
  hence "finite{d. abs d <= abs i}" by simp
nipkow@31734
   533
  from finite_subset[OF _ this] show ?thesis using assms
nipkow@31734
   534
    by(bestsimp intro!:dvd_imp_le_int)
nipkow@31734
   535
qed
nipkow@31734
   536
nipkow@31995
   537
lemma Max_divisors_self_nat[simp]: "n\<noteq>0 \<Longrightarrow> Max{d::nat. d dvd n} = n"
nipkow@31995
   538
apply(rule antisym)
nipkow@44890
   539
 apply (fastforce intro: Max_le_iff[THEN iffD2] simp: dvd_imp_le)
nipkow@31995
   540
apply simp
nipkow@31995
   541
done
nipkow@31995
   542
nipkow@31995
   543
lemma Max_divisors_self_int[simp]: "n\<noteq>0 \<Longrightarrow> Max{d::int. d dvd n} = abs n"
nipkow@31995
   544
apply(rule antisym)
haftmann@44278
   545
 apply(rule Max_le_iff [THEN iffD2])
haftmann@44278
   546
  apply (auto intro: abs_le_D1 dvd_imp_le_int)
nipkow@31995
   547
done
nipkow@31995
   548
nipkow@31734
   549
lemma gcd_is_Max_divisors_nat:
nipkow@31734
   550
  "m ~= 0 \<Longrightarrow> n ~= 0 \<Longrightarrow> gcd (m::nat) n = (Max {d. d dvd m & d dvd n})"
nipkow@31734
   551
apply(rule Max_eqI[THEN sym])
nipkow@31995
   552
  apply (metis finite_Collect_conjI finite_divisors_nat)
nipkow@31734
   553
 apply simp
nipkow@31952
   554
 apply(metis Suc_diff_1 Suc_neq_Zero dvd_imp_le gcd_greatest_iff_nat gcd_pos_nat)
nipkow@31734
   555
apply simp
nipkow@31734
   556
done
nipkow@31734
   557
nipkow@31734
   558
lemma gcd_is_Max_divisors_int:
nipkow@31734
   559
  "m ~= 0 ==> n ~= 0 ==> gcd (m::int) n = (Max {d. d dvd m & d dvd n})"
nipkow@31734
   560
apply(rule Max_eqI[THEN sym])
nipkow@31995
   561
  apply (metis finite_Collect_conjI finite_divisors_int)
nipkow@31734
   562
 apply simp
nipkow@31952
   563
 apply (metis gcd_greatest_iff_int gcd_pos_int zdvd_imp_le)
nipkow@31734
   564
apply simp
nipkow@31734
   565
done
nipkow@31734
   566
haftmann@34030
   567
lemma gcd_code_int [code]:
haftmann@34030
   568
  "gcd k l = \<bar>if l = (0::int) then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>"
haftmann@34030
   569
  by (simp add: gcd_int_def nat_mod_distrib gcd_non_0_nat)
haftmann@34030
   570
chaieb@22027
   571
huffman@31706
   572
subsection {* Coprimality *}
huffman@31706
   573
nipkow@31952
   574
lemma div_gcd_coprime_nat:
huffman@31706
   575
  assumes nz: "(a::nat) \<noteq> 0 \<or> b \<noteq> 0"
huffman@31706
   576
  shows "coprime (a div gcd a b) (b div gcd a b)"
wenzelm@22367
   577
proof -
haftmann@27556
   578
  let ?g = "gcd a b"
chaieb@22027
   579
  let ?a' = "a div ?g"
chaieb@22027
   580
  let ?b' = "b div ?g"
haftmann@27556
   581
  let ?g' = "gcd ?a' ?b'"
chaieb@22027
   582
  have dvdg: "?g dvd a" "?g dvd b" by simp_all
chaieb@22027
   583
  have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by simp_all
wenzelm@22367
   584
  from dvdg dvdg' obtain ka kb ka' kb' where
wenzelm@22367
   585
      kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'"
chaieb@22027
   586
    unfolding dvd_def by blast
huffman@31706
   587
  then have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'"
huffman@31706
   588
    by simp_all
wenzelm@22367
   589
  then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b"
wenzelm@22367
   590
    by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)]
wenzelm@22367
   591
      dvd_mult_div_cancel [OF dvdg(2)] dvd_def)
huffman@35216
   592
  have "?g \<noteq> 0" using nz by simp
huffman@31706
   593
  then have gp: "?g > 0" by arith
nipkow@31952
   594
  from gcd_greatest_nat [OF dvdgg'] have "?g * ?g' dvd ?g" .
wenzelm@22367
   595
  with dvd_mult_cancel1 [OF gp] show "?g' = 1" by simp
chaieb@22027
   596
qed
chaieb@22027
   597
nipkow@31952
   598
lemma div_gcd_coprime_int:
huffman@31706
   599
  assumes nz: "(a::int) \<noteq> 0 \<or> b \<noteq> 0"
huffman@31706
   600
  shows "coprime (a div gcd a b) (b div gcd a b)"
nipkow@31952
   601
apply (subst (1 2 3) gcd_abs_int)
nipkow@31813
   602
apply (subst (1 2) abs_div)
nipkow@31813
   603
  apply simp
nipkow@31813
   604
 apply simp
nipkow@31813
   605
apply(subst (1 2) abs_gcd_int)
nipkow@31952
   606
apply (rule div_gcd_coprime_nat [transferred])
nipkow@31952
   607
using nz apply (auto simp add: gcd_abs_int [symmetric])
huffman@31706
   608
done
huffman@31706
   609
nipkow@31952
   610
lemma coprime_nat: "coprime (a::nat) b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)"
nipkow@31952
   611
  using gcd_unique_nat[of 1 a b, simplified] by auto
huffman@31706
   612
nipkow@31952
   613
lemma coprime_Suc_0_nat:
huffman@31706
   614
    "coprime (a::nat) b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = Suc 0)"
nipkow@31952
   615
  using coprime_nat by (simp add: One_nat_def)
huffman@31706
   616
nipkow@31952
   617
lemma coprime_int: "coprime (a::int) b \<longleftrightarrow>
huffman@31706
   618
    (\<forall>d. d >= 0 \<and> d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)"
nipkow@31952
   619
  using gcd_unique_int [of 1 a b]
huffman@31706
   620
  apply clarsimp
huffman@31706
   621
  apply (erule subst)
huffman@31706
   622
  apply (rule iffI)
huffman@31706
   623
  apply force
wenzelm@48562
   624
  apply (drule_tac x = "abs ?e" in exI)
wenzelm@48562
   625
  apply (case_tac "(?e::int) >= 0")
huffman@31706
   626
  apply force
huffman@31706
   627
  apply force
huffman@31706
   628
done
huffman@31706
   629
nipkow@31952
   630
lemma gcd_coprime_nat:
huffman@31706
   631
  assumes z: "gcd (a::nat) b \<noteq> 0" and a: "a = a' * gcd a b" and
huffman@31706
   632
    b: "b = b' * gcd a b"
huffman@31706
   633
  shows    "coprime a' b'"
huffman@31706
   634
huffman@31706
   635
  apply (subgoal_tac "a' = a div gcd a b")
huffman@31706
   636
  apply (erule ssubst)
huffman@31706
   637
  apply (subgoal_tac "b' = b div gcd a b")
huffman@31706
   638
  apply (erule ssubst)
nipkow@31952
   639
  apply (rule div_gcd_coprime_nat)
wenzelm@41550
   640
  using z apply force
huffman@31706
   641
  apply (subst (1) b)
huffman@31706
   642
  using z apply force
huffman@31706
   643
  apply (subst (1) a)
huffman@31706
   644
  using z apply force
wenzelm@41550
   645
  done
huffman@31706
   646
nipkow@31952
   647
lemma gcd_coprime_int:
huffman@31706
   648
  assumes z: "gcd (a::int) b \<noteq> 0" and a: "a = a' * gcd a b" and
huffman@31706
   649
    b: "b = b' * gcd a b"
huffman@31706
   650
  shows    "coprime a' b'"
huffman@31706
   651
huffman@31706
   652
  apply (subgoal_tac "a' = a div gcd a b")
huffman@31706
   653
  apply (erule ssubst)
huffman@31706
   654
  apply (subgoal_tac "b' = b div gcd a b")
huffman@31706
   655
  apply (erule ssubst)
nipkow@31952
   656
  apply (rule div_gcd_coprime_int)
wenzelm@41550
   657
  using z apply force
huffman@31706
   658
  apply (subst (1) b)
huffman@31706
   659
  using z apply force
huffman@31706
   660
  apply (subst (1) a)
huffman@31706
   661
  using z apply force
wenzelm@41550
   662
  done
huffman@31706
   663
nipkow@31952
   664
lemma coprime_mult_nat: assumes da: "coprime (d::nat) a" and db: "coprime d b"
huffman@31706
   665
    shows "coprime d (a * b)"
nipkow@31952
   666
  apply (subst gcd_commute_nat)
nipkow@31952
   667
  using da apply (subst gcd_mult_cancel_nat)
nipkow@31952
   668
  apply (subst gcd_commute_nat, assumption)
nipkow@31952
   669
  apply (subst gcd_commute_nat, rule db)
huffman@31706
   670
done
huffman@31706
   671
nipkow@31952
   672
lemma coprime_mult_int: assumes da: "coprime (d::int) a" and db: "coprime d b"
huffman@31706
   673
    shows "coprime d (a * b)"
nipkow@31952
   674
  apply (subst gcd_commute_int)
nipkow@31952
   675
  using da apply (subst gcd_mult_cancel_int)
nipkow@31952
   676
  apply (subst gcd_commute_int, assumption)
nipkow@31952
   677
  apply (subst gcd_commute_int, rule db)
huffman@31706
   678
done
huffman@31706
   679
nipkow@31952
   680
lemma coprime_lmult_nat:
huffman@31706
   681
  assumes dab: "coprime (d::nat) (a * b)" shows "coprime d a"
huffman@31706
   682
proof -
huffman@31706
   683
  have "gcd d a dvd gcd d (a * b)"
nipkow@31952
   684
    by (rule gcd_greatest_nat, auto)
huffman@31706
   685
  with dab show ?thesis
huffman@31706
   686
    by auto
huffman@31706
   687
qed
huffman@31706
   688
nipkow@31952
   689
lemma coprime_lmult_int:
nipkow@31798
   690
  assumes "coprime (d::int) (a * b)" shows "coprime d a"
huffman@31706
   691
proof -
huffman@31706
   692
  have "gcd d a dvd gcd d (a * b)"
nipkow@31952
   693
    by (rule gcd_greatest_int, auto)
nipkow@31798
   694
  with assms show ?thesis
huffman@31706
   695
    by auto
huffman@31706
   696
qed
huffman@31706
   697
nipkow@31952
   698
lemma coprime_rmult_nat:
nipkow@31798
   699
  assumes "coprime (d::nat) (a * b)" shows "coprime d b"
huffman@31706
   700
proof -
huffman@31706
   701
  have "gcd d b dvd gcd d (a * b)"
nipkow@31952
   702
    by (rule gcd_greatest_nat, auto intro: dvd_mult)
nipkow@31798
   703
  with assms show ?thesis
huffman@31706
   704
    by auto
huffman@31706
   705
qed
huffman@31706
   706
nipkow@31952
   707
lemma coprime_rmult_int:
huffman@31706
   708
  assumes dab: "coprime (d::int) (a * b)" shows "coprime d b"
huffman@31706
   709
proof -
huffman@31706
   710
  have "gcd d b dvd gcd d (a * b)"
nipkow@31952
   711
    by (rule gcd_greatest_int, auto intro: dvd_mult)
huffman@31706
   712
  with dab show ?thesis
huffman@31706
   713
    by auto
huffman@31706
   714
qed
huffman@31706
   715
nipkow@31952
   716
lemma coprime_mul_eq_nat: "coprime (d::nat) (a * b) \<longleftrightarrow>
huffman@31706
   717
    coprime d a \<and>  coprime d b"
nipkow@31952
   718
  using coprime_rmult_nat[of d a b] coprime_lmult_nat[of d a b]
nipkow@31952
   719
    coprime_mult_nat[of d a b]
huffman@31706
   720
  by blast
huffman@31706
   721
nipkow@31952
   722
lemma coprime_mul_eq_int: "coprime (d::int) (a * b) \<longleftrightarrow>
huffman@31706
   723
    coprime d a \<and>  coprime d b"
nipkow@31952
   724
  using coprime_rmult_int[of d a b] coprime_lmult_int[of d a b]
nipkow@31952
   725
    coprime_mult_int[of d a b]
huffman@31706
   726
  by blast
huffman@31706
   727
noschinl@52397
   728
lemma coprime_power_int:
noschinl@52397
   729
  assumes "0 < n" shows "coprime (a :: int) (b ^ n) \<longleftrightarrow> coprime a b"
noschinl@52397
   730
  using assms
noschinl@52397
   731
proof (induct n)
noschinl@52397
   732
  case (Suc n) then show ?case
noschinl@52397
   733
    by (cases n) (simp_all add: coprime_mul_eq_int)
noschinl@52397
   734
qed simp
noschinl@52397
   735
nipkow@31952
   736
lemma gcd_coprime_exists_nat:
huffman@31706
   737
    assumes nz: "gcd (a::nat) b \<noteq> 0"
huffman@31706
   738
    shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'"
huffman@31706
   739
  apply (rule_tac x = "a div gcd a b" in exI)
huffman@31706
   740
  apply (rule_tac x = "b div gcd a b" in exI)
nipkow@31952
   741
  using nz apply (auto simp add: div_gcd_coprime_nat dvd_div_mult)
huffman@31706
   742
done
huffman@31706
   743
nipkow@31952
   744
lemma gcd_coprime_exists_int:
huffman@31706
   745
    assumes nz: "gcd (a::int) b \<noteq> 0"
huffman@31706
   746
    shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'"
huffman@31706
   747
  apply (rule_tac x = "a div gcd a b" in exI)
huffman@31706
   748
  apply (rule_tac x = "b div gcd a b" in exI)
nipkow@31952
   749
  using nz apply (auto simp add: div_gcd_coprime_int dvd_div_mult_self)
huffman@31706
   750
done
huffman@31706
   751
nipkow@31952
   752
lemma coprime_exp_nat: "coprime (d::nat) a \<Longrightarrow> coprime d (a^n)"
nipkow@31952
   753
  by (induct n, simp_all add: coprime_mult_nat)
huffman@31706
   754
nipkow@31952
   755
lemma coprime_exp_int: "coprime (d::int) a \<Longrightarrow> coprime d (a^n)"
nipkow@31952
   756
  by (induct n, simp_all add: coprime_mult_int)
huffman@31706
   757
nipkow@31952
   758
lemma coprime_exp2_nat [intro]: "coprime (a::nat) b \<Longrightarrow> coprime (a^n) (b^m)"
nipkow@31952
   759
  apply (rule coprime_exp_nat)
nipkow@31952
   760
  apply (subst gcd_commute_nat)
nipkow@31952
   761
  apply (rule coprime_exp_nat)
nipkow@31952
   762
  apply (subst gcd_commute_nat, assumption)
huffman@31706
   763
done
huffman@31706
   764
nipkow@31952
   765
lemma coprime_exp2_int [intro]: "coprime (a::int) b \<Longrightarrow> coprime (a^n) (b^m)"
nipkow@31952
   766
  apply (rule coprime_exp_int)
nipkow@31952
   767
  apply (subst gcd_commute_int)
nipkow@31952
   768
  apply (rule coprime_exp_int)
nipkow@31952
   769
  apply (subst gcd_commute_int, assumption)
huffman@31706
   770
done
huffman@31706
   771
nipkow@31952
   772
lemma gcd_exp_nat: "gcd ((a::nat)^n) (b^n) = (gcd a b)^n"
huffman@31706
   773
proof (cases)
huffman@31706
   774
  assume "a = 0 & b = 0"
huffman@31706
   775
  thus ?thesis by simp
huffman@31706
   776
  next assume "~(a = 0 & b = 0)"
huffman@31706
   777
  hence "coprime ((a div gcd a b)^n) ((b div gcd a b)^n)"
nipkow@31952
   778
    by (auto simp:div_gcd_coprime_nat)
huffman@31706
   779
  hence "gcd ((a div gcd a b)^n * (gcd a b)^n)
huffman@31706
   780
      ((b div gcd a b)^n * (gcd a b)^n) = (gcd a b)^n"
haftmann@57512
   781
    apply (subst (1 2) mult.commute)
nipkow@31952
   782
    apply (subst gcd_mult_distrib_nat [symmetric])
huffman@31706
   783
    apply simp
huffman@31706
   784
    done
huffman@31706
   785
  also have "(a div gcd a b)^n * (gcd a b)^n = a^n"
huffman@31706
   786
    apply (subst div_power)
huffman@31706
   787
    apply auto
huffman@31706
   788
    apply (rule dvd_div_mult_self)
huffman@31706
   789
    apply (rule dvd_power_same)
huffman@31706
   790
    apply auto
huffman@31706
   791
    done
huffman@31706
   792
  also have "(b div gcd a b)^n * (gcd a b)^n = b^n"
huffman@31706
   793
    apply (subst div_power)
huffman@31706
   794
    apply auto
huffman@31706
   795
    apply (rule dvd_div_mult_self)
huffman@31706
   796
    apply (rule dvd_power_same)
huffman@31706
   797
    apply auto
huffman@31706
   798
    done
huffman@31706
   799
  finally show ?thesis .
huffman@31706
   800
qed
huffman@31706
   801
nipkow@31952
   802
lemma gcd_exp_int: "gcd ((a::int)^n) (b^n) = (gcd a b)^n"
nipkow@31952
   803
  apply (subst (1 2) gcd_abs_int)
huffman@31706
   804
  apply (subst (1 2) power_abs)
nipkow@31952
   805
  apply (rule gcd_exp_nat [where n = n, transferred])
huffman@31706
   806
  apply auto
huffman@31706
   807
done
huffman@31706
   808
nipkow@31952
   809
lemma division_decomp_nat: assumes dc: "(a::nat) dvd b * c"
huffman@31706
   810
  shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c"
huffman@31706
   811
proof-
huffman@31706
   812
  let ?g = "gcd a b"
huffman@31706
   813
  {assume "?g = 0" with dc have ?thesis by auto}
huffman@31706
   814
  moreover
huffman@31706
   815
  {assume z: "?g \<noteq> 0"
nipkow@31952
   816
    from gcd_coprime_exists_nat[OF z]
huffman@31706
   817
    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'"
huffman@31706
   818
      by blast
huffman@31706
   819
    have thb: "?g dvd b" by auto
huffman@31706
   820
    from ab'(1) have "a' dvd a"  unfolding dvd_def by blast
huffman@31706
   821
    with dc have th0: "a' dvd b*c" using dvd_trans[of a' a "b*c"] by simp
huffman@31706
   822
    from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto
haftmann@57512
   823
    hence "?g*a' dvd ?g * (b' * c)" by (simp add: mult.assoc)
huffman@31706
   824
    with z have th_1: "a' dvd b' * c" by auto
nipkow@31952
   825
    from coprime_dvd_mult_nat[OF ab'(3)] th_1
haftmann@57512
   826
    have thc: "a' dvd c" by (subst (asm) mult.commute, blast)
huffman@31706
   827
    from ab' have "a = ?g*a'" by algebra
huffman@31706
   828
    with thb thc have ?thesis by blast }
huffman@31706
   829
  ultimately show ?thesis by blast
huffman@31706
   830
qed
huffman@31706
   831
nipkow@31952
   832
lemma division_decomp_int: assumes dc: "(a::int) dvd b * c"
huffman@31706
   833
  shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c"
huffman@31706
   834
proof-
huffman@31706
   835
  let ?g = "gcd a b"
huffman@31706
   836
  {assume "?g = 0" with dc have ?thesis by auto}
huffman@31706
   837
  moreover
huffman@31706
   838
  {assume z: "?g \<noteq> 0"
nipkow@31952
   839
    from gcd_coprime_exists_int[OF z]
huffman@31706
   840
    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'"
huffman@31706
   841
      by blast
huffman@31706
   842
    have thb: "?g dvd b" by auto
huffman@31706
   843
    from ab'(1) have "a' dvd a"  unfolding dvd_def by blast
huffman@31706
   844
    with dc have th0: "a' dvd b*c"
huffman@31706
   845
      using dvd_trans[of a' a "b*c"] by simp
huffman@31706
   846
    from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto
haftmann@57512
   847
    hence "?g*a' dvd ?g * (b' * c)" by (simp add: mult.assoc)
huffman@31706
   848
    with z have th_1: "a' dvd b' * c" by auto
nipkow@31952
   849
    from coprime_dvd_mult_int[OF ab'(3)] th_1
haftmann@57512
   850
    have thc: "a' dvd c" by (subst (asm) mult.commute, blast)
huffman@31706
   851
    from ab' have "a = ?g*a'" by algebra
huffman@31706
   852
    with thb thc have ?thesis by blast }
huffman@31706
   853
  ultimately show ?thesis by blast
chaieb@27669
   854
qed
chaieb@27669
   855
nipkow@31952
   856
lemma pow_divides_pow_nat:
huffman@31706
   857
  assumes ab: "(a::nat) ^ n dvd b ^n" and n:"n \<noteq> 0"
huffman@31706
   858
  shows "a dvd b"
huffman@31706
   859
proof-
huffman@31706
   860
  let ?g = "gcd a b"
huffman@31706
   861
  from n obtain m where m: "n = Suc m" by (cases n, simp_all)
huffman@31706
   862
  {assume "?g = 0" with ab n have ?thesis by auto }
huffman@31706
   863
  moreover
huffman@31706
   864
  {assume z: "?g \<noteq> 0"
huffman@35216
   865
    hence zn: "?g ^ n \<noteq> 0" using n by simp
nipkow@31952
   866
    from gcd_coprime_exists_nat[OF z]
huffman@31706
   867
    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'"
huffman@31706
   868
      by blast
huffman@31706
   869
    from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n"
huffman@31706
   870
      by (simp add: ab'(1,2)[symmetric])
huffman@31706
   871
    hence "?g^n*a'^n dvd ?g^n *b'^n"
haftmann@57512
   872
      by (simp only: power_mult_distrib mult.commute)
huffman@31706
   873
    with zn z n have th0:"a'^n dvd b'^n" by auto
huffman@31706
   874
    have "a' dvd a'^n" by (simp add: m)
huffman@31706
   875
    with th0 have "a' dvd b'^n" using dvd_trans[of a' "a'^n" "b'^n"] by simp
haftmann@57512
   876
    hence th1: "a' dvd b'^m * b'" by (simp add: m mult.commute)
nipkow@31952
   877
    from coprime_dvd_mult_nat[OF coprime_exp_nat [OF ab'(3), of m]] th1
haftmann@57512
   878
    have "a' dvd b'" by (subst (asm) mult.commute, blast)
huffman@31706
   879
    hence "a'*?g dvd b'*?g" by simp
huffman@31706
   880
    with ab'(1,2)  have ?thesis by simp }
huffman@31706
   881
  ultimately show ?thesis by blast
huffman@31706
   882
qed
huffman@31706
   883
nipkow@31952
   884
lemma pow_divides_pow_int:
huffman@31706
   885
  assumes ab: "(a::int) ^ n dvd b ^n" and n:"n \<noteq> 0"
huffman@31706
   886
  shows "a dvd b"
chaieb@27669
   887
proof-
huffman@31706
   888
  let ?g = "gcd a b"
huffman@31706
   889
  from n obtain m where m: "n = Suc m" by (cases n, simp_all)
huffman@31706
   890
  {assume "?g = 0" with ab n have ?thesis by auto }
huffman@31706
   891
  moreover
huffman@31706
   892
  {assume z: "?g \<noteq> 0"
huffman@35216
   893
    hence zn: "?g ^ n \<noteq> 0" using n by simp
nipkow@31952
   894
    from gcd_coprime_exists_int[OF z]
huffman@31706
   895
    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'"
huffman@31706
   896
      by blast
huffman@31706
   897
    from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n"
huffman@31706
   898
      by (simp add: ab'(1,2)[symmetric])
huffman@31706
   899
    hence "?g^n*a'^n dvd ?g^n *b'^n"
haftmann@57512
   900
      by (simp only: power_mult_distrib mult.commute)
huffman@31706
   901
    with zn z n have th0:"a'^n dvd b'^n" by auto
huffman@31706
   902
    have "a' dvd a'^n" by (simp add: m)
huffman@31706
   903
    with th0 have "a' dvd b'^n"
huffman@31706
   904
      using dvd_trans[of a' "a'^n" "b'^n"] by simp
haftmann@57512
   905
    hence th1: "a' dvd b'^m * b'" by (simp add: m mult.commute)
nipkow@31952
   906
    from coprime_dvd_mult_int[OF coprime_exp_int [OF ab'(3), of m]] th1
haftmann@57512
   907
    have "a' dvd b'" by (subst (asm) mult.commute, blast)
huffman@31706
   908
    hence "a'*?g dvd b'*?g" by simp
huffman@31706
   909
    with ab'(1,2)  have ?thesis by simp }
huffman@31706
   910
  ultimately show ?thesis by blast
huffman@31706
   911
qed
huffman@31706
   912
nipkow@31952
   913
lemma pow_divides_eq_nat [simp]: "n ~= 0 \<Longrightarrow> ((a::nat)^n dvd b^n) = (a dvd b)"
nipkow@31952
   914
  by (auto intro: pow_divides_pow_nat dvd_power_same)
huffman@31706
   915
nipkow@31952
   916
lemma pow_divides_eq_int [simp]: "n ~= 0 \<Longrightarrow> ((a::int)^n dvd b^n) = (a dvd b)"
nipkow@31952
   917
  by (auto intro: pow_divides_pow_int dvd_power_same)
huffman@31706
   918
nipkow@31952
   919
lemma divides_mult_nat:
huffman@31706
   920
  assumes mr: "(m::nat) dvd r" and nr: "n dvd r" and mn:"coprime m n"
huffman@31706
   921
  shows "m * n dvd r"
huffman@31706
   922
proof-
huffman@31706
   923
  from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'"
huffman@31706
   924
    unfolding dvd_def by blast
haftmann@57512
   925
  from mr n' have "m dvd n'*n" by (simp add: mult.commute)
nipkow@31952
   926
  hence "m dvd n'" using coprime_dvd_mult_iff_nat[OF mn] by simp
huffman@31706
   927
  then obtain k where k: "n' = m*k" unfolding dvd_def by blast
huffman@31706
   928
  from n' k show ?thesis unfolding dvd_def by auto
huffman@31706
   929
qed
huffman@31706
   930
nipkow@31952
   931
lemma divides_mult_int:
huffman@31706
   932
  assumes mr: "(m::int) dvd r" and nr: "n dvd r" and mn:"coprime m n"
huffman@31706
   933
  shows "m * n dvd r"
huffman@31706
   934
proof-
huffman@31706
   935
  from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'"
huffman@31706
   936
    unfolding dvd_def by blast
haftmann@57512
   937
  from mr n' have "m dvd n'*n" by (simp add: mult.commute)
nipkow@31952
   938
  hence "m dvd n'" using coprime_dvd_mult_iff_int[OF mn] by simp
huffman@31706
   939
  then obtain k where k: "n' = m*k" unfolding dvd_def by blast
huffman@31706
   940
  from n' k show ?thesis unfolding dvd_def by auto
chaieb@27669
   941
qed
chaieb@27669
   942
nipkow@31952
   943
lemma coprime_plus_one_nat [simp]: "coprime ((n::nat) + 1) n"
huffman@31706
   944
  apply (subgoal_tac "gcd (n + 1) n dvd (n + 1 - n)")
huffman@31706
   945
  apply force
nipkow@31952
   946
  apply (rule dvd_diff_nat)
huffman@31706
   947
  apply auto
huffman@31706
   948
done
huffman@31706
   949
nipkow@31952
   950
lemma coprime_Suc_nat [simp]: "coprime (Suc n) n"
nipkow@31952
   951
  using coprime_plus_one_nat by (simp add: One_nat_def)
huffman@31706
   952
nipkow@31952
   953
lemma coprime_plus_one_int [simp]: "coprime ((n::int) + 1) n"
huffman@31706
   954
  apply (subgoal_tac "gcd (n + 1) n dvd (n + 1 - n)")
huffman@31706
   955
  apply force
huffman@31706
   956
  apply (rule dvd_diff)
huffman@31706
   957
  apply auto
huffman@31706
   958
done
huffman@31706
   959
nipkow@31952
   960
lemma coprime_minus_one_nat: "(n::nat) \<noteq> 0 \<Longrightarrow> coprime (n - 1) n"
nipkow@31952
   961
  using coprime_plus_one_nat [of "n - 1"]
nipkow@31952
   962
    gcd_commute_nat [of "n - 1" n] by auto
huffman@31706
   963
nipkow@31952
   964
lemma coprime_minus_one_int: "coprime ((n::int) - 1) n"
nipkow@31952
   965
  using coprime_plus_one_int [of "n - 1"]
nipkow@31952
   966
    gcd_commute_int [of "n - 1" n] by auto
huffman@31706
   967
nipkow@31952
   968
lemma setprod_coprime_nat [rule_format]:
huffman@31706
   969
    "(ALL i: A. coprime (f i) (x::nat)) --> coprime (PROD i:A. f i) x"
huffman@31706
   970
  apply (case_tac "finite A")
huffman@31706
   971
  apply (induct set: finite)
nipkow@31952
   972
  apply (auto simp add: gcd_mult_cancel_nat)
huffman@31706
   973
done
huffman@31706
   974
nipkow@31952
   975
lemma setprod_coprime_int [rule_format]:
huffman@31706
   976
    "(ALL i: A. coprime (f i) (x::int)) --> coprime (PROD i:A. f i) x"
huffman@31706
   977
  apply (case_tac "finite A")
huffman@31706
   978
  apply (induct set: finite)
nipkow@31952
   979
  apply (auto simp add: gcd_mult_cancel_int)
huffman@31706
   980
done
huffman@31706
   981
nipkow@31952
   982
lemma coprime_common_divisor_nat: "coprime (a::nat) b \<Longrightarrow> x dvd a \<Longrightarrow>
huffman@31706
   983
    x dvd b \<Longrightarrow> x = 1"
huffman@31706
   984
  apply (subgoal_tac "x dvd gcd a b")
huffman@31706
   985
  apply simp
nipkow@31952
   986
  apply (erule (1) gcd_greatest_nat)
huffman@31706
   987
done
huffman@31706
   988
nipkow@31952
   989
lemma coprime_common_divisor_int: "coprime (a::int) b \<Longrightarrow> x dvd a \<Longrightarrow>
huffman@31706
   990
    x dvd b \<Longrightarrow> abs x = 1"
huffman@31706
   991
  apply (subgoal_tac "x dvd gcd a b")
huffman@31706
   992
  apply simp
nipkow@31952
   993
  apply (erule (1) gcd_greatest_int)
huffman@31706
   994
done
huffman@31706
   995
nipkow@31952
   996
lemma coprime_divisors_nat: "(d::int) dvd a \<Longrightarrow> e dvd b \<Longrightarrow> coprime a b \<Longrightarrow>
huffman@31706
   997
    coprime d e"
huffman@31706
   998
  apply (auto simp add: dvd_def)
nipkow@31952
   999
  apply (frule coprime_lmult_int)
nipkow@31952
  1000
  apply (subst gcd_commute_int)
nipkow@31952
  1001
  apply (subst (asm) (2) gcd_commute_int)
nipkow@31952
  1002
  apply (erule coprime_lmult_int)
huffman@31706
  1003
done
huffman@31706
  1004
nipkow@31952
  1005
lemma invertible_coprime_nat: "(x::nat) * y mod m = 1 \<Longrightarrow> coprime x m"
nipkow@31952
  1006
apply (metis coprime_lmult_nat gcd_1_nat gcd_commute_nat gcd_red_nat)
huffman@31706
  1007
done
huffman@31706
  1008
nipkow@31952
  1009
lemma invertible_coprime_int: "(x::int) * y mod m = 1 \<Longrightarrow> coprime x m"
nipkow@31952
  1010
apply (metis coprime_lmult_int gcd_1_int gcd_commute_int gcd_red_int)
huffman@31706
  1011
done
huffman@31706
  1012
huffman@31706
  1013
huffman@31706
  1014
subsection {* Bezout's theorem *}
huffman@31706
  1015
huffman@31706
  1016
(* Function bezw returns a pair of witnesses to Bezout's theorem --
huffman@31706
  1017
   see the theorems that follow the definition. *)
huffman@31706
  1018
fun
huffman@31706
  1019
  bezw  :: "nat \<Rightarrow> nat \<Rightarrow> int * int"
huffman@31706
  1020
where
huffman@31706
  1021
  "bezw x y =
huffman@31706
  1022
  (if y = 0 then (1, 0) else
huffman@31706
  1023
      (snd (bezw y (x mod y)),
huffman@31706
  1024
       fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y)))"
huffman@31706
  1025
huffman@31706
  1026
lemma bezw_0 [simp]: "bezw x 0 = (1, 0)" by simp
huffman@31706
  1027
huffman@31706
  1028
lemma bezw_non_0: "y > 0 \<Longrightarrow> bezw x y = (snd (bezw y (x mod y)),
huffman@31706
  1029
       fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y))"
huffman@31706
  1030
  by simp
huffman@31706
  1031
huffman@31706
  1032
declare bezw.simps [simp del]
huffman@31706
  1033
huffman@31706
  1034
lemma bezw_aux [rule_format]:
huffman@31706
  1035
    "fst (bezw x y) * int x + snd (bezw x y) * int y = int (gcd x y)"
nipkow@31952
  1036
proof (induct x y rule: gcd_nat_induct)
huffman@31706
  1037
  fix m :: nat
huffman@31706
  1038
  show "fst (bezw m 0) * int m + snd (bezw m 0) * int 0 = int (gcd m 0)"
huffman@31706
  1039
    by auto
huffman@31706
  1040
  next fix m :: nat and n
huffman@31706
  1041
    assume ngt0: "n > 0" and
huffman@31706
  1042
      ih: "fst (bezw n (m mod n)) * int n +
huffman@31706
  1043
        snd (bezw n (m mod n)) * int (m mod n) =
huffman@31706
  1044
        int (gcd n (m mod n))"
huffman@31706
  1045
    thus "fst (bezw m n) * int m + snd (bezw m n) * int n = int (gcd m n)"
nipkow@31952
  1046
      apply (simp add: bezw_non_0 gcd_non_0_nat)
huffman@31706
  1047
      apply (erule subst)
haftmann@36350
  1048
      apply (simp add: field_simps)
huffman@31706
  1049
      apply (subst mod_div_equality [of m n, symmetric])
huffman@31706
  1050
      (* applying simp here undoes the last substitution!
huffman@31706
  1051
         what is procedure cancel_div_mod? *)
huffman@44821
  1052
      apply (simp only: field_simps of_nat_add of_nat_mult)
huffman@31706
  1053
      done
huffman@31706
  1054
qed
huffman@31706
  1055
nipkow@31952
  1056
lemma bezout_int:
huffman@31706
  1057
  fixes x y
huffman@31706
  1058
  shows "EX u v. u * (x::int) + v * y = gcd x y"
huffman@31706
  1059
proof -
huffman@31706
  1060
  have bezout_aux: "!!x y. x \<ge> (0::int) \<Longrightarrow> y \<ge> 0 \<Longrightarrow>
huffman@31706
  1061
      EX u v. u * x + v * y = gcd x y"
huffman@31706
  1062
    apply (rule_tac x = "fst (bezw (nat x) (nat y))" in exI)
huffman@31706
  1063
    apply (rule_tac x = "snd (bezw (nat x) (nat y))" in exI)
huffman@31706
  1064
    apply (unfold gcd_int_def)
huffman@31706
  1065
    apply simp
huffman@31706
  1066
    apply (subst bezw_aux [symmetric])
huffman@31706
  1067
    apply auto
huffman@31706
  1068
    done
huffman@31706
  1069
  have "(x \<ge> 0 \<and> y \<ge> 0) | (x \<ge> 0 \<and> y \<le> 0) | (x \<le> 0 \<and> y \<ge> 0) |
huffman@31706
  1070
      (x \<le> 0 \<and> y \<le> 0)"
huffman@31706
  1071
    by auto
huffman@31706
  1072
  moreover have "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> ?thesis"
huffman@31706
  1073
    by (erule (1) bezout_aux)
huffman@31706
  1074
  moreover have "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> ?thesis"
huffman@31706
  1075
    apply (insert bezout_aux [of x "-y"])
huffman@31706
  1076
    apply auto
huffman@31706
  1077
    apply (rule_tac x = u in exI)
huffman@31706
  1078
    apply (rule_tac x = "-v" in exI)
nipkow@31952
  1079
    apply (subst gcd_neg2_int [symmetric])
huffman@31706
  1080
    apply auto
huffman@31706
  1081
    done
huffman@31706
  1082
  moreover have "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> ?thesis"
huffman@31706
  1083
    apply (insert bezout_aux [of "-x" y])
huffman@31706
  1084
    apply auto
huffman@31706
  1085
    apply (rule_tac x = "-u" in exI)
huffman@31706
  1086
    apply (rule_tac x = v in exI)
nipkow@31952
  1087
    apply (subst gcd_neg1_int [symmetric])
huffman@31706
  1088
    apply auto
huffman@31706
  1089
    done
huffman@31706
  1090
  moreover have "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> ?thesis"
huffman@31706
  1091
    apply (insert bezout_aux [of "-x" "-y"])
huffman@31706
  1092
    apply auto
huffman@31706
  1093
    apply (rule_tac x = "-u" in exI)
huffman@31706
  1094
    apply (rule_tac x = "-v" in exI)
nipkow@31952
  1095
    apply (subst gcd_neg1_int [symmetric])
nipkow@31952
  1096
    apply (subst gcd_neg2_int [symmetric])
huffman@31706
  1097
    apply auto
huffman@31706
  1098
    done
huffman@31706
  1099
  ultimately show ?thesis by blast
huffman@31706
  1100
qed
huffman@31706
  1101
huffman@31706
  1102
text {* versions of Bezout for nat, by Amine Chaieb *}
huffman@31706
  1103
huffman@31706
  1104
lemma ind_euclid:
huffman@31706
  1105
  assumes c: " \<forall>a b. P (a::nat) b \<longleftrightarrow> P b a" and z: "\<forall>a. P a 0"
huffman@31706
  1106
  and add: "\<forall>a b. P a b \<longrightarrow> P a (a + b)"
chaieb@27669
  1107
  shows "P a b"
berghofe@34915
  1108
proof(induct "a + b" arbitrary: a b rule: less_induct)
berghofe@34915
  1109
  case less
chaieb@27669
  1110
  have "a = b \<or> a < b \<or> b < a" by arith
chaieb@27669
  1111
  moreover {assume eq: "a= b"
huffman@31706
  1112
    from add[rule_format, OF z[rule_format, of a]] have "P a b" using eq
huffman@31706
  1113
    by simp}
chaieb@27669
  1114
  moreover
chaieb@27669
  1115
  {assume lt: "a < b"
berghofe@34915
  1116
    hence "a + b - a < a + b \<or> a = 0" by arith
chaieb@27669
  1117
    moreover
chaieb@27669
  1118
    {assume "a =0" with z c have "P a b" by blast }
chaieb@27669
  1119
    moreover
berghofe@34915
  1120
    {assume "a + b - a < a + b"
berghofe@34915
  1121
      also have th0: "a + b - a = a + (b - a)" using lt by arith
berghofe@34915
  1122
      finally have "a + (b - a) < a + b" .
berghofe@34915
  1123
      then have "P a (a + (b - a))" by (rule add[rule_format, OF less])
berghofe@34915
  1124
      then have "P a b" by (simp add: th0[symmetric])}
chaieb@27669
  1125
    ultimately have "P a b" by blast}
chaieb@27669
  1126
  moreover
chaieb@27669
  1127
  {assume lt: "a > b"
berghofe@34915
  1128
    hence "b + a - b < a + b \<or> b = 0" by arith
chaieb@27669
  1129
    moreover
chaieb@27669
  1130
    {assume "b =0" with z c have "P a b" by blast }
chaieb@27669
  1131
    moreover
berghofe@34915
  1132
    {assume "b + a - b < a + b"
berghofe@34915
  1133
      also have th0: "b + a - b = b + (a - b)" using lt by arith
berghofe@34915
  1134
      finally have "b + (a - b) < a + b" .
berghofe@34915
  1135
      then have "P b (b + (a - b))" by (rule add[rule_format, OF less])
berghofe@34915
  1136
      then have "P b a" by (simp add: th0[symmetric])
chaieb@27669
  1137
      hence "P a b" using c by blast }
chaieb@27669
  1138
    ultimately have "P a b" by blast}
chaieb@27669
  1139
ultimately  show "P a b" by blast
chaieb@27669
  1140
qed
chaieb@27669
  1141
nipkow@31952
  1142
lemma bezout_lemma_nat:
huffman@31706
  1143
  assumes ex: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>
huffman@31706
  1144
    (a * x = b * y + d \<or> b * x = a * y + d)"
huffman@31706
  1145
  shows "\<exists>d x y. d dvd a \<and> d dvd a + b \<and>
huffman@31706
  1146
    (a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)"
huffman@31706
  1147
  using ex
huffman@31706
  1148
  apply clarsimp
huffman@35216
  1149
  apply (rule_tac x="d" in exI, simp)
huffman@31706
  1150
  apply (case_tac "a * x = b * y + d" , simp_all)
huffman@31706
  1151
  apply (rule_tac x="x + y" in exI)
huffman@31706
  1152
  apply (rule_tac x="y" in exI)
huffman@31706
  1153
  apply algebra
huffman@31706
  1154
  apply (rule_tac x="x" in exI)
huffman@31706
  1155
  apply (rule_tac x="x + y" in exI)
huffman@31706
  1156
  apply algebra
chaieb@27669
  1157
done
chaieb@27669
  1158
nipkow@31952
  1159
lemma bezout_add_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>
huffman@31706
  1160
    (a * x = b * y + d \<or> b * x = a * y + d)"
huffman@31706
  1161
  apply(induct a b rule: ind_euclid)
huffman@31706
  1162
  apply blast
huffman@31706
  1163
  apply clarify
huffman@35216
  1164
  apply (rule_tac x="a" in exI, simp)
huffman@31706
  1165
  apply clarsimp
huffman@31706
  1166
  apply (rule_tac x="d" in exI)
huffman@35216
  1167
  apply (case_tac "a * x = b * y + d", simp_all)
huffman@31706
  1168
  apply (rule_tac x="x+y" in exI)
huffman@31706
  1169
  apply (rule_tac x="y" in exI)
huffman@31706
  1170
  apply algebra
huffman@31706
  1171
  apply (rule_tac x="x" in exI)
huffman@31706
  1172
  apply (rule_tac x="x+y" in exI)
huffman@31706
  1173
  apply algebra
chaieb@27669
  1174
done
chaieb@27669
  1175
nipkow@31952
  1176
lemma bezout1_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>
huffman@31706
  1177
    (a * x - b * y = d \<or> b * x - a * y = d)"
nipkow@31952
  1178
  using bezout_add_nat[of a b]
huffman@31706
  1179
  apply clarsimp
huffman@31706
  1180
  apply (rule_tac x="d" in exI, simp)
huffman@31706
  1181
  apply (rule_tac x="x" in exI)
huffman@31706
  1182
  apply (rule_tac x="y" in exI)
huffman@31706
  1183
  apply auto
chaieb@27669
  1184
done
chaieb@27669
  1185
nipkow@31952
  1186
lemma bezout_add_strong_nat: assumes nz: "a \<noteq> (0::nat)"
chaieb@27669
  1187
  shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d"
chaieb@27669
  1188
proof-
huffman@31706
  1189
 from nz have ap: "a > 0" by simp
nipkow@31952
  1190
 from bezout_add_nat[of a b]
huffman@31706
  1191
 have "(\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d) \<or>
huffman@31706
  1192
   (\<exists>d x y. d dvd a \<and> d dvd b \<and> b * x = a * y + d)" by blast
chaieb@27669
  1193
 moreover
huffman@31706
  1194
    {fix d x y assume H: "d dvd a" "d dvd b" "a * x = b * y + d"
huffman@31706
  1195
     from H have ?thesis by blast }
chaieb@27669
  1196
 moreover
chaieb@27669
  1197
 {fix d x y assume H: "d dvd a" "d dvd b" "b * x = a * y + d"
chaieb@27669
  1198
   {assume b0: "b = 0" with H  have ?thesis by simp}
huffman@31706
  1199
   moreover
chaieb@27669
  1200
   {assume b: "b \<noteq> 0" hence bp: "b > 0" by simp
huffman@31706
  1201
     from b dvd_imp_le [OF H(2)] have "d < b \<or> d = b"
huffman@31706
  1202
       by auto
chaieb@27669
  1203
     moreover
chaieb@27669
  1204
     {assume db: "d=b"
wenzelm@41550
  1205
       with nz H have ?thesis apply simp
wenzelm@32960
  1206
         apply (rule exI[where x = b], simp)
wenzelm@32960
  1207
         apply (rule exI[where x = b])
wenzelm@32960
  1208
        by (rule exI[where x = "a - 1"], simp add: diff_mult_distrib2)}
chaieb@27669
  1209
    moreover
huffman@31706
  1210
    {assume db: "d < b"
wenzelm@41550
  1211
        {assume "x=0" hence ?thesis using nz H by simp }
wenzelm@32960
  1212
        moreover
wenzelm@32960
  1213
        {assume x0: "x \<noteq> 0" hence xp: "x > 0" by simp
wenzelm@32960
  1214
          from db have "d \<le> b - 1" by simp
wenzelm@32960
  1215
          hence "d*b \<le> b*(b - 1)" by simp
wenzelm@32960
  1216
          with xp mult_mono[of "1" "x" "d*b" "b*(b - 1)"]
wenzelm@32960
  1217
          have dble: "d*b \<le> x*b*(b - 1)" using bp by simp
wenzelm@32960
  1218
          from H (3) have "d + (b - 1) * (b*x) = d + (b - 1) * (a*y + d)"
huffman@31706
  1219
            by simp
wenzelm@32960
  1220
          hence "d + (b - 1) * a * y + (b - 1) * d = d + (b - 1) * b * x"
haftmann@57512
  1221
            by (simp only: mult.assoc distrib_left)
wenzelm@32960
  1222
          hence "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x*b*(b - 1)"
huffman@31706
  1223
            by algebra
wenzelm@32960
  1224
          hence "a * ((b - 1) * y) = d + x*b*(b - 1) - d*b" using bp by simp
wenzelm@32960
  1225
          hence "a * ((b - 1) * y) = d + (x*b*(b - 1) - d*b)"
wenzelm@32960
  1226
            by (simp only: diff_add_assoc[OF dble, of d, symmetric])
wenzelm@32960
  1227
          hence "a * ((b - 1) * y) = b*(x*(b - 1) - d) + d"
haftmann@57512
  1228
            by (simp only: diff_mult_distrib2 add.commute mult_ac)
wenzelm@32960
  1229
          hence ?thesis using H(1,2)
wenzelm@32960
  1230
            apply -
wenzelm@32960
  1231
            apply (rule exI[where x=d], simp)
wenzelm@32960
  1232
            apply (rule exI[where x="(b - 1) * y"])
wenzelm@32960
  1233
            by (rule exI[where x="x*(b - 1) - d"], simp)}
wenzelm@32960
  1234
        ultimately have ?thesis by blast}
chaieb@27669
  1235
    ultimately have ?thesis by blast}
chaieb@27669
  1236
  ultimately have ?thesis by blast}
chaieb@27669
  1237
 ultimately show ?thesis by blast
chaieb@27669
  1238
qed
chaieb@27669
  1239
nipkow@31952
  1240
lemma bezout_nat: assumes a: "(a::nat) \<noteq> 0"
chaieb@27669
  1241
  shows "\<exists>x y. a * x = b * y + gcd a b"
chaieb@27669
  1242
proof-
chaieb@27669
  1243
  let ?g = "gcd a b"
nipkow@31952
  1244
  from bezout_add_strong_nat[OF a, of b]
chaieb@27669
  1245
  obtain d x y where d: "d dvd a" "d dvd b" "a * x = b * y + d" by blast
chaieb@27669
  1246
  from d(1,2) have "d dvd ?g" by simp
chaieb@27669
  1247
  then obtain k where k: "?g = d*k" unfolding dvd_def by blast
huffman@31706
  1248
  from d(3) have "a * x * k = (b * y + d) *k " by auto
chaieb@27669
  1249
  hence "a * (x * k) = b * (y*k) + ?g" by (algebra add: k)
chaieb@27669
  1250
  thus ?thesis by blast
chaieb@27669
  1251
qed
chaieb@27669
  1252
huffman@31706
  1253
haftmann@34030
  1254
subsection {* LCM properties *}
huffman@31706
  1255
haftmann@34030
  1256
lemma lcm_altdef_int [code]: "lcm (a::int) b = (abs a) * (abs b) div gcd a b"
huffman@31706
  1257
  by (simp add: lcm_int_def lcm_nat_def zdiv_int
huffman@44821
  1258
    of_nat_mult gcd_int_def)
huffman@31706
  1259
nipkow@31952
  1260
lemma prod_gcd_lcm_nat: "(m::nat) * n = gcd m n * lcm m n"
huffman@31706
  1261
  unfolding lcm_nat_def
nipkow@31952
  1262
  by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod_nat])
huffman@31706
  1263
nipkow@31952
  1264
lemma prod_gcd_lcm_int: "abs(m::int) * abs n = gcd m n * lcm m n"
huffman@31706
  1265
  unfolding lcm_int_def gcd_int_def
huffman@31706
  1266
  apply (subst int_mult [symmetric])
nipkow@31952
  1267
  apply (subst prod_gcd_lcm_nat [symmetric])
huffman@31706
  1268
  apply (subst nat_abs_mult_distrib [symmetric])
huffman@31706
  1269
  apply (simp, simp add: abs_mult)
huffman@31706
  1270
done
huffman@31706
  1271
nipkow@31952
  1272
lemma lcm_0_nat [simp]: "lcm (m::nat) 0 = 0"
huffman@31706
  1273
  unfolding lcm_nat_def by simp
huffman@31706
  1274
nipkow@31952
  1275
lemma lcm_0_int [simp]: "lcm (m::int) 0 = 0"
huffman@31706
  1276
  unfolding lcm_int_def by simp
huffman@31706
  1277
nipkow@31952
  1278
lemma lcm_0_left_nat [simp]: "lcm (0::nat) n = 0"
huffman@31706
  1279
  unfolding lcm_nat_def by simp
chaieb@27669
  1280
nipkow@31952
  1281
lemma lcm_0_left_int [simp]: "lcm (0::int) n = 0"
huffman@31706
  1282
  unfolding lcm_int_def by simp
huffman@31706
  1283
nipkow@31952
  1284
lemma lcm_pos_nat:
nipkow@31798
  1285
  "(m::nat) > 0 \<Longrightarrow> n>0 \<Longrightarrow> lcm m n > 0"
nipkow@31952
  1286
by (metis gr0I mult_is_0 prod_gcd_lcm_nat)
chaieb@27669
  1287
nipkow@31952
  1288
lemma lcm_pos_int:
nipkow@31798
  1289
  "(m::int) ~= 0 \<Longrightarrow> n ~= 0 \<Longrightarrow> lcm m n > 0"
nipkow@31952
  1290
  apply (subst lcm_abs_int)
nipkow@31952
  1291
  apply (rule lcm_pos_nat [transferred])
nipkow@31798
  1292
  apply auto
huffman@31706
  1293
done
haftmann@23687
  1294
nipkow@31952
  1295
lemma dvd_pos_nat:
haftmann@23687
  1296
  fixes n m :: nat
haftmann@23687
  1297
  assumes "n > 0" and "m dvd n"
haftmann@23687
  1298
  shows "m > 0"
haftmann@23687
  1299
using assms by (cases m) auto
haftmann@23687
  1300
nipkow@31952
  1301
lemma lcm_least_nat:
huffman@31706
  1302
  assumes "(m::nat) dvd k" and "n dvd k"
haftmann@27556
  1303
  shows "lcm m n dvd k"
haftmann@23687
  1304
proof (cases k)
haftmann@23687
  1305
  case 0 then show ?thesis by auto
haftmann@23687
  1306
next
haftmann@23687
  1307
  case (Suc _) then have pos_k: "k > 0" by auto
nipkow@31952
  1308
  from assms dvd_pos_nat [OF this] have pos_mn: "m > 0" "n > 0" by auto
nipkow@31952
  1309
  with gcd_zero_nat [of m n] have pos_gcd: "gcd m n > 0" by simp
haftmann@23687
  1310
  from assms obtain p where k_m: "k = m * p" using dvd_def by blast
haftmann@23687
  1311
  from assms obtain q where k_n: "k = n * q" using dvd_def by blast
haftmann@23687
  1312
  from pos_k k_m have pos_p: "p > 0" by auto
haftmann@23687
  1313
  from pos_k k_n have pos_q: "q > 0" by auto
haftmann@27556
  1314
  have "k * k * gcd q p = k * gcd (k * q) (k * p)"
nipkow@31952
  1315
    by (simp add: mult_ac gcd_mult_distrib_nat)
haftmann@27556
  1316
  also have "\<dots> = k * gcd (m * p * q) (n * q * p)"
haftmann@23687
  1317
    by (simp add: k_m [symmetric] k_n [symmetric])
haftmann@27556
  1318
  also have "\<dots> = k * p * q * gcd m n"
nipkow@31952
  1319
    by (simp add: mult_ac gcd_mult_distrib_nat)
haftmann@27556
  1320
  finally have "(m * p) * (n * q) * gcd q p = k * p * q * gcd m n"
haftmann@23687
  1321
    by (simp only: k_m [symmetric] k_n [symmetric])
haftmann@27556
  1322
  then have "p * q * m * n * gcd q p = p * q * k * gcd m n"
haftmann@23687
  1323
    by (simp add: mult_ac)
haftmann@27556
  1324
  with pos_p pos_q have "m * n * gcd q p = k * gcd m n"
haftmann@23687
  1325
    by simp
nipkow@31952
  1326
  with prod_gcd_lcm_nat [of m n]
haftmann@27556
  1327
  have "lcm m n * gcd q p * gcd m n = k * gcd m n"
haftmann@23687
  1328
    by (simp add: mult_ac)
huffman@31706
  1329
  with pos_gcd have "lcm m n * gcd q p = k" by auto
haftmann@23687
  1330
  then show ?thesis using dvd_def by auto
haftmann@23687
  1331
qed
haftmann@23687
  1332
nipkow@31952
  1333
lemma lcm_least_int:
nipkow@31798
  1334
  "(m::int) dvd k \<Longrightarrow> n dvd k \<Longrightarrow> lcm m n dvd k"
nipkow@31952
  1335
apply (subst lcm_abs_int)
nipkow@31798
  1336
apply (rule dvd_trans)
nipkow@31952
  1337
apply (rule lcm_least_nat [transferred, of _ "abs k" _])
nipkow@31798
  1338
apply auto
huffman@31706
  1339
done
huffman@31706
  1340
nipkow@31952
  1341
lemma lcm_dvd1_nat: "(m::nat) dvd lcm m n"
haftmann@23687
  1342
proof (cases m)
haftmann@23687
  1343
  case 0 then show ?thesis by simp
haftmann@23687
  1344
next
haftmann@23687
  1345
  case (Suc _)
haftmann@23687
  1346
  then have mpos: "m > 0" by simp
haftmann@23687
  1347
  show ?thesis
haftmann@23687
  1348
  proof (cases n)
haftmann@23687
  1349
    case 0 then show ?thesis by simp
haftmann@23687
  1350
  next
haftmann@23687
  1351
    case (Suc _)
haftmann@23687
  1352
    then have npos: "n > 0" by simp
haftmann@27556
  1353
    have "gcd m n dvd n" by simp
haftmann@27556
  1354
    then obtain k where "n = gcd m n * k" using dvd_def by auto
huffman@31706
  1355
    then have "m * n div gcd m n = m * (gcd m n * k) div gcd m n"
huffman@31706
  1356
      by (simp add: mult_ac)
nipkow@31952
  1357
    also have "\<dots> = m * k" using mpos npos gcd_zero_nat by simp
huffman@31706
  1358
    finally show ?thesis by (simp add: lcm_nat_def)
haftmann@23687
  1359
  qed
haftmann@23687
  1360
qed
haftmann@23687
  1361
nipkow@31952
  1362
lemma lcm_dvd1_int: "(m::int) dvd lcm m n"
nipkow@31952
  1363
  apply (subst lcm_abs_int)
huffman@31706
  1364
  apply (rule dvd_trans)
huffman@31706
  1365
  prefer 2
nipkow@31952
  1366
  apply (rule lcm_dvd1_nat [transferred])
huffman@31706
  1367
  apply auto
huffman@31706
  1368
done
huffman@31706
  1369
nipkow@31952
  1370
lemma lcm_dvd2_nat: "(n::nat) dvd lcm m n"
haftmann@35726
  1371
  using lcm_dvd1_nat [of n m] by (simp only: lcm_nat_def mult.commute gcd_nat.commute)
huffman@31706
  1372
nipkow@31952
  1373
lemma lcm_dvd2_int: "(n::int) dvd lcm m n"
haftmann@35726
  1374
  using lcm_dvd1_int [of n m] by (simp only: lcm_int_def lcm_nat_def mult.commute gcd_nat.commute)
huffman@31706
  1375
nipkow@31730
  1376
lemma dvd_lcm_I1_nat[simp]: "(k::nat) dvd m \<Longrightarrow> k dvd lcm m n"
nipkow@31952
  1377
by(metis lcm_dvd1_nat dvd_trans)
nipkow@31729
  1378
nipkow@31730
  1379
lemma dvd_lcm_I2_nat[simp]: "(k::nat) dvd n \<Longrightarrow> k dvd lcm m n"
nipkow@31952
  1380
by(metis lcm_dvd2_nat dvd_trans)
nipkow@31729
  1381
nipkow@31730
  1382
lemma dvd_lcm_I1_int[simp]: "(i::int) dvd m \<Longrightarrow> i dvd lcm m n"
nipkow@31952
  1383
by(metis lcm_dvd1_int dvd_trans)
nipkow@31729
  1384
nipkow@31730
  1385
lemma dvd_lcm_I2_int[simp]: "(i::int) dvd n \<Longrightarrow> i dvd lcm m n"
nipkow@31952
  1386
by(metis lcm_dvd2_int dvd_trans)
nipkow@31729
  1387
nipkow@31952
  1388
lemma lcm_unique_nat: "(a::nat) dvd d \<and> b dvd d \<and>
huffman@31706
  1389
    (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"
nipkow@33657
  1390
  by (auto intro: dvd_antisym lcm_least_nat lcm_dvd1_nat lcm_dvd2_nat)
chaieb@27568
  1391
nipkow@31952
  1392
lemma lcm_unique_int: "d >= 0 \<and> (a::int) dvd d \<and> b dvd d \<and>
huffman@31706
  1393
    (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"
nipkow@33657
  1394
  by (auto intro: dvd_antisym [transferred] lcm_least_int)
huffman@31706
  1395
haftmann@37770
  1396
interpretation lcm_nat: abel_semigroup "lcm :: nat \<Rightarrow> nat \<Rightarrow> nat"
haftmann@54867
  1397
  + lcm_nat: semilattice_neutr "lcm :: nat \<Rightarrow> nat \<Rightarrow> nat" 1
haftmann@34973
  1398
proof
haftmann@34973
  1399
  fix n m p :: nat
haftmann@34973
  1400
  show "lcm (lcm n m) p = lcm n (lcm m p)"
haftmann@34973
  1401
    by (rule lcm_unique_nat [THEN iffD1]) (metis dvd.order_trans lcm_unique_nat)
haftmann@34973
  1402
  show "lcm m n = lcm n m"
haftmann@36350
  1403
    by (simp add: lcm_nat_def gcd_commute_nat field_simps)
haftmann@54867
  1404
  show "lcm m m = m"
haftmann@54867
  1405
    by (metis dvd.order_refl lcm_unique_nat)
haftmann@54867
  1406
  show "lcm m 1 = m"
haftmann@54867
  1407
    by (metis dvd.dual_order.refl lcm_unique_nat one_dvd)
haftmann@34973
  1408
qed
haftmann@34973
  1409
haftmann@37770
  1410
interpretation lcm_int: abel_semigroup "lcm :: int \<Rightarrow> int \<Rightarrow> int"
haftmann@34973
  1411
proof
haftmann@34973
  1412
  fix n m p :: int
haftmann@34973
  1413
  show "lcm (lcm n m) p = lcm n (lcm m p)"
haftmann@34973
  1414
    by (rule lcm_unique_int [THEN iffD1]) (metis dvd_trans lcm_unique_int)
haftmann@34973
  1415
  show "lcm m n = lcm n m"
haftmann@34973
  1416
    by (simp add: lcm_int_def lcm_nat.commute)
haftmann@34973
  1417
qed
haftmann@34973
  1418
haftmann@34973
  1419
lemmas lcm_assoc_nat = lcm_nat.assoc
haftmann@34973
  1420
lemmas lcm_commute_nat = lcm_nat.commute
haftmann@34973
  1421
lemmas lcm_left_commute_nat = lcm_nat.left_commute
haftmann@34973
  1422
lemmas lcm_assoc_int = lcm_int.assoc
haftmann@34973
  1423
lemmas lcm_commute_int = lcm_int.commute
haftmann@34973
  1424
lemmas lcm_left_commute_int = lcm_int.left_commute
haftmann@34973
  1425
haftmann@34973
  1426
lemmas lcm_ac_nat = lcm_assoc_nat lcm_commute_nat lcm_left_commute_nat
haftmann@34973
  1427
lemmas lcm_ac_int = lcm_assoc_int lcm_commute_int lcm_left_commute_int
haftmann@34973
  1428
nipkow@31798
  1429
lemma lcm_proj2_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> lcm x y = y"
huffman@31706
  1430
  apply (rule sym)
nipkow@31952
  1431
  apply (subst lcm_unique_nat [symmetric])
huffman@31706
  1432
  apply auto
huffman@31706
  1433
done
huffman@31706
  1434
nipkow@31798
  1435
lemma lcm_proj2_if_dvd_int [simp]: "(x::int) dvd y \<Longrightarrow> lcm x y = abs y"
huffman@31706
  1436
  apply (rule sym)
nipkow@31952
  1437
  apply (subst lcm_unique_int [symmetric])
huffman@31706
  1438
  apply auto
huffman@31706
  1439
done
huffman@31706
  1440
nipkow@31798
  1441
lemma lcm_proj1_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> lcm y x = y"
nipkow@31952
  1442
by (subst lcm_commute_nat, erule lcm_proj2_if_dvd_nat)
huffman@31706
  1443
nipkow@31798
  1444
lemma lcm_proj1_if_dvd_int [simp]: "(x::int) dvd y \<Longrightarrow> lcm y x = abs y"
nipkow@31952
  1445
by (subst lcm_commute_int, erule lcm_proj2_if_dvd_int)
huffman@31706
  1446
nipkow@31992
  1447
lemma lcm_proj1_iff_nat[simp]: "lcm m n = (m::nat) \<longleftrightarrow> n dvd m"
nipkow@31992
  1448
by (metis lcm_proj1_if_dvd_nat lcm_unique_nat)
nipkow@31992
  1449
nipkow@31992
  1450
lemma lcm_proj2_iff_nat[simp]: "lcm m n = (n::nat) \<longleftrightarrow> m dvd n"
nipkow@31992
  1451
by (metis lcm_proj2_if_dvd_nat lcm_unique_nat)
nipkow@31992
  1452
nipkow@31992
  1453
lemma lcm_proj1_iff_int[simp]: "lcm m n = abs(m::int) \<longleftrightarrow> n dvd m"
nipkow@31992
  1454
by (metis dvd_abs_iff lcm_proj1_if_dvd_int lcm_unique_int)
nipkow@31992
  1455
nipkow@31992
  1456
lemma lcm_proj2_iff_int[simp]: "lcm m n = abs(n::int) \<longleftrightarrow> m dvd n"
nipkow@31992
  1457
by (metis dvd_abs_iff lcm_proj2_if_dvd_int lcm_unique_int)
chaieb@27568
  1458
haftmann@42871
  1459
lemma comp_fun_idem_gcd_nat: "comp_fun_idem (gcd :: nat\<Rightarrow>nat\<Rightarrow>nat)"
nipkow@31992
  1460
proof qed (auto simp add: gcd_ac_nat)
nipkow@31992
  1461
haftmann@42871
  1462
lemma comp_fun_idem_gcd_int: "comp_fun_idem (gcd :: int\<Rightarrow>int\<Rightarrow>int)"
nipkow@31992
  1463
proof qed (auto simp add: gcd_ac_int)
nipkow@31992
  1464
haftmann@42871
  1465
lemma comp_fun_idem_lcm_nat: "comp_fun_idem (lcm :: nat\<Rightarrow>nat\<Rightarrow>nat)"
nipkow@31992
  1466
proof qed (auto simp add: lcm_ac_nat)
nipkow@31992
  1467
haftmann@42871
  1468
lemma comp_fun_idem_lcm_int: "comp_fun_idem (lcm :: int\<Rightarrow>int\<Rightarrow>int)"
nipkow@31992
  1469
proof qed (auto simp add: lcm_ac_int)
nipkow@31992
  1470
haftmann@23687
  1471
nipkow@31995
  1472
(* FIXME introduce selimattice_bot/top and derive the following lemmas in there: *)
nipkow@31995
  1473
nipkow@31995
  1474
lemma lcm_0_iff_nat[simp]: "lcm (m::nat) n = 0 \<longleftrightarrow> m=0 \<or> n=0"
nipkow@31995
  1475
by (metis lcm_0_left_nat lcm_0_nat mult_is_0 prod_gcd_lcm_nat)
nipkow@31995
  1476
nipkow@31995
  1477
lemma lcm_0_iff_int[simp]: "lcm (m::int) n = 0 \<longleftrightarrow> m=0 \<or> n=0"
huffman@44766
  1478
by (metis lcm_0_int lcm_0_left_int lcm_pos_int less_le)
nipkow@31995
  1479
nipkow@31995
  1480
lemma lcm_1_iff_nat[simp]: "lcm (m::nat) n = 1 \<longleftrightarrow> m=1 \<and> n=1"
nipkow@31995
  1481
by (metis gcd_1_nat lcm_unique_nat nat_mult_1 prod_gcd_lcm_nat)
nipkow@31995
  1482
nipkow@31995
  1483
lemma lcm_1_iff_int[simp]: "lcm (m::int) n = 1 \<longleftrightarrow> (m=1 \<or> m = -1) \<and> (n=1 \<or> n = -1)"
berghofe@31996
  1484
by (auto simp add: abs_mult_self trans [OF lcm_unique_int eq_commute, symmetric] zmult_eq_1_iff)
nipkow@31995
  1485
haftmann@34030
  1486
huffman@45264
  1487
subsection {* The complete divisibility lattice *}
nipkow@32112
  1488
krauss@44845
  1489
interpretation gcd_semilattice_nat: semilattice_inf gcd "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)"
nipkow@32112
  1490
proof
nipkow@32112
  1491
  case goal3 thus ?case by(metis gcd_unique_nat)
nipkow@32112
  1492
qed auto
nipkow@32112
  1493
krauss@44845
  1494
interpretation lcm_semilattice_nat: semilattice_sup lcm "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)"
nipkow@32112
  1495
proof
nipkow@32112
  1496
  case goal3 thus ?case by(metis lcm_unique_nat)
nipkow@32112
  1497
qed auto
nipkow@32112
  1498
krauss@44845
  1499
interpretation gcd_lcm_lattice_nat: lattice gcd "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)" lcm ..
nipkow@32112
  1500
huffman@45264
  1501
text{* Lifting gcd and lcm to sets (Gcd/Lcm).
huffman@45264
  1502
Gcd is defined via Lcm to facilitate the proof that we have a complete lattice.
nipkow@32112
  1503
*}
huffman@45264
  1504
huffman@45264
  1505
class Gcd = gcd +
huffman@45264
  1506
  fixes Gcd :: "'a set \<Rightarrow> 'a"
huffman@45264
  1507
  fixes Lcm :: "'a set \<Rightarrow> 'a"
huffman@45264
  1508
huffman@45264
  1509
instantiation nat :: Gcd
nipkow@32112
  1510
begin
nipkow@32112
  1511
huffman@45264
  1512
definition
haftmann@51489
  1513
  "Lcm (M::nat set) = (if finite M then semilattice_neutr_set.F lcm 1 M else 0)"
haftmann@51489
  1514
haftmann@54867
  1515
interpretation semilattice_neutr_set lcm "1::nat" ..
haftmann@54867
  1516
haftmann@51489
  1517
lemma Lcm_nat_infinite:
haftmann@51489
  1518
  "\<not> finite M \<Longrightarrow> Lcm M = (0::nat)"
haftmann@51489
  1519
  by (simp add: Lcm_nat_def)
haftmann@51489
  1520
haftmann@51489
  1521
lemma Lcm_nat_empty:
haftmann@51489
  1522
  "Lcm {} = (1::nat)"
haftmann@54867
  1523
  by (simp add: Lcm_nat_def)
haftmann@51489
  1524
haftmann@51489
  1525
lemma Lcm_nat_insert:
haftmann@51489
  1526
  "Lcm (insert n M) = lcm (n::nat) (Lcm M)"
haftmann@54867
  1527
  by (cases "finite M") (simp_all add: Lcm_nat_def Lcm_nat_infinite)
nipkow@32112
  1528
huffman@45264
  1529
definition
huffman@45264
  1530
  "Gcd (M::nat set) = Lcm {d. \<forall>m\<in>M. d dvd m}"
nipkow@32112
  1531
huffman@45264
  1532
instance ..
haftmann@51489
  1533
nipkow@32112
  1534
end
nipkow@32112
  1535
huffman@45264
  1536
lemma dvd_Lcm_nat [simp]:
haftmann@51489
  1537
  fixes M :: "nat set"
haftmann@51489
  1538
  assumes "m \<in> M"
haftmann@51489
  1539
  shows "m dvd Lcm M"
haftmann@51489
  1540
proof (cases "finite M")
haftmann@51489
  1541
  case False then show ?thesis by (simp add: Lcm_nat_infinite)
haftmann@51489
  1542
next
haftmann@51489
  1543
  case True then show ?thesis using assms by (induct M) (auto simp add: Lcm_nat_insert)
haftmann@51489
  1544
qed
nipkow@32112
  1545
huffman@45264
  1546
lemma Lcm_dvd_nat [simp]:
haftmann@51489
  1547
  fixes M :: "nat set"
haftmann@51489
  1548
  assumes "\<forall>m\<in>M. m dvd n"
haftmann@51489
  1549
  shows "Lcm M dvd n"
huffman@45264
  1550
proof (cases "n = 0")
huffman@45264
  1551
  assume "n \<noteq> 0"
huffman@45264
  1552
  hence "finite {d. d dvd n}" by (rule finite_divisors_nat)
huffman@45264
  1553
  moreover have "M \<subseteq> {d. d dvd n}" using assms by fast
huffman@45264
  1554
  ultimately have "finite M" by (rule rev_finite_subset)
haftmann@51489
  1555
  then show ?thesis using assms by (induct M) (simp_all add: Lcm_nat_empty Lcm_nat_insert)
huffman@45264
  1556
qed simp
nipkow@32112
  1557
huffman@45264
  1558
interpretation gcd_lcm_complete_lattice_nat:
haftmann@51547
  1559
  complete_lattice Gcd Lcm gcd Rings.dvd "\<lambda>m n. m dvd n \<and> \<not> n dvd m" lcm 1 "0::nat"
haftmann@51547
  1560
where
haftmann@56218
  1561
  "Inf.INFIMUM Gcd A f = Gcd (f ` A :: nat set)"
haftmann@56218
  1562
  and "Sup.SUPREMUM Lcm A f = Lcm (f ` A)"
haftmann@51547
  1563
proof -
haftmann@51547
  1564
  show "class.complete_lattice Gcd Lcm gcd Rings.dvd (\<lambda>m n. m dvd n \<and> \<not> n dvd m) lcm 1 (0::nat)"
haftmann@51547
  1565
  proof
haftmann@52729
  1566
    case goal1 thus ?case by (simp add: Gcd_nat_def)
haftmann@51547
  1567
  next
haftmann@52729
  1568
    case goal2 thus ?case by (simp add: Gcd_nat_def)
haftmann@51547
  1569
  next
haftmann@52729
  1570
    case goal5 show ?case by (simp add: Gcd_nat_def Lcm_nat_infinite)
haftmann@51547
  1571
  next
haftmann@52729
  1572
    case goal6 show ?case by (simp add: Lcm_nat_empty)
haftmann@51547
  1573
  next
haftmann@52729
  1574
    case goal3 thus ?case by simp
haftmann@51547
  1575
  next
haftmann@52729
  1576
    case goal4 thus ?case by simp
haftmann@51547
  1577
  qed
haftmann@51547
  1578
  then interpret gcd_lcm_complete_lattice_nat:
haftmann@51547
  1579
    complete_lattice Gcd Lcm gcd Rings.dvd "\<lambda>m n. m dvd n \<and> \<not> n dvd m" lcm 1 "0::nat" .
haftmann@56218
  1580
  from gcd_lcm_complete_lattice_nat.INF_def show "Inf.INFIMUM Gcd A f = Gcd (f ` A)" .
haftmann@56218
  1581
  from gcd_lcm_complete_lattice_nat.SUP_def show "Sup.SUPREMUM Lcm A f = Lcm (f ` A)" .
huffman@45264
  1582
qed
nipkow@32112
  1583
haftmann@56166
  1584
declare gcd_lcm_complete_lattice_nat.Inf_image_eq [simp del]
haftmann@56166
  1585
declare gcd_lcm_complete_lattice_nat.Sup_image_eq [simp del]
haftmann@56166
  1586
huffman@45264
  1587
lemma Lcm_empty_nat: "Lcm {} = (1::nat)"
haftmann@54867
  1588
  by (fact Lcm_nat_empty)
huffman@45264
  1589
huffman@45264
  1590
lemma Gcd_empty_nat: "Gcd {} = (0::nat)"
huffman@45264
  1591
  by (fact gcd_lcm_complete_lattice_nat.Inf_empty) (* already simp *)
nipkow@32112
  1592
nipkow@32112
  1593
lemma Lcm_insert_nat [simp]:
nipkow@32112
  1594
  shows "Lcm (insert (n::nat) N) = lcm n (Lcm N)"
huffman@45264
  1595
  by (fact gcd_lcm_complete_lattice_nat.Sup_insert)
nipkow@32112
  1596
nipkow@32112
  1597
lemma Gcd_insert_nat [simp]:
nipkow@32112
  1598
  shows "Gcd (insert (n::nat) N) = gcd n (Gcd N)"
huffman@45264
  1599
  by (fact gcd_lcm_complete_lattice_nat.Inf_insert)
nipkow@32112
  1600
nipkow@32112
  1601
lemma Lcm0_iff[simp]: "finite (M::nat set) \<Longrightarrow> M \<noteq> {} \<Longrightarrow> Lcm M = 0 \<longleftrightarrow> 0 : M"
nipkow@32112
  1602
by(induct rule:finite_ne_induct) auto
nipkow@32112
  1603
nipkow@32112
  1604
lemma Lcm_eq_0[simp]: "finite (M::nat set) \<Longrightarrow> 0 : M \<Longrightarrow> Lcm M = 0"
nipkow@32112
  1605
by (metis Lcm0_iff empty_iff)
nipkow@32112
  1606
nipkow@32112
  1607
lemma Gcd_dvd_nat [simp]:
huffman@45264
  1608
  fixes M :: "nat set"
huffman@45264
  1609
  assumes "m \<in> M" shows "Gcd M dvd m"
huffman@45264
  1610
  using assms by (fact gcd_lcm_complete_lattice_nat.Inf_lower)
nipkow@32112
  1611
nipkow@32112
  1612
lemma dvd_Gcd_nat[simp]:
huffman@45264
  1613
  fixes M :: "nat set"
huffman@45264
  1614
  assumes "\<forall>m\<in>M. n dvd m" shows "n dvd Gcd M"
huffman@45264
  1615
  using assms by (simp only: gcd_lcm_complete_lattice_nat.Inf_greatest)
nipkow@32112
  1616
huffman@45264
  1617
text{* Alternative characterizations of Gcd: *}
nipkow@32112
  1618
nipkow@32112
  1619
lemma Gcd_eq_Max: "finite(M::nat set) \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> Gcd M = Max(\<Inter>m\<in>M. {d. d dvd m})"
nipkow@32112
  1620
apply(rule antisym)
nipkow@32112
  1621
 apply(rule Max_ge)
nipkow@32112
  1622
  apply (metis all_not_in_conv finite_divisors_nat finite_INT)
nipkow@32112
  1623
 apply simp
nipkow@32112
  1624
apply (rule Max_le_iff[THEN iffD2])
nipkow@32112
  1625
  apply (metis all_not_in_conv finite_divisors_nat finite_INT)
nipkow@44890
  1626
 apply fastforce
nipkow@32112
  1627
apply clarsimp
nipkow@32112
  1628
apply (metis Gcd_dvd_nat Max_in dvd_0_left dvd_Gcd_nat dvd_imp_le linorder_antisym_conv3 not_less0)
nipkow@32112
  1629
done
nipkow@32112
  1630
nipkow@32112
  1631
lemma Gcd_remove0_nat: "finite M \<Longrightarrow> Gcd M = Gcd (M - {0::nat})"
nipkow@32112
  1632
apply(induct pred:finite)
nipkow@32112
  1633
 apply simp
nipkow@32112
  1634
apply(case_tac "x=0")
nipkow@32112
  1635
 apply simp
nipkow@32112
  1636
apply(subgoal_tac "insert x F - {0} = insert x (F - {0})")
nipkow@32112
  1637
 apply simp
nipkow@32112
  1638
apply blast
nipkow@32112
  1639
done
nipkow@32112
  1640
nipkow@32112
  1641
lemma Lcm_in_lcm_closed_set_nat:
nipkow@32112
  1642
  "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> ALL m n :: nat. m:M \<longrightarrow> n:M \<longrightarrow> lcm m n : M \<Longrightarrow> Lcm M : M"
nipkow@32112
  1643
apply(induct rule:finite_linorder_min_induct)
nipkow@32112
  1644
 apply simp
nipkow@32112
  1645
apply simp
nipkow@32112
  1646
apply(subgoal_tac "ALL m n :: nat. m:A \<longrightarrow> n:A \<longrightarrow> lcm m n : A")
nipkow@32112
  1647
 apply simp
nipkow@32112
  1648
 apply(case_tac "A={}")
nipkow@32112
  1649
  apply simp
nipkow@32112
  1650
 apply simp
nipkow@32112
  1651
apply (metis lcm_pos_nat lcm_unique_nat linorder_neq_iff nat_dvd_not_less not_less0)
nipkow@32112
  1652
done
nipkow@32112
  1653
nipkow@32112
  1654
lemma Lcm_eq_Max_nat:
nipkow@32112
  1655
  "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> ALL m n :: nat. m:M \<longrightarrow> n:M \<longrightarrow> lcm m n : M \<Longrightarrow> Lcm M = Max M"
nipkow@32112
  1656
apply(rule antisym)
nipkow@32112
  1657
 apply(rule Max_ge, assumption)
nipkow@32112
  1658
 apply(erule (2) Lcm_in_lcm_closed_set_nat)
nipkow@32112
  1659
apply clarsimp
nipkow@32112
  1660
apply (metis Lcm0_iff dvd_Lcm_nat dvd_imp_le neq0_conv)
nipkow@32112
  1661
done
nipkow@32112
  1662
haftmann@54437
  1663
lemma Lcm_set_nat [code, code_unfold]:
haftmann@45992
  1664
  "Lcm (set ns) = fold lcm ns (1::nat)"
huffman@45264
  1665
  by (fact gcd_lcm_complete_lattice_nat.Sup_set_fold)
nipkow@32112
  1666
haftmann@54437
  1667
lemma Gcd_set_nat [code, code_unfold]:
haftmann@45992
  1668
  "Gcd (set ns) = fold gcd ns (0::nat)"
huffman@45264
  1669
  by (fact gcd_lcm_complete_lattice_nat.Inf_set_fold)
nipkow@34222
  1670
nipkow@34222
  1671
lemma mult_inj_if_coprime_nat:
nipkow@34222
  1672
  "inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> ALL a:A. ALL b:B. coprime (f a) (g b)
nipkow@34222
  1673
   \<Longrightarrow> inj_on (%(a,b). f a * g b::nat) (A \<times> B)"
nipkow@34222
  1674
apply(auto simp add:inj_on_def)
huffman@35216
  1675
apply (metis coprime_dvd_mult_iff_nat dvd.neq_le_trans dvd_triv_left)
nipkow@34223
  1676
apply (metis gcd_semilattice_nat.inf_commute coprime_dvd_mult_iff_nat
haftmann@57512
  1677
             dvd.neq_le_trans dvd_triv_right mult.commute)
nipkow@34222
  1678
done
nipkow@34222
  1679
nipkow@34222
  1680
text{* Nitpick: *}
nipkow@34222
  1681
blanchet@41792
  1682
lemma gcd_eq_nitpick_gcd [nitpick_unfold]: "gcd x y = Nitpick.nat_gcd x y"
blanchet@41792
  1683
by (induct x y rule: nat_gcd.induct)
blanchet@41792
  1684
   (simp add: gcd_nat.simps Nitpick.nat_gcd.simps)
blanchet@33197
  1685
blanchet@41792
  1686
lemma lcm_eq_nitpick_lcm [nitpick_unfold]: "lcm x y = Nitpick.nat_lcm x y"
blanchet@33197
  1687
by (simp only: lcm_nat_def Nitpick.nat_lcm_def gcd_eq_nitpick_gcd)
blanchet@33197
  1688
haftmann@54867
  1689
huffman@45264
  1690
subsubsection {* Setwise gcd and lcm for integers *}
huffman@45264
  1691
huffman@45264
  1692
instantiation int :: Gcd
huffman@45264
  1693
begin
huffman@45264
  1694
huffman@45264
  1695
definition
huffman@45264
  1696
  "Lcm M = int (Lcm (nat ` abs ` M))"
huffman@45264
  1697
huffman@45264
  1698
definition
huffman@45264
  1699
  "Gcd M = int (Gcd (nat ` abs ` M))"
huffman@45264
  1700
huffman@45264
  1701
instance ..
wenzelm@21256
  1702
end
huffman@45264
  1703
huffman@45264
  1704
lemma Lcm_empty_int [simp]: "Lcm {} = (1::int)"
huffman@45264
  1705
  by (simp add: Lcm_int_def)
huffman@45264
  1706
huffman@45264
  1707
lemma Gcd_empty_int [simp]: "Gcd {} = (0::int)"
huffman@45264
  1708
  by (simp add: Gcd_int_def)
huffman@45264
  1709
huffman@45264
  1710
lemma Lcm_insert_int [simp]:
huffman@45264
  1711
  shows "Lcm (insert (n::int) N) = lcm n (Lcm N)"
huffman@45264
  1712
  by (simp add: Lcm_int_def lcm_int_def)
huffman@45264
  1713
huffman@45264
  1714
lemma Gcd_insert_int [simp]:
huffman@45264
  1715
  shows "Gcd (insert (n::int) N) = gcd n (Gcd N)"
huffman@45264
  1716
  by (simp add: Gcd_int_def gcd_int_def)
huffman@45264
  1717
huffman@45264
  1718
lemma dvd_int_iff: "x dvd y \<longleftrightarrow> nat (abs x) dvd nat (abs y)"
huffman@45264
  1719
  by (simp add: zdvd_int)
huffman@45264
  1720
huffman@45264
  1721
lemma dvd_Lcm_int [simp]:
huffman@45264
  1722
  fixes M :: "int set" assumes "m \<in> M" shows "m dvd Lcm M"
huffman@45264
  1723
  using assms by (simp add: Lcm_int_def dvd_int_iff)
huffman@45264
  1724
huffman@45264
  1725
lemma Lcm_dvd_int [simp]:
huffman@45264
  1726
  fixes M :: "int set"
huffman@45264
  1727
  assumes "\<forall>m\<in>M. m dvd n" shows "Lcm M dvd n"
huffman@45264
  1728
  using assms by (simp add: Lcm_int_def dvd_int_iff)
huffman@45264
  1729
huffman@45264
  1730
lemma Gcd_dvd_int [simp]:
huffman@45264
  1731
  fixes M :: "int set"
huffman@45264
  1732
  assumes "m \<in> M" shows "Gcd M dvd m"
huffman@45264
  1733
  using assms by (simp add: Gcd_int_def dvd_int_iff)
huffman@45264
  1734
huffman@45264
  1735
lemma dvd_Gcd_int[simp]:
huffman@45264
  1736
  fixes M :: "int set"
huffman@45264
  1737
  assumes "\<forall>m\<in>M. n dvd m" shows "n dvd Gcd M"
huffman@45264
  1738
  using assms by (simp add: Gcd_int_def dvd_int_iff)
huffman@45264
  1739
haftmann@54437
  1740
lemma Lcm_set_int [code, code_unfold]:
haftmann@51547
  1741
  "Lcm (set xs) = fold lcm xs (1::int)"
haftmann@56166
  1742
  by (induct xs rule: rev_induct) (simp_all add: lcm_commute_int)
huffman@45264
  1743
haftmann@54437
  1744
lemma Gcd_set_int [code, code_unfold]:
haftmann@51547
  1745
  "Gcd (set xs) = fold gcd xs (0::int)"
haftmann@56166
  1746
  by (induct xs rule: rev_induct) (simp_all add: gcd_commute_int)
huffman@45264
  1747
huffman@45264
  1748
end
haftmann@51547
  1749