src/HOLCF/Cfun.thy
author huffman
Mon Oct 10 04:38:26 2005 +0200 (2005-10-10)
changeset 17815 ccf54e3cabfa
parent 16920 ded12c9e88c2
child 17816 9942c5ed866a
permissions -rw-r--r--
removed Istrictify; simplified some proofs
huffman@15600
     1
(*  Title:      HOLCF/Cfun.thy
huffman@15576
     2
    ID:         $Id$
huffman@15576
     3
    Author:     Franz Regensburger
huffman@15576
     4
huffman@15576
     5
Definition of the type ->  of continuous functions.
huffman@15576
     6
*)
huffman@15576
     7
huffman@15576
     8
header {* The type of continuous functions *}
huffman@15576
     9
huffman@15577
    10
theory Cfun
huffman@16699
    11
imports Pcpodef
haftmann@16417
    12
uses ("cont_proc.ML")
huffman@15577
    13
begin
huffman@15576
    14
huffman@15576
    15
defaultsort cpo
huffman@15576
    16
huffman@15589
    17
subsection {* Definition of continuous function type *}
huffman@15589
    18
huffman@16699
    19
lemma Ex_cont: "\<exists>f. cont f"
huffman@16699
    20
by (rule exI, rule cont_const)
huffman@16699
    21
huffman@16699
    22
lemma adm_cont: "adm cont"
huffman@16699
    23
by (rule admI, rule cont_lub_fun)
huffman@16699
    24
huffman@16699
    25
cpodef (CFun)  ('a, 'b) "->" (infixr 0) = "{f::'a => 'b. cont f}"
huffman@16699
    26
by (simp add: Ex_cont adm_cont)
huffman@15576
    27
huffman@15576
    28
syntax
huffman@16209
    29
  Rep_CFun :: "('a -> 'b) => ('a => 'b)" ("_$_" [999,1000] 999)
huffman@16209
    30
                                                (* application *)
huffman@16209
    31
  Abs_CFun :: "('a => 'b) => ('a -> 'b)" (binder "LAM " 10)
huffman@16209
    32
                                                (* abstraction *)
huffman@15576
    33
huffman@15576
    34
syntax (xsymbols)
huffman@16209
    35
  "->"     :: "[type, type] => type"      ("(_ \<rightarrow>/ _)" [1,0]0)
huffman@16209
    36
  "LAM "   :: "[idts, 'a => 'b] => ('a -> 'b)"
huffman@15576
    37
					("(3\<Lambda>_./ _)" [0, 10] 10)
huffman@16209
    38
  Rep_CFun :: "('a -> 'b) => ('a => 'b)" ("(_\<cdot>_)" [999,1000] 999)
huffman@15576
    39
huffman@15576
    40
syntax (HTML output)
huffman@16209
    41
  Rep_CFun :: "('a -> 'b) => ('a => 'b)" ("(_\<cdot>_)" [999,1000] 999)
huffman@15641
    42
huffman@16098
    43
subsection {* Class instances *}
huffman@15589
    44
huffman@16098
    45
lemma UU_CFun: "\<bottom> \<in> CFun"
huffman@16098
    46
by (simp add: CFun_def inst_fun_pcpo cont_const)
huffman@16098
    47
huffman@16098
    48
instance "->" :: (cpo, pcpo) pcpo
huffman@16920
    49
by (rule typedef_pcpo [OF type_definition_CFun less_CFun_def UU_CFun])
huffman@16098
    50
huffman@16209
    51
lemmas Rep_CFun_strict =
huffman@16699
    52
  typedef_Rep_strict [OF type_definition_CFun less_CFun_def UU_CFun]
huffman@16209
    53
huffman@16209
    54
lemmas Abs_CFun_strict =
huffman@16699
    55
  typedef_Abs_strict [OF type_definition_CFun less_CFun_def UU_CFun]
huffman@16098
    56
huffman@16209
    57
text {* Additional lemma about the isomorphism between
huffman@16209
    58
        @{typ "'a -> 'b"} and @{term CFun} *}
huffman@16209
    59
huffman@16209
    60
lemma Abs_CFun_inverse2: "cont f \<Longrightarrow> Rep_CFun (Abs_CFun f) = f"
huffman@16209
    61
by (simp add: Abs_CFun_inverse CFun_def)
huffman@16098
    62
huffman@16209
    63
text {* Beta-equality for continuous functions *}
huffman@16209
    64
huffman@16209
    65
lemma beta_cfun [simp]: "cont f \<Longrightarrow> (\<Lambda> x. f x)\<cdot>u = f u"
huffman@16209
    66
by (simp add: Abs_CFun_inverse2)
huffman@16209
    67
huffman@16209
    68
text {* Eta-equality for continuous functions *}
huffman@16209
    69
huffman@16209
    70
lemma eta_cfun: "(\<Lambda> x. f\<cdot>x) = f"
huffman@16209
    71
by (rule Rep_CFun_inverse)
huffman@16209
    72
huffman@16209
    73
text {* Extensionality for continuous functions *}
huffman@16209
    74
huffman@16209
    75
lemma ext_cfun: "(\<And>x. f\<cdot>x = g\<cdot>x) \<Longrightarrow> f = g"
huffman@16209
    76
by (simp add: Rep_CFun_inject [symmetric] ext)
huffman@15576
    77
huffman@15589
    78
text {* lemmas about application of continuous functions *}
huffman@15589
    79
huffman@16209
    80
lemma cfun_cong: "\<lbrakk>f = g; x = y\<rbrakk> \<Longrightarrow> f\<cdot>x = g\<cdot>y"
huffman@15589
    81
by simp
huffman@15589
    82
huffman@16209
    83
lemma cfun_fun_cong: "f = g \<Longrightarrow> f\<cdot>x = g\<cdot>x"
huffman@15589
    84
by simp
huffman@15589
    85
huffman@16209
    86
lemma cfun_arg_cong: "x = y \<Longrightarrow> f\<cdot>x = f\<cdot>y"
huffman@15589
    87
by simp
huffman@15589
    88
huffman@16209
    89
subsection {* Continuity of application *}
huffman@15576
    90
huffman@16209
    91
lemma cont_Rep_CFun1: "cont (\<lambda>f. f\<cdot>x)"
huffman@16209
    92
by (rule cont_Rep_CFun [THEN cont2cont_CF1L])
huffman@15576
    93
huffman@16209
    94
lemma cont_Rep_CFun2: "cont (\<lambda>x. f\<cdot>x)"
huffman@16209
    95
apply (rule_tac P = "cont" in CollectD)
huffman@16209
    96
apply (fold CFun_def)
huffman@16209
    97
apply (rule Rep_CFun)
huffman@15576
    98
done
huffman@15576
    99
huffman@16209
   100
lemmas monofun_Rep_CFun = cont_Rep_CFun [THEN cont2mono]
huffman@16209
   101
lemmas contlub_Rep_CFun = cont_Rep_CFun [THEN cont2contlub]
huffman@15589
   102
huffman@16209
   103
lemmas monofun_Rep_CFun1 = cont_Rep_CFun1 [THEN cont2mono, standard]
huffman@16209
   104
lemmas contlub_Rep_CFun1 = cont_Rep_CFun1 [THEN cont2contlub, standard]
huffman@16209
   105
lemmas monofun_Rep_CFun2 = cont_Rep_CFun2 [THEN cont2mono, standard]
huffman@16209
   106
lemmas contlub_Rep_CFun2 = cont_Rep_CFun2 [THEN cont2contlub, standard]
huffman@16209
   107
huffman@16209
   108
text {* contlub, cont properties of @{term Rep_CFun} in each argument *}
huffman@16209
   109
huffman@16209
   110
lemma contlub_cfun_arg: "chain Y \<Longrightarrow> f\<cdot>(lub (range Y)) = (\<Squnion>i. f\<cdot>(Y i))"
huffman@16209
   111
by (rule contlub_Rep_CFun2 [THEN contlubE])
huffman@15576
   112
huffman@16209
   113
lemma cont_cfun_arg: "chain Y \<Longrightarrow> range (\<lambda>i. f\<cdot>(Y i)) <<| f\<cdot>(lub (range Y))"
huffman@16209
   114
by (rule cont_Rep_CFun2 [THEN contE])
huffman@16209
   115
huffman@16209
   116
lemma contlub_cfun_fun: "chain F \<Longrightarrow> lub (range F)\<cdot>x = (\<Squnion>i. F i\<cdot>x)"
huffman@16209
   117
by (rule contlub_Rep_CFun1 [THEN contlubE])
huffman@15576
   118
huffman@16209
   119
lemma cont_cfun_fun: "chain F \<Longrightarrow> range (\<lambda>i. F i\<cdot>x) <<| lub (range F)\<cdot>x"
huffman@16209
   120
by (rule cont_Rep_CFun1 [THEN contE])
huffman@15576
   121
huffman@16209
   122
text {* Extensionality wrt. @{term "op <<"} in @{typ "'a -> 'b"} *}
huffman@15576
   123
huffman@16209
   124
lemma less_cfun_ext: "(\<And>x. f\<cdot>x \<sqsubseteq> g\<cdot>x) \<Longrightarrow> f \<sqsubseteq> g"
huffman@16699
   125
by (simp add: less_CFun_def less_fun_def)
huffman@15576
   126
huffman@16209
   127
text {* monotonicity of application *}
huffman@16209
   128
huffman@16209
   129
lemma monofun_cfun_fun: "f \<sqsubseteq> g \<Longrightarrow> f\<cdot>x \<sqsubseteq> g\<cdot>x"
huffman@16699
   130
by (simp add: less_CFun_def less_fun_def)
huffman@15576
   131
huffman@16209
   132
lemma monofun_cfun_arg: "x \<sqsubseteq> y \<Longrightarrow> f\<cdot>x \<sqsubseteq> f\<cdot>y"
huffman@16209
   133
by (rule monofun_Rep_CFun2 [THEN monofunE])
huffman@15576
   134
huffman@16209
   135
lemma monofun_cfun: "\<lbrakk>f \<sqsubseteq> g; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> f\<cdot>x \<sqsubseteq> g\<cdot>y"
huffman@16209
   136
by (rule trans_less [OF monofun_cfun_fun monofun_cfun_arg])
huffman@15576
   137
huffman@16209
   138
text {* ch2ch - rules for the type @{typ "'a -> 'b"} *}
huffman@15576
   139
huffman@16209
   140
lemma chain_monofun: "chain Y \<Longrightarrow> chain (\<lambda>i. f\<cdot>(Y i))"
huffman@16209
   141
by (erule monofun_Rep_CFun2 [THEN ch2ch_monofun])
huffman@16209
   142
huffman@16209
   143
lemma ch2ch_Rep_CFunR: "chain Y \<Longrightarrow> chain (\<lambda>i. f\<cdot>(Y i))"
huffman@16209
   144
by (rule monofun_Rep_CFun2 [THEN ch2ch_monofun])
huffman@15576
   145
huffman@16209
   146
lemma ch2ch_Rep_CFunL: "chain F \<Longrightarrow> chain (\<lambda>i. (F i)\<cdot>x)"
huffman@16209
   147
by (rule monofun_Rep_CFun1 [THEN ch2ch_monofun])
huffman@15576
   148
huffman@16209
   149
lemma ch2ch_Rep_CFun: "\<lbrakk>chain F; chain Y\<rbrakk> \<Longrightarrow> chain (\<lambda>i. (F i)\<cdot>(Y i))"
huffman@15576
   150
apply (rule chainI)
huffman@16209
   151
apply (rule monofun_cfun)
huffman@16209
   152
apply (erule chainE)
huffman@15576
   153
apply (erule chainE)
huffman@15576
   154
done
huffman@15576
   155
huffman@16209
   156
text {* contlub, cont properties of @{term Rep_CFun} in both arguments *}
huffman@15576
   157
huffman@16209
   158
lemma contlub_cfun: 
huffman@16209
   159
  "\<lbrakk>chain F; chain Y\<rbrakk> \<Longrightarrow> (\<Squnion>i. F i)\<cdot>(\<Squnion>i. Y i) = (\<Squnion>i. F i\<cdot>(Y i))"
huffman@16209
   160
apply (simp only: contlub_cfun_fun)
huffman@16209
   161
apply (simp only: contlub_cfun_arg)
huffman@16209
   162
apply (rule diag_lub)
huffman@16209
   163
apply (erule monofun_Rep_CFun1 [THEN ch2ch_monofun])
huffman@16209
   164
apply (erule monofun_Rep_CFun2 [THEN ch2ch_monofun])
huffman@15576
   165
done
huffman@15576
   166
huffman@16209
   167
lemma cont_cfun: 
huffman@16209
   168
  "\<lbrakk>chain F; chain Y\<rbrakk> \<Longrightarrow> range (\<lambda>i. F i\<cdot>(Y i)) <<| (\<Squnion>i. F i)\<cdot>(\<Squnion>i. Y i)"
huffman@16209
   169
apply (rule thelubE)
huffman@16209
   170
apply (simp only: ch2ch_Rep_CFun)
huffman@16209
   171
apply (simp only: contlub_cfun)
huffman@16209
   172
done
huffman@16209
   173
huffman@16209
   174
text {* strictness *}
huffman@16209
   175
huffman@16209
   176
lemma strictI: "f\<cdot>x = \<bottom> \<Longrightarrow> f\<cdot>\<bottom> = \<bottom>"
huffman@16209
   177
apply (rule UU_I)
huffman@15576
   178
apply (erule subst)
huffman@15576
   179
apply (rule minimal [THEN monofun_cfun_arg])
huffman@15576
   180
done
huffman@15576
   181
huffman@16209
   182
text {* the lub of a chain of continous functions is monotone *}
huffman@15576
   183
huffman@16209
   184
lemma lub_cfun_mono: "chain F \<Longrightarrow> monofun (\<lambda>x. \<Squnion>i. F i\<cdot>x)"
huffman@16209
   185
apply (drule ch2ch_monofun [OF monofun_Rep_CFun])
huffman@16209
   186
apply (simp add: thelub_fun [symmetric])
huffman@16209
   187
apply (erule monofun_lub_fun)
huffman@16209
   188
apply (simp add: monofun_Rep_CFun2)
huffman@15576
   189
done
huffman@15576
   190
huffman@16386
   191
text {* a lemma about the exchange of lubs for type @{typ "'a -> 'b"} *}
huffman@15576
   192
huffman@16699
   193
lemma ex_lub_cfun:
huffman@16699
   194
  "\<lbrakk>chain F; chain Y\<rbrakk> \<Longrightarrow> (\<Squnion>j. \<Squnion>i. F j\<cdot>(Y i)) = (\<Squnion>i. \<Squnion>j. F j\<cdot>(Y i))"
huffman@16209
   195
by (simp add: diag_lub ch2ch_Rep_CFunL ch2ch_Rep_CFunR)
huffman@15576
   196
huffman@15589
   197
text {* the lub of a chain of cont. functions is continuous *}
huffman@15576
   198
huffman@16209
   199
lemma cont_lub_cfun: "chain F \<Longrightarrow> cont (\<lambda>x. \<Squnion>i. F i\<cdot>x)"
huffman@16209
   200
apply (rule cont2cont_lub)
huffman@16209
   201
apply (erule monofun_Rep_CFun [THEN ch2ch_monofun])
huffman@16209
   202
apply (rule cont_Rep_CFun2)
huffman@15576
   203
done
huffman@15576
   204
huffman@15589
   205
text {* type @{typ "'a -> 'b"} is chain complete *}
huffman@15576
   206
huffman@16920
   207
lemma lub_cfun: "chain F \<Longrightarrow> range F <<| (\<Lambda> x. \<Squnion>i. F i\<cdot>x)"
huffman@16920
   208
by (simp only: contlub_cfun_fun [symmetric] eta_cfun thelubE)
huffman@15576
   209
huffman@16920
   210
lemma thelub_cfun: "chain F \<Longrightarrow> lub (range F) = (\<Lambda> x. \<Squnion>i. F i\<cdot>x)"
huffman@16920
   211
by (rule lub_cfun [THEN thelubI])
huffman@15576
   212
huffman@15589
   213
subsection {* Miscellaneous *}
huffman@15589
   214
huffman@15589
   215
text {* Monotonicity of @{term Abs_CFun} *}
huffman@15576
   216
huffman@16699
   217
lemma semi_monofun_Abs_CFun:
huffman@16699
   218
  "\<lbrakk>cont f; cont g; f \<sqsubseteq> g\<rbrakk> \<Longrightarrow> Abs_CFun f \<sqsubseteq> Abs_CFun g"
huffman@16699
   219
by (simp add: less_CFun_def Abs_CFun_inverse2)
huffman@15576
   220
huffman@15589
   221
text {* for compatibility with old HOLCF-Version *}
huffman@16209
   222
lemma inst_cfun_pcpo: "\<bottom> = (\<Lambda> x. \<bottom>)"
huffman@16209
   223
by (simp add: inst_fun_pcpo [symmetric] Abs_CFun_strict)
huffman@15576
   224
huffman@15589
   225
subsection {* Continuity of application *}
huffman@15589
   226
huffman@15589
   227
text {* cont2cont lemma for @{term Rep_CFun} *}
huffman@15576
   228
huffman@16209
   229
lemma cont2cont_Rep_CFun:
huffman@16209
   230
  "\<lbrakk>cont f; cont t\<rbrakk> \<Longrightarrow> cont (\<lambda>x. (f x)\<cdot>(t x))"
huffman@16209
   231
by (best intro: cont2cont_app2 cont_const cont_Rep_CFun cont_Rep_CFun2)
huffman@15576
   232
huffman@15589
   233
text {* cont2mono Lemma for @{term "%x. LAM y. c1(x)(y)"} *}
huffman@15576
   234
huffman@15576
   235
lemma cont2mono_LAM:
huffman@15576
   236
assumes p1: "!!x. cont(c1 x)"
huffman@15576
   237
assumes p2: "!!y. monofun(%x. c1 x y)"
huffman@15576
   238
shows "monofun(%x. LAM y. c1 x y)"
huffman@16209
   239
apply (rule monofunI)
huffman@16209
   240
apply (rule less_cfun_ext)
huffman@16209
   241
apply (simp add: p1)
huffman@16209
   242
apply (erule p2 [THEN monofunE])
huffman@15576
   243
done
huffman@15576
   244
huffman@15589
   245
text {* cont2cont Lemma for @{term "%x. LAM y. c1 x y"} *}
huffman@15576
   246
huffman@15576
   247
lemma cont2cont_LAM:
huffman@15576
   248
assumes p1: "!!x. cont(c1 x)"
huffman@15576
   249
assumes p2: "!!y. cont(%x. c1 x y)"
huffman@15576
   250
shows "cont(%x. LAM y. c1 x y)"
huffman@16098
   251
apply (rule cont_Abs_CFun)
huffman@16098
   252
apply (simp add: p1 CFun_def)
huffman@16098
   253
apply (simp add: p2 cont2cont_CF1L_rev)
huffman@15576
   254
done
huffman@15576
   255
huffman@16386
   256
text {* continuity simplification procedure *}
huffman@15576
   257
huffman@16055
   258
lemmas cont_lemmas1 =
huffman@16055
   259
  cont_const cont_id cont_Rep_CFun2 cont2cont_Rep_CFun cont2cont_LAM
huffman@16055
   260
huffman@16386
   261
use "cont_proc.ML";
huffman@16386
   262
setup ContProc.setup;
huffman@15576
   263
huffman@15576
   264
(*val cont_tac = (fn i => (resolve_tac cont_lemmas i));*)
huffman@15576
   265
(*val cont_tacR = (fn i => (REPEAT (cont_tac i)));*)
huffman@15576
   266
huffman@16209
   267
text {* function application is strict in its first argument *}
huffman@15576
   268
huffman@16209
   269
lemma Rep_CFun_strict1 [simp]: "\<bottom>\<cdot>x = \<bottom>"
huffman@16209
   270
by (simp add: Rep_CFun_strict)
huffman@15576
   271
huffman@15589
   272
text {* some lemmata for functions with flat/chfin domain/range types *}
huffman@15576
   273
huffman@15576
   274
lemma chfin_Rep_CFunR: "chain (Y::nat => 'a::cpo->'b::chfin)  
huffman@15576
   275
      ==> !s. ? n. lub(range(Y))$s = Y n$s"
huffman@15576
   276
apply (rule allI)
huffman@15576
   277
apply (subst contlub_cfun_fun)
huffman@15576
   278
apply assumption
huffman@15576
   279
apply (fast intro!: thelubI chfin lub_finch2 chfin2finch ch2ch_Rep_CFunL)
huffman@15576
   280
done
huffman@15576
   281
huffman@16085
   282
subsection {* Continuous injection-retraction pairs *}
huffman@15589
   283
huffman@16085
   284
text {* Continuous retractions are strict. *}
huffman@15576
   285
huffman@16085
   286
lemma retraction_strict:
huffman@16085
   287
  "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> f\<cdot>\<bottom> = \<bottom>"
huffman@15576
   288
apply (rule UU_I)
huffman@16085
   289
apply (drule_tac x="\<bottom>" in spec)
huffman@16085
   290
apply (erule subst)
huffman@16085
   291
apply (rule monofun_cfun_arg)
huffman@16085
   292
apply (rule minimal)
huffman@15576
   293
done
huffman@15576
   294
huffman@16085
   295
lemma injection_eq:
huffman@16085
   296
  "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> (g\<cdot>x = g\<cdot>y) = (x = y)"
huffman@16085
   297
apply (rule iffI)
huffman@16085
   298
apply (drule_tac f=f in cfun_arg_cong)
huffman@16085
   299
apply simp
huffman@16085
   300
apply simp
huffman@15576
   301
done
huffman@15576
   302
huffman@16314
   303
lemma injection_less:
huffman@16314
   304
  "\<forall>x. f\<cdot>(g\<cdot>x) = x \<Longrightarrow> (g\<cdot>x \<sqsubseteq> g\<cdot>y) = (x \<sqsubseteq> y)"
huffman@16314
   305
apply (rule iffI)
huffman@16314
   306
apply (drule_tac f=f in monofun_cfun_arg)
huffman@16314
   307
apply simp
huffman@16314
   308
apply (erule monofun_cfun_arg)
huffman@16314
   309
done
huffman@16314
   310
huffman@16085
   311
lemma injection_defined_rev:
huffman@16085
   312
  "\<lbrakk>\<forall>x. f\<cdot>(g\<cdot>x) = x; g\<cdot>z = \<bottom>\<rbrakk> \<Longrightarrow> z = \<bottom>"
huffman@16085
   313
apply (drule_tac f=f in cfun_arg_cong)
huffman@16085
   314
apply (simp add: retraction_strict)
huffman@15576
   315
done
huffman@15576
   316
huffman@16085
   317
lemma injection_defined:
huffman@16085
   318
  "\<lbrakk>\<forall>x. f\<cdot>(g\<cdot>x) = x; z \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> g\<cdot>z \<noteq> \<bottom>"
huffman@16085
   319
by (erule contrapos_nn, rule injection_defined_rev)
huffman@16085
   320
huffman@16085
   321
text {* propagation of flatness and chain-finiteness by retractions *}
huffman@16085
   322
huffman@16085
   323
lemma chfin2chfin:
huffman@16085
   324
  "\<forall>y. (f::'a::chfin \<rightarrow> 'b)\<cdot>(g\<cdot>y) = y
huffman@16085
   325
    \<Longrightarrow> \<forall>Y::nat \<Rightarrow> 'b. chain Y \<longrightarrow> (\<exists>n. max_in_chain n Y)"
huffman@16085
   326
apply clarify
huffman@16085
   327
apply (drule_tac f=g in chain_monofun)
huffman@16085
   328
apply (drule chfin [rule_format])
huffman@16085
   329
apply (unfold max_in_chain_def)
huffman@16085
   330
apply (simp add: injection_eq)
huffman@16085
   331
done
huffman@16085
   332
huffman@16085
   333
lemma flat2flat:
huffman@16085
   334
  "\<forall>y. (f::'a::flat \<rightarrow> 'b::pcpo)\<cdot>(g\<cdot>y) = y
huffman@16085
   335
    \<Longrightarrow> \<forall>x y::'b. x \<sqsubseteq> y \<longrightarrow> x = \<bottom> \<or> x = y"
huffman@16085
   336
apply clarify
huffman@16209
   337
apply (drule_tac f=g in monofun_cfun_arg)
huffman@16085
   338
apply (drule ax_flat [rule_format])
huffman@16085
   339
apply (erule disjE)
huffman@16085
   340
apply (simp add: injection_defined_rev)
huffman@16085
   341
apply (simp add: injection_eq)
huffman@15576
   342
done
huffman@15576
   343
huffman@15589
   344
text {* a result about functions with flat codomain *}
huffman@15576
   345
huffman@16085
   346
lemma flat_eqI: "\<lbrakk>(x::'a::flat) \<sqsubseteq> y; x \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> x = y"
huffman@16085
   347
by (drule ax_flat [rule_format], simp)
huffman@16085
   348
huffman@16085
   349
lemma flat_codom:
huffman@16085
   350
  "f\<cdot>x = (c::'b::flat) \<Longrightarrow> f\<cdot>\<bottom> = \<bottom> \<or> (\<forall>z. f\<cdot>z = c)"
huffman@16085
   351
apply (case_tac "f\<cdot>x = \<bottom>")
huffman@15576
   352
apply (rule disjI1)
huffman@15576
   353
apply (rule UU_I)
huffman@16085
   354
apply (erule_tac t="\<bottom>" in subst)
huffman@15576
   355
apply (rule minimal [THEN monofun_cfun_arg])
huffman@16085
   356
apply clarify
huffman@16085
   357
apply (rule_tac a = "f\<cdot>\<bottom>" in refl [THEN box_equals])
huffman@16085
   358
apply (erule minimal [THEN monofun_cfun_arg, THEN flat_eqI])
huffman@16085
   359
apply (erule minimal [THEN monofun_cfun_arg, THEN flat_eqI])
huffman@15589
   360
done
huffman@15589
   361
huffman@15589
   362
huffman@15589
   363
subsection {* Identity and composition *}
huffman@15589
   364
huffman@15589
   365
consts
huffman@16085
   366
  ID      :: "'a \<rightarrow> 'a"
huffman@16085
   367
  cfcomp  :: "('b \<rightarrow> 'c) \<rightarrow> ('a \<rightarrow> 'b) \<rightarrow> 'a \<rightarrow> 'c"
huffman@15589
   368
huffman@16085
   369
syntax  "@oo" :: "['b \<rightarrow> 'c, 'a \<rightarrow> 'b] \<Rightarrow> 'a \<rightarrow> 'c" (infixr "oo" 100)
huffman@15589
   370
     
huffman@16085
   371
translations  "f1 oo f2" == "cfcomp$f1$f2"
huffman@15589
   372
huffman@15589
   373
defs
huffman@16085
   374
  ID_def: "ID \<equiv> (\<Lambda> x. x)"
huffman@16085
   375
  oo_def: "cfcomp \<equiv> (\<Lambda> f g x. f\<cdot>(g\<cdot>x))" 
huffman@15589
   376
huffman@16085
   377
lemma ID1 [simp]: "ID\<cdot>x = x"
huffman@16085
   378
by (simp add: ID_def)
huffman@15576
   379
huffman@16085
   380
lemma cfcomp1: "(f oo g) = (\<Lambda> x. f\<cdot>(g\<cdot>x))"
huffman@15589
   381
by (simp add: oo_def)
huffman@15576
   382
huffman@16085
   383
lemma cfcomp2 [simp]: "(f oo g)\<cdot>x = f\<cdot>(g\<cdot>x)"
huffman@15589
   384
by (simp add: cfcomp1)
huffman@15576
   385
huffman@15589
   386
text {*
huffman@15589
   387
  Show that interpretation of (pcpo,@{text "_->_"}) is a category.
huffman@15589
   388
  The class of objects is interpretation of syntactical class pcpo.
huffman@15589
   389
  The class of arrows  between objects @{typ 'a} and @{typ 'b} is interpret. of @{typ "'a -> 'b"}.
huffman@15589
   390
  The identity arrow is interpretation of @{term ID}.
huffman@15589
   391
  The composition of f and g is interpretation of @{text "oo"}.
huffman@15589
   392
*}
huffman@15576
   393
huffman@16085
   394
lemma ID2 [simp]: "f oo ID = f"
huffman@15589
   395
by (rule ext_cfun, simp)
huffman@15576
   396
huffman@16085
   397
lemma ID3 [simp]: "ID oo f = f"
huffman@15589
   398
by (rule ext_cfun, simp)
huffman@15576
   399
huffman@15576
   400
lemma assoc_oo: "f oo (g oo h) = (f oo g) oo h"
huffman@15589
   401
by (rule ext_cfun, simp)
huffman@15576
   402
huffman@16085
   403
huffman@16085
   404
subsection {* Strictified functions *}
huffman@16085
   405
huffman@16085
   406
defaultsort pcpo
huffman@16085
   407
huffman@17815
   408
constdefs
huffman@16085
   409
  strictify  :: "('a \<rightarrow> 'b) \<rightarrow> 'a \<rightarrow> 'b"
huffman@17815
   410
  "strictify \<equiv> (\<Lambda> f x. if x = \<bottom> then \<bottom> else f\<cdot>x)"
huffman@16085
   411
huffman@16085
   412
text {* results about strictify *}
huffman@16085
   413
huffman@17815
   414
lemma cont_strictify1: "cont (\<lambda>f. if x = \<bottom> then \<bottom> else f\<cdot>x)"
huffman@17815
   415
by (simp add: cont_if)
huffman@16085
   416
huffman@17815
   417
lemma monofun_strictify2: "monofun (\<lambda>x. if x = \<bottom> then \<bottom> else f\<cdot>x)"
huffman@17815
   418
apply (rule monofunI)
huffman@17815
   419
apply (auto simp add: monofun_cfun_arg eq_UU_iff [symmetric])
huffman@16085
   420
done
huffman@16085
   421
huffman@17815
   422
(*FIXME: long proof*)
huffman@17815
   423
lemma contlub_strictify2: "contlub (\<lambda>x. if x = \<bottom> then \<bottom> else f\<cdot>x)"
huffman@16209
   424
apply (rule contlubI)
huffman@16085
   425
apply (case_tac "lub (range Y) = \<bottom>")
huffman@16699
   426
apply (drule (1) chain_UU_I)
huffman@17815
   427
apply (simp add: thelub_const)
huffman@17815
   428
apply (simp del: if_image_distrib)
huffman@17815
   429
apply (simp only: contlub_cfun_arg)
huffman@16085
   430
apply (rule lub_equal2)
huffman@16085
   431
apply (rule chain_mono2 [THEN exE])
huffman@16085
   432
apply (erule chain_UU_I_inverse2)
huffman@16085
   433
apply (assumption)
huffman@17815
   434
apply (rule_tac x=x in exI, clarsimp)
huffman@16085
   435
apply (erule chain_monofun)
huffman@17815
   436
apply (erule monofun_strictify2 [THEN ch2ch_monofun])
huffman@16085
   437
done
huffman@16085
   438
huffman@17815
   439
lemmas cont_strictify2 =
huffman@17815
   440
  monocontlub2cont [OF monofun_strictify2 contlub_strictify2, standard]
huffman@17815
   441
huffman@17815
   442
lemma strictify_conv_if: "strictify\<cdot>f\<cdot>x = (if x = \<bottom> then \<bottom> else f\<cdot>x)"
huffman@17815
   443
by (unfold strictify_def, simp add: cont_strictify1 cont_strictify2)
huffman@16085
   444
huffman@16085
   445
lemma strictify1 [simp]: "strictify\<cdot>f\<cdot>\<bottom> = \<bottom>"
huffman@17815
   446
by (simp add: strictify_conv_if)
huffman@16085
   447
huffman@16085
   448
lemma strictify2 [simp]: "x \<noteq> \<bottom> \<Longrightarrow> strictify\<cdot>f\<cdot>x = f\<cdot>x"
huffman@17815
   449
by (simp add: strictify_conv_if)
huffman@16085
   450
huffman@15576
   451
end