src/HOL/Enum.thy
author haftmann
Fri Oct 10 19:55:32 2014 +0200 (2014-10-10)
changeset 58646 cd63a4b12a33
parent 58350 919149921e46
child 58659 6c9821c32dd5
permissions -rw-r--r--
specialized specification: avoid trivial instances
haftmann@31596
     1
(* Author: Florian Haftmann, TU Muenchen *)
haftmann@26348
     2
haftmann@26348
     3
header {* Finite types as explicit enumerations *}
haftmann@26348
     4
haftmann@26348
     5
theory Enum
haftmann@58101
     6
imports Map Groups_List
haftmann@26348
     7
begin
haftmann@26348
     8
haftmann@26348
     9
subsection {* Class @{text enum} *}
haftmann@26348
    10
haftmann@29797
    11
class enum =
haftmann@26348
    12
  fixes enum :: "'a list"
bulwahn@41078
    13
  fixes enum_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
haftmann@49950
    14
  fixes enum_ex :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
haftmann@33635
    15
  assumes UNIV_enum: "UNIV = set enum"
haftmann@26444
    16
    and enum_distinct: "distinct enum"
haftmann@49950
    17
  assumes enum_all_UNIV: "enum_all P \<longleftrightarrow> Ball UNIV P"
haftmann@49950
    18
  assumes enum_ex_UNIV: "enum_ex P \<longleftrightarrow> Bex UNIV P" 
haftmann@49950
    19
   -- {* tailored towards simple instantiation *}
haftmann@26348
    20
begin
haftmann@26348
    21
haftmann@29797
    22
subclass finite proof
haftmann@29797
    23
qed (simp add: UNIV_enum)
haftmann@26444
    24
haftmann@49950
    25
lemma enum_UNIV:
haftmann@49950
    26
  "set enum = UNIV"
haftmann@49950
    27
  by (simp only: UNIV_enum)
haftmann@26444
    28
bulwahn@40683
    29
lemma in_enum: "x \<in> set enum"
haftmann@49950
    30
  by (simp add: enum_UNIV)
haftmann@26348
    31
haftmann@26348
    32
lemma enum_eq_I:
haftmann@26348
    33
  assumes "\<And>x. x \<in> set xs"
haftmann@26348
    34
  shows "set enum = set xs"
haftmann@26348
    35
proof -
haftmann@26348
    36
  from assms UNIV_eq_I have "UNIV = set xs" by auto
bulwahn@41078
    37
  with enum_UNIV show ?thesis by simp
haftmann@26348
    38
qed
haftmann@26348
    39
haftmann@49972
    40
lemma card_UNIV_length_enum:
haftmann@49972
    41
  "card (UNIV :: 'a set) = length enum"
haftmann@49972
    42
  by (simp add: UNIV_enum distinct_card enum_distinct)
haftmann@49972
    43
haftmann@49950
    44
lemma enum_all [simp]:
haftmann@49950
    45
  "enum_all = HOL.All"
haftmann@49950
    46
  by (simp add: fun_eq_iff enum_all_UNIV)
haftmann@49950
    47
haftmann@49950
    48
lemma enum_ex [simp]:
haftmann@49950
    49
  "enum_ex = HOL.Ex" 
haftmann@49950
    50
  by (simp add: fun_eq_iff enum_ex_UNIV)
haftmann@49950
    51
haftmann@26348
    52
end
haftmann@26348
    53
haftmann@26348
    54
haftmann@49949
    55
subsection {* Implementations using @{class enum} *}
haftmann@49949
    56
haftmann@49949
    57
subsubsection {* Unbounded operations and quantifiers *}
haftmann@49949
    58
haftmann@49949
    59
lemma Collect_code [code]:
haftmann@49949
    60
  "Collect P = set (filter P enum)"
haftmann@49950
    61
  by (simp add: enum_UNIV)
haftmann@49949
    62
bulwahn@50567
    63
lemma vimage_code [code]:
bulwahn@50567
    64
  "f -` B = set (filter (%x. f x : B) enum_class.enum)"
bulwahn@50567
    65
  unfolding vimage_def Collect_code ..
bulwahn@50567
    66
haftmann@49949
    67
definition card_UNIV :: "'a itself \<Rightarrow> nat"
haftmann@49949
    68
where
haftmann@49949
    69
  [code del]: "card_UNIV TYPE('a) = card (UNIV :: 'a set)"
haftmann@49949
    70
haftmann@49949
    71
lemma [code]:
haftmann@49949
    72
  "card_UNIV TYPE('a :: enum) = card (set (Enum.enum :: 'a list))"
haftmann@49949
    73
  by (simp only: card_UNIV_def enum_UNIV)
haftmann@49949
    74
haftmann@49949
    75
lemma all_code [code]: "(\<forall>x. P x) \<longleftrightarrow> enum_all P"
haftmann@49950
    76
  by simp
haftmann@49949
    77
haftmann@49949
    78
lemma exists_code [code]: "(\<exists>x. P x) \<longleftrightarrow> enum_ex P"
haftmann@49950
    79
  by simp
haftmann@49949
    80
haftmann@49949
    81
lemma exists1_code [code]: "(\<exists>!x. P x) \<longleftrightarrow> list_ex1 P enum"
haftmann@49950
    82
  by (auto simp add: list_ex1_iff enum_UNIV)
haftmann@49949
    83
haftmann@49949
    84
haftmann@49949
    85
subsubsection {* An executable choice operator *}
haftmann@49949
    86
haftmann@49949
    87
definition
haftmann@49949
    88
  [code del]: "enum_the = The"
haftmann@49949
    89
haftmann@49949
    90
lemma [code]:
haftmann@49949
    91
  "The P = (case filter P enum of [x] => x | _ => enum_the P)"
haftmann@49949
    92
proof -
haftmann@49949
    93
  {
haftmann@49949
    94
    fix a
haftmann@49949
    95
    assume filter_enum: "filter P enum = [a]"
haftmann@49949
    96
    have "The P = a"
haftmann@49949
    97
    proof (rule the_equality)
haftmann@49949
    98
      fix x
haftmann@49949
    99
      assume "P x"
haftmann@49949
   100
      show "x = a"
haftmann@49949
   101
      proof (rule ccontr)
haftmann@49949
   102
        assume "x \<noteq> a"
haftmann@49949
   103
        from filter_enum obtain us vs
haftmann@49949
   104
          where enum_eq: "enum = us @ [a] @ vs"
haftmann@49949
   105
          and "\<forall> x \<in> set us. \<not> P x"
haftmann@49949
   106
          and "\<forall> x \<in> set vs. \<not> P x"
haftmann@49949
   107
          and "P a"
haftmann@49949
   108
          by (auto simp add: filter_eq_Cons_iff) (simp only: filter_empty_conv[symmetric])
haftmann@49949
   109
        with `P x` in_enum[of x, unfolded enum_eq] `x \<noteq> a` show "False" by auto
haftmann@49949
   110
      qed
haftmann@49949
   111
    next
haftmann@49949
   112
      from filter_enum show "P a" by (auto simp add: filter_eq_Cons_iff)
haftmann@49949
   113
    qed
haftmann@49949
   114
  }
haftmann@49949
   115
  from this show ?thesis
haftmann@49949
   116
    unfolding enum_the_def by (auto split: list.split)
haftmann@49949
   117
qed
haftmann@49949
   118
haftmann@54890
   119
declare [[code abort: enum_the]]
haftmann@52435
   120
haftmann@52435
   121
code_printing
haftmann@52435
   122
  constant enum_the \<rightharpoonup> (Eval) "(fn '_ => raise Match)"
haftmann@49949
   123
haftmann@49949
   124
haftmann@49949
   125
subsubsection {* Equality and order on functions *}
haftmann@26348
   126
haftmann@38857
   127
instantiation "fun" :: (enum, equal) equal
haftmann@26513
   128
begin
haftmann@26348
   129
haftmann@26513
   130
definition
haftmann@38857
   131
  "HOL.equal f g \<longleftrightarrow> (\<forall>x \<in> set enum. f x = g x)"
haftmann@26513
   132
haftmann@31464
   133
instance proof
haftmann@49950
   134
qed (simp_all add: equal_fun_def fun_eq_iff enum_UNIV)
haftmann@26513
   135
haftmann@26513
   136
end
haftmann@26348
   137
bulwahn@40898
   138
lemma [code]:
bulwahn@41078
   139
  "HOL.equal f g \<longleftrightarrow> enum_all (%x. f x = g x)"
haftmann@49950
   140
  by (auto simp add: equal fun_eq_iff)
bulwahn@40898
   141
haftmann@38857
   142
lemma [code nbe]:
haftmann@38857
   143
  "HOL.equal (f :: _ \<Rightarrow> _) f \<longleftrightarrow> True"
haftmann@38857
   144
  by (fact equal_refl)
haftmann@38857
   145
haftmann@28562
   146
lemma order_fun [code]:
haftmann@26348
   147
  fixes f g :: "'a\<Colon>enum \<Rightarrow> 'b\<Colon>order"
bulwahn@41078
   148
  shows "f \<le> g \<longleftrightarrow> enum_all (\<lambda>x. f x \<le> g x)"
bulwahn@41078
   149
    and "f < g \<longleftrightarrow> f \<le> g \<and> enum_ex (\<lambda>x. f x \<noteq> g x)"
haftmann@49950
   150
  by (simp_all add: fun_eq_iff le_fun_def order_less_le)
haftmann@26968
   151
haftmann@26968
   152
haftmann@49949
   153
subsubsection {* Operations on relations *}
haftmann@49949
   154
haftmann@49949
   155
lemma [code]:
haftmann@49949
   156
  "Id = image (\<lambda>x. (x, x)) (set Enum.enum)"
haftmann@49949
   157
  by (auto intro: imageI in_enum)
haftmann@26968
   158
blanchet@54148
   159
lemma tranclp_unfold [code]:
haftmann@49949
   160
  "tranclp r a b \<longleftrightarrow> (a, b) \<in> trancl {(x, y). r x y}"
haftmann@49949
   161
  by (simp add: trancl_def)
haftmann@49949
   162
blanchet@54148
   163
lemma rtranclp_rtrancl_eq [code]:
haftmann@49949
   164
  "rtranclp r x y \<longleftrightarrow> (x, y) \<in> rtrancl {(x, y). r x y}"
haftmann@49949
   165
  by (simp add: rtrancl_def)
haftmann@26968
   166
haftmann@49949
   167
lemma max_ext_eq [code]:
haftmann@49949
   168
  "max_ext R = {(X, Y). finite X \<and> finite Y \<and> Y \<noteq> {} \<and> (\<forall>x. x \<in> X \<longrightarrow> (\<exists>xa \<in> Y. (x, xa) \<in> R))}"
haftmann@49949
   169
  by (auto simp add: max_ext.simps)
haftmann@49949
   170
haftmann@49949
   171
lemma max_extp_eq [code]:
haftmann@49949
   172
  "max_extp r x y \<longleftrightarrow> (x, y) \<in> max_ext {(x, y). r x y}"
haftmann@49949
   173
  by (simp add: max_ext_def)
haftmann@26348
   174
haftmann@49949
   175
lemma mlex_eq [code]:
haftmann@49949
   176
  "f <*mlex*> R = {(x, y). f x < f y \<or> (f x \<le> f y \<and> (x, y) \<in> R)}"
haftmann@49949
   177
  by (auto simp add: mlex_prod_def)
haftmann@49949
   178
blanchet@55088
   179
blanchet@55088
   180
subsubsection {* Bounded accessible part *}
blanchet@55088
   181
blanchet@55088
   182
primrec bacc :: "('a \<times> 'a) set \<Rightarrow> nat \<Rightarrow> 'a set" 
blanchet@55088
   183
where
blanchet@55088
   184
  "bacc r 0 = {x. \<forall> y. (y, x) \<notin> r}"
blanchet@55088
   185
| "bacc r (Suc n) = (bacc r n \<union> {x. \<forall>y. (y, x) \<in> r \<longrightarrow> y \<in> bacc r n})"
blanchet@55088
   186
blanchet@55088
   187
lemma bacc_subseteq_acc:
blanchet@55088
   188
  "bacc r n \<subseteq> Wellfounded.acc r"
blanchet@55088
   189
  by (induct n) (auto intro: acc.intros)
blanchet@55088
   190
blanchet@55088
   191
lemma bacc_mono:
blanchet@55088
   192
  "n \<le> m \<Longrightarrow> bacc r n \<subseteq> bacc r m"
blanchet@55088
   193
  by (induct rule: dec_induct) auto
blanchet@55088
   194
  
blanchet@55088
   195
lemma bacc_upper_bound:
blanchet@55088
   196
  "bacc (r :: ('a \<times> 'a) set)  (card (UNIV :: 'a::finite set)) = (\<Union>n. bacc r n)"
blanchet@55088
   197
proof -
blanchet@55088
   198
  have "mono (bacc r)" unfolding mono_def by (simp add: bacc_mono)
blanchet@55088
   199
  moreover have "\<forall>n. bacc r n = bacc r (Suc n) \<longrightarrow> bacc r (Suc n) = bacc r (Suc (Suc n))" by auto
blanchet@55088
   200
  moreover have "finite (range (bacc r))" by auto
blanchet@55088
   201
  ultimately show ?thesis
blanchet@55088
   202
   by (intro finite_mono_strict_prefix_implies_finite_fixpoint)
blanchet@55088
   203
     (auto intro: finite_mono_remains_stable_implies_strict_prefix)
blanchet@55088
   204
qed
blanchet@55088
   205
blanchet@55088
   206
lemma acc_subseteq_bacc:
blanchet@55088
   207
  assumes "finite r"
blanchet@55088
   208
  shows "Wellfounded.acc r \<subseteq> (\<Union>n. bacc r n)"
blanchet@55088
   209
proof
blanchet@55088
   210
  fix x
blanchet@55088
   211
  assume "x : Wellfounded.acc r"
blanchet@55088
   212
  then have "\<exists> n. x : bacc r n"
blanchet@55088
   213
  proof (induct x arbitrary: rule: acc.induct)
blanchet@55088
   214
    case (accI x)
blanchet@55088
   215
    then have "\<forall>y. \<exists> n. (y, x) \<in> r --> y : bacc r n" by simp
blanchet@55088
   216
    from choice[OF this] obtain n where n: "\<forall>y. (y, x) \<in> r \<longrightarrow> y \<in> bacc r (n y)" ..
blanchet@55088
   217
    obtain n where "\<And>y. (y, x) : r \<Longrightarrow> y : bacc r n"
blanchet@55088
   218
    proof
blanchet@55088
   219
      fix y assume y: "(y, x) : r"
blanchet@55088
   220
      with n have "y : bacc r (n y)" by auto
blanchet@55088
   221
      moreover have "n y <= Max ((%(y, x). n y) ` r)"
blanchet@55088
   222
        using y `finite r` by (auto intro!: Max_ge)
blanchet@55088
   223
      note bacc_mono[OF this, of r]
blanchet@55088
   224
      ultimately show "y : bacc r (Max ((%(y, x). n y) ` r))" by auto
blanchet@55088
   225
    qed
blanchet@55088
   226
    then show ?case
blanchet@55088
   227
      by (auto simp add: Let_def intro!: exI[of _ "Suc n"])
blanchet@55088
   228
  qed
blanchet@55088
   229
  then show "x : (UN n. bacc r n)" by auto
blanchet@55088
   230
qed
blanchet@55088
   231
blanchet@55088
   232
lemma acc_bacc_eq:
blanchet@55088
   233
  fixes A :: "('a :: finite \<times> 'a) set"
blanchet@55088
   234
  assumes "finite A"
blanchet@55088
   235
  shows "Wellfounded.acc A = bacc A (card (UNIV :: 'a set))"
blanchet@55088
   236
  using assms by (metis acc_subseteq_bacc bacc_subseteq_acc bacc_upper_bound order_eq_iff)
blanchet@55088
   237
haftmann@49949
   238
lemma [code]:
haftmann@49949
   239
  fixes xs :: "('a::finite \<times> 'a) list"
haftmann@54295
   240
  shows "Wellfounded.acc (set xs) = bacc (set xs) (card_UNIV TYPE('a))"
haftmann@49949
   241
  by (simp add: card_UNIV_def acc_bacc_eq)
haftmann@49949
   242
haftmann@26348
   243
haftmann@49949
   244
subsection {* Default instances for @{class enum} *}
haftmann@26348
   245
haftmann@26444
   246
lemma map_of_zip_enum_is_Some:
haftmann@26444
   247
  assumes "length ys = length (enum \<Colon> 'a\<Colon>enum list)"
haftmann@26444
   248
  shows "\<exists>y. map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x = Some y"
haftmann@26444
   249
proof -
haftmann@26444
   250
  from assms have "x \<in> set (enum \<Colon> 'a\<Colon>enum list) \<longleftrightarrow>
haftmann@26444
   251
    (\<exists>y. map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x = Some y)"
haftmann@26444
   252
    by (auto intro!: map_of_zip_is_Some)
bulwahn@41078
   253
  then show ?thesis using enum_UNIV by auto
haftmann@26444
   254
qed
haftmann@26444
   255
haftmann@26444
   256
lemma map_of_zip_enum_inject:
haftmann@26444
   257
  fixes xs ys :: "'b\<Colon>enum list"
haftmann@26444
   258
  assumes length: "length xs = length (enum \<Colon> 'a\<Colon>enum list)"
haftmann@26444
   259
      "length ys = length (enum \<Colon> 'a\<Colon>enum list)"
haftmann@26444
   260
    and map_of: "the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) xs) = the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys)"
haftmann@26444
   261
  shows "xs = ys"
haftmann@26444
   262
proof -
haftmann@26444
   263
  have "map_of (zip (enum \<Colon> 'a list) xs) = map_of (zip (enum \<Colon> 'a list) ys)"
haftmann@26444
   264
  proof
haftmann@26444
   265
    fix x :: 'a
haftmann@26444
   266
    from length map_of_zip_enum_is_Some obtain y1 y2
haftmann@26444
   267
      where "map_of (zip (enum \<Colon> 'a list) xs) x = Some y1"
haftmann@26444
   268
        and "map_of (zip (enum \<Colon> 'a list) ys) x = Some y2" by blast
wenzelm@47230
   269
    moreover from map_of
wenzelm@47230
   270
      have "the (map_of (zip (enum \<Colon> 'a\<Colon>enum list) xs) x) = the (map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x)"
haftmann@26444
   271
      by (auto dest: fun_cong)
haftmann@26444
   272
    ultimately show "map_of (zip (enum \<Colon> 'a\<Colon>enum list) xs) x = map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x"
haftmann@26444
   273
      by simp
haftmann@26444
   274
  qed
haftmann@26444
   275
  with length enum_distinct show "xs = ys" by (rule map_of_zip_inject)
haftmann@26444
   276
qed
haftmann@26444
   277
haftmann@49950
   278
definition all_n_lists :: "(('a :: enum) list \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> bool"
bulwahn@41078
   279
where
haftmann@49950
   280
  "all_n_lists P n \<longleftrightarrow> (\<forall>xs \<in> set (List.n_lists n enum). P xs)"
bulwahn@41078
   281
bulwahn@41078
   282
lemma [code]:
haftmann@49950
   283
  "all_n_lists P n \<longleftrightarrow> (if n = 0 then P [] else enum_all (%x. all_n_lists (%xs. P (x # xs)) (n - 1)))"
haftmann@49950
   284
  unfolding all_n_lists_def enum_all
haftmann@49950
   285
  by (cases n) (auto simp add: enum_UNIV)
bulwahn@41078
   286
haftmann@49950
   287
definition ex_n_lists :: "(('a :: enum) list \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> bool"
bulwahn@41078
   288
where
haftmann@49950
   289
  "ex_n_lists P n \<longleftrightarrow> (\<exists>xs \<in> set (List.n_lists n enum). P xs)"
bulwahn@41078
   290
bulwahn@41078
   291
lemma [code]:
haftmann@49950
   292
  "ex_n_lists P n \<longleftrightarrow> (if n = 0 then P [] else enum_ex (%x. ex_n_lists (%xs. P (x # xs)) (n - 1)))"
haftmann@49950
   293
  unfolding ex_n_lists_def enum_ex
haftmann@49950
   294
  by (cases n) (auto simp add: enum_UNIV)
bulwahn@41078
   295
haftmann@26444
   296
instantiation "fun" :: (enum, enum) enum
haftmann@26444
   297
begin
haftmann@26444
   298
haftmann@26444
   299
definition
haftmann@49948
   300
  "enum = map (\<lambda>ys. the o map_of (zip (enum\<Colon>'a list) ys)) (List.n_lists (length (enum\<Colon>'a\<Colon>enum list)) enum)"
haftmann@26444
   301
bulwahn@41078
   302
definition
bulwahn@41078
   303
  "enum_all P = all_n_lists (\<lambda>bs. P (the o map_of (zip enum bs))) (length (enum :: 'a list))"
bulwahn@41078
   304
bulwahn@41078
   305
definition
bulwahn@41078
   306
  "enum_ex P = ex_n_lists (\<lambda>bs. P (the o map_of (zip enum bs))) (length (enum :: 'a list))"
bulwahn@41078
   307
haftmann@26444
   308
instance proof
haftmann@26444
   309
  show "UNIV = set (enum \<Colon> ('a \<Rightarrow> 'b) list)"
haftmann@26444
   310
  proof (rule UNIV_eq_I)
haftmann@26444
   311
    fix f :: "'a \<Rightarrow> 'b"
haftmann@26444
   312
    have "f = the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) (map f enum))"
bulwahn@40683
   313
      by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum)
haftmann@26444
   314
    then show "f \<in> set enum"
bulwahn@40683
   315
      by (auto simp add: enum_fun_def set_n_lists intro: in_enum)
haftmann@26444
   316
  qed
haftmann@26444
   317
next
haftmann@26444
   318
  from map_of_zip_enum_inject
haftmann@26444
   319
  show "distinct (enum \<Colon> ('a \<Rightarrow> 'b) list)"
haftmann@26444
   320
    by (auto intro!: inj_onI simp add: enum_fun_def
haftmann@49950
   321
      distinct_map distinct_n_lists enum_distinct set_n_lists)
bulwahn@41078
   322
next
bulwahn@41078
   323
  fix P
haftmann@49950
   324
  show "enum_all (P :: ('a \<Rightarrow> 'b) \<Rightarrow> bool) = Ball UNIV P"
bulwahn@41078
   325
  proof
bulwahn@41078
   326
    assume "enum_all P"
haftmann@49950
   327
    show "Ball UNIV P"
bulwahn@41078
   328
    proof
bulwahn@41078
   329
      fix f :: "'a \<Rightarrow> 'b"
bulwahn@41078
   330
      have f: "f = the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) (map f enum))"
bulwahn@41078
   331
        by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum)
bulwahn@41078
   332
      from `enum_all P` have "P (the \<circ> map_of (zip enum (map f enum)))"
bulwahn@41078
   333
        unfolding enum_all_fun_def all_n_lists_def
bulwahn@41078
   334
        apply (simp add: set_n_lists)
bulwahn@41078
   335
        apply (erule_tac x="map f enum" in allE)
bulwahn@41078
   336
        apply (auto intro!: in_enum)
bulwahn@41078
   337
        done
bulwahn@41078
   338
      from this f show "P f" by auto
bulwahn@41078
   339
    qed
bulwahn@41078
   340
  next
haftmann@49950
   341
    assume "Ball UNIV P"
bulwahn@41078
   342
    from this show "enum_all P"
bulwahn@41078
   343
      unfolding enum_all_fun_def all_n_lists_def by auto
bulwahn@41078
   344
  qed
bulwahn@41078
   345
next
bulwahn@41078
   346
  fix P
haftmann@49950
   347
  show "enum_ex (P :: ('a \<Rightarrow> 'b) \<Rightarrow> bool) = Bex UNIV P"
bulwahn@41078
   348
  proof
bulwahn@41078
   349
    assume "enum_ex P"
haftmann@49950
   350
    from this show "Bex UNIV P"
bulwahn@41078
   351
      unfolding enum_ex_fun_def ex_n_lists_def by auto
bulwahn@41078
   352
  next
haftmann@49950
   353
    assume "Bex UNIV P"
bulwahn@41078
   354
    from this obtain f where "P f" ..
bulwahn@41078
   355
    have f: "f = the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) (map f enum))"
bulwahn@41078
   356
      by (auto simp add: map_of_zip_map fun_eq_iff intro: in_enum) 
bulwahn@41078
   357
    from `P f` this have "P (the \<circ> map_of (zip (enum \<Colon> 'a\<Colon>enum list) (map f enum)))"
bulwahn@41078
   358
      by auto
bulwahn@41078
   359
    from  this show "enum_ex P"
bulwahn@41078
   360
      unfolding enum_ex_fun_def ex_n_lists_def
bulwahn@41078
   361
      apply (auto simp add: set_n_lists)
bulwahn@41078
   362
      apply (rule_tac x="map f enum" in exI)
bulwahn@41078
   363
      apply (auto intro!: in_enum)
bulwahn@41078
   364
      done
bulwahn@41078
   365
  qed
haftmann@26444
   366
qed
haftmann@26444
   367
haftmann@26444
   368
end
haftmann@26444
   369
haftmann@38857
   370
lemma enum_fun_code [code]: "enum = (let enum_a = (enum \<Colon> 'a\<Colon>{enum, equal} list)
haftmann@49948
   371
  in map (\<lambda>ys. the o map_of (zip enum_a ys)) (List.n_lists (length enum_a) enum))"
haftmann@28245
   372
  by (simp add: enum_fun_def Let_def)
haftmann@26444
   373
bulwahn@41078
   374
lemma enum_all_fun_code [code]:
bulwahn@41078
   375
  "enum_all P = (let enum_a = (enum :: 'a::{enum, equal} list)
bulwahn@41078
   376
   in all_n_lists (\<lambda>bs. P (the o map_of (zip enum_a bs))) (length enum_a))"
haftmann@49950
   377
  by (simp only: enum_all_fun_def Let_def)
bulwahn@41078
   378
bulwahn@41078
   379
lemma enum_ex_fun_code [code]:
bulwahn@41078
   380
  "enum_ex P = (let enum_a = (enum :: 'a::{enum, equal} list)
bulwahn@41078
   381
   in ex_n_lists (\<lambda>bs. P (the o map_of (zip enum_a bs))) (length enum_a))"
haftmann@49950
   382
  by (simp only: enum_ex_fun_def Let_def)
haftmann@45963
   383
haftmann@45963
   384
instantiation set :: (enum) enum
haftmann@45963
   385
begin
haftmann@45963
   386
haftmann@45963
   387
definition
haftmann@45963
   388
  "enum = map set (sublists enum)"
haftmann@45963
   389
haftmann@45963
   390
definition
haftmann@45963
   391
  "enum_all P \<longleftrightarrow> (\<forall>A\<in>set enum. P (A::'a set))"
haftmann@45963
   392
haftmann@45963
   393
definition
haftmann@45963
   394
  "enum_ex P \<longleftrightarrow> (\<exists>A\<in>set enum. P (A::'a set))"
haftmann@45963
   395
haftmann@45963
   396
instance proof
haftmann@45963
   397
qed (simp_all add: enum_set_def enum_all_set_def enum_ex_set_def sublists_powset distinct_set_sublists
haftmann@45963
   398
  enum_distinct enum_UNIV)
huffman@29024
   399
huffman@29024
   400
end
huffman@29024
   401
haftmann@49950
   402
instantiation unit :: enum
haftmann@49950
   403
begin
haftmann@49950
   404
haftmann@49950
   405
definition
haftmann@49950
   406
  "enum = [()]"
haftmann@49950
   407
haftmann@49950
   408
definition
haftmann@49950
   409
  "enum_all P = P ()"
haftmann@49950
   410
haftmann@49950
   411
definition
haftmann@49950
   412
  "enum_ex P = P ()"
haftmann@49950
   413
haftmann@49950
   414
instance proof
haftmann@49950
   415
qed (auto simp add: enum_unit_def enum_all_unit_def enum_ex_unit_def)
haftmann@49950
   416
haftmann@49950
   417
end
haftmann@49950
   418
haftmann@49950
   419
instantiation bool :: enum
haftmann@49950
   420
begin
haftmann@49950
   421
haftmann@49950
   422
definition
haftmann@49950
   423
  "enum = [False, True]"
haftmann@49950
   424
haftmann@49950
   425
definition
haftmann@49950
   426
  "enum_all P \<longleftrightarrow> P False \<and> P True"
haftmann@49950
   427
haftmann@49950
   428
definition
haftmann@49950
   429
  "enum_ex P \<longleftrightarrow> P False \<or> P True"
haftmann@49950
   430
haftmann@49950
   431
instance proof
haftmann@49950
   432
qed (simp_all only: enum_bool_def enum_all_bool_def enum_ex_bool_def UNIV_bool, simp_all)
haftmann@49950
   433
haftmann@49950
   434
end
haftmann@49950
   435
haftmann@49950
   436
instantiation prod :: (enum, enum) enum
haftmann@49950
   437
begin
haftmann@49950
   438
haftmann@49950
   439
definition
haftmann@49950
   440
  "enum = List.product enum enum"
haftmann@49950
   441
haftmann@49950
   442
definition
haftmann@49950
   443
  "enum_all P = enum_all (%x. enum_all (%y. P (x, y)))"
haftmann@49950
   444
haftmann@49950
   445
definition
haftmann@49950
   446
  "enum_ex P = enum_ex (%x. enum_ex (%y. P (x, y)))"
haftmann@49950
   447
haftmann@49950
   448
 
haftmann@49950
   449
instance by default
nipkow@57247
   450
  (simp_all add: enum_prod_def distinct_product
haftmann@49950
   451
    enum_UNIV enum_distinct enum_all_prod_def enum_ex_prod_def)
haftmann@49950
   452
haftmann@49950
   453
end
haftmann@49950
   454
haftmann@49950
   455
instantiation sum :: (enum, enum) enum
haftmann@49950
   456
begin
haftmann@49950
   457
haftmann@49950
   458
definition
haftmann@49950
   459
  "enum = map Inl enum @ map Inr enum"
haftmann@49950
   460
haftmann@49950
   461
definition
haftmann@49950
   462
  "enum_all P \<longleftrightarrow> enum_all (\<lambda>x. P (Inl x)) \<and> enum_all (\<lambda>x. P (Inr x))"
haftmann@49950
   463
haftmann@49950
   464
definition
haftmann@49950
   465
  "enum_ex P \<longleftrightarrow> enum_ex (\<lambda>x. P (Inl x)) \<or> enum_ex (\<lambda>x. P (Inr x))"
haftmann@49950
   466
haftmann@49950
   467
instance proof
haftmann@49950
   468
qed (simp_all only: enum_sum_def enum_all_sum_def enum_ex_sum_def UNIV_sum,
haftmann@49950
   469
  auto simp add: enum_UNIV distinct_map enum_distinct)
haftmann@49950
   470
haftmann@49950
   471
end
haftmann@49950
   472
haftmann@49950
   473
instantiation option :: (enum) enum
haftmann@49950
   474
begin
haftmann@49950
   475
haftmann@49950
   476
definition
haftmann@49950
   477
  "enum = None # map Some enum"
haftmann@49950
   478
haftmann@49950
   479
definition
haftmann@49950
   480
  "enum_all P \<longleftrightarrow> P None \<and> enum_all (\<lambda>x. P (Some x))"
haftmann@49950
   481
haftmann@49950
   482
definition
haftmann@49950
   483
  "enum_ex P \<longleftrightarrow> P None \<or> enum_ex (\<lambda>x. P (Some x))"
haftmann@49950
   484
haftmann@49950
   485
instance proof
haftmann@49950
   486
qed (simp_all only: enum_option_def enum_all_option_def enum_ex_option_def UNIV_option_conv,
haftmann@49950
   487
  auto simp add: distinct_map enum_UNIV enum_distinct)
haftmann@49950
   488
haftmann@49950
   489
end
haftmann@49950
   490
haftmann@45963
   491
bulwahn@40647
   492
subsection {* Small finite types *}
bulwahn@40647
   493
blanchet@58334
   494
text {* We define small finite types for use in Quickcheck *}
bulwahn@40647
   495
blanchet@58350
   496
datatype (plugins only: code "quickcheck*" extraction) finite_1 =
blanchet@58350
   497
  a\<^sub>1
bulwahn@40647
   498
wenzelm@53015
   499
notation (output) a\<^sub>1  ("a\<^sub>1")
bulwahn@40900
   500
haftmann@49950
   501
lemma UNIV_finite_1:
wenzelm@53015
   502
  "UNIV = {a\<^sub>1}"
haftmann@49950
   503
  by (auto intro: finite_1.exhaust)
haftmann@49950
   504
bulwahn@40647
   505
instantiation finite_1 :: enum
bulwahn@40647
   506
begin
bulwahn@40647
   507
bulwahn@40647
   508
definition
wenzelm@53015
   509
  "enum = [a\<^sub>1]"
bulwahn@40647
   510
bulwahn@41078
   511
definition
wenzelm@53015
   512
  "enum_all P = P a\<^sub>1"
bulwahn@41078
   513
bulwahn@41078
   514
definition
wenzelm@53015
   515
  "enum_ex P = P a\<^sub>1"
bulwahn@41078
   516
bulwahn@40647
   517
instance proof
haftmann@49950
   518
qed (simp_all only: enum_finite_1_def enum_all_finite_1_def enum_ex_finite_1_def UNIV_finite_1, simp_all)
bulwahn@40647
   519
huffman@29024
   520
end
bulwahn@40647
   521
bulwahn@40651
   522
instantiation finite_1 :: linorder
bulwahn@40651
   523
begin
bulwahn@40651
   524
haftmann@49950
   525
definition less_finite_1 :: "finite_1 \<Rightarrow> finite_1 \<Rightarrow> bool"
haftmann@49950
   526
where
haftmann@49950
   527
  "x < (y :: finite_1) \<longleftrightarrow> False"
haftmann@49950
   528
bulwahn@40651
   529
definition less_eq_finite_1 :: "finite_1 \<Rightarrow> finite_1 \<Rightarrow> bool"
bulwahn@40651
   530
where
haftmann@49950
   531
  "x \<le> (y :: finite_1) \<longleftrightarrow> True"
bulwahn@40651
   532
bulwahn@40651
   533
instance
bulwahn@40651
   534
apply (intro_classes)
bulwahn@40651
   535
apply (auto simp add: less_finite_1_def less_eq_finite_1_def)
bulwahn@40651
   536
apply (metis finite_1.exhaust)
bulwahn@40651
   537
done
bulwahn@40651
   538
bulwahn@40651
   539
end
bulwahn@40651
   540
Andreas@57922
   541
instance finite_1 :: "{dense_linorder, wellorder}"
Andreas@57922
   542
by intro_classes (simp_all add: less_finite_1_def)
Andreas@57922
   543
Andreas@57818
   544
instantiation finite_1 :: complete_lattice
Andreas@57818
   545
begin
Andreas@57818
   546
Andreas@57818
   547
definition [simp]: "Inf = (\<lambda>_. a\<^sub>1)"
Andreas@57818
   548
definition [simp]: "Sup = (\<lambda>_. a\<^sub>1)"
Andreas@57818
   549
definition [simp]: "bot = a\<^sub>1"
Andreas@57818
   550
definition [simp]: "top = a\<^sub>1"
Andreas@57818
   551
definition [simp]: "inf = (\<lambda>_ _. a\<^sub>1)"
Andreas@57818
   552
definition [simp]: "sup = (\<lambda>_ _. a\<^sub>1)"
Andreas@57818
   553
Andreas@57818
   554
instance by intro_classes(simp_all add: less_eq_finite_1_def)
Andreas@57818
   555
end
Andreas@57818
   556
Andreas@57818
   557
instance finite_1 :: complete_distrib_lattice
Andreas@57818
   558
by intro_classes(simp_all add: INF_def SUP_def)
Andreas@57818
   559
Andreas@57818
   560
instance finite_1 :: complete_linorder ..
Andreas@57818
   561
Andreas@57922
   562
lemma finite_1_eq: "x = a\<^sub>1"
Andreas@57922
   563
by(cases x) simp
Andreas@57922
   564
Andreas@57922
   565
simproc_setup finite_1_eq ("x::finite_1") = {*
Andreas@57922
   566
  fn _ => fn _ => fn ct => case term_of ct of
Andreas@57922
   567
    Const (@{const_name a\<^sub>1}, _) => NONE
Andreas@57922
   568
  | _ => SOME (mk_meta_eq @{thm finite_1_eq})
Andreas@57922
   569
*}
Andreas@57922
   570
Andreas@57922
   571
instantiation finite_1 :: complete_boolean_algebra begin
Andreas@57922
   572
definition [simp]: "op - = (\<lambda>_ _. a\<^sub>1)"
Andreas@57922
   573
definition [simp]: "uminus = (\<lambda>_. a\<^sub>1)"
Andreas@57922
   574
instance by intro_classes simp_all
Andreas@57922
   575
end
Andreas@57922
   576
Andreas@57922
   577
instantiation finite_1 :: 
Andreas@57922
   578
  "{linordered_ring_strict, linordered_comm_semiring_strict, ordered_comm_ring,
Andreas@57922
   579
    ordered_cancel_comm_monoid_diff, comm_monoid_mult, ordered_ring_abs,
Andreas@57922
   580
    one, Divides.div, sgn_if, inverse}"
Andreas@57922
   581
begin
Andreas@57922
   582
definition [simp]: "Groups.zero = a\<^sub>1"
Andreas@57922
   583
definition [simp]: "Groups.one = a\<^sub>1"
Andreas@57922
   584
definition [simp]: "op + = (\<lambda>_ _. a\<^sub>1)"
Andreas@57922
   585
definition [simp]: "op * = (\<lambda>_ _. a\<^sub>1)"
Andreas@57922
   586
definition [simp]: "op div = (\<lambda>_ _. a\<^sub>1)" 
Andreas@57922
   587
definition [simp]: "op mod = (\<lambda>_ _. a\<^sub>1)" 
Andreas@57922
   588
definition [simp]: "abs = (\<lambda>_. a\<^sub>1)"
Andreas@57922
   589
definition [simp]: "sgn = (\<lambda>_. a\<^sub>1)"
Andreas@57922
   590
definition [simp]: "inverse = (\<lambda>_. a\<^sub>1)"
Andreas@57922
   591
definition [simp]: "op / = (\<lambda>_ _. a\<^sub>1)"
Andreas@57922
   592
Andreas@57922
   593
instance by intro_classes(simp_all add: less_finite_1_def)
Andreas@57922
   594
end
Andreas@57922
   595
Andreas@57922
   596
declare [[simproc del: finite_1_eq]]
wenzelm@53015
   597
hide_const (open) a\<^sub>1
bulwahn@40657
   598
blanchet@58350
   599
datatype (plugins only: code "quickcheck*" extraction) finite_2 =
blanchet@58350
   600
  a\<^sub>1 | a\<^sub>2
bulwahn@40647
   601
wenzelm@53015
   602
notation (output) a\<^sub>1  ("a\<^sub>1")
wenzelm@53015
   603
notation (output) a\<^sub>2  ("a\<^sub>2")
bulwahn@40900
   604
haftmann@49950
   605
lemma UNIV_finite_2:
wenzelm@53015
   606
  "UNIV = {a\<^sub>1, a\<^sub>2}"
haftmann@49950
   607
  by (auto intro: finite_2.exhaust)
haftmann@49950
   608
bulwahn@40647
   609
instantiation finite_2 :: enum
bulwahn@40647
   610
begin
bulwahn@40647
   611
bulwahn@40647
   612
definition
wenzelm@53015
   613
  "enum = [a\<^sub>1, a\<^sub>2]"
bulwahn@40647
   614
bulwahn@41078
   615
definition
wenzelm@53015
   616
  "enum_all P \<longleftrightarrow> P a\<^sub>1 \<and> P a\<^sub>2"
bulwahn@41078
   617
bulwahn@41078
   618
definition
wenzelm@53015
   619
  "enum_ex P \<longleftrightarrow> P a\<^sub>1 \<or> P a\<^sub>2"
bulwahn@41078
   620
bulwahn@40647
   621
instance proof
haftmann@49950
   622
qed (simp_all only: enum_finite_2_def enum_all_finite_2_def enum_ex_finite_2_def UNIV_finite_2, simp_all)
bulwahn@40647
   623
bulwahn@40647
   624
end
bulwahn@40647
   625
bulwahn@40651
   626
instantiation finite_2 :: linorder
bulwahn@40651
   627
begin
bulwahn@40651
   628
bulwahn@40651
   629
definition less_finite_2 :: "finite_2 \<Rightarrow> finite_2 \<Rightarrow> bool"
bulwahn@40651
   630
where
wenzelm@53015
   631
  "x < y \<longleftrightarrow> x = a\<^sub>1 \<and> y = a\<^sub>2"
bulwahn@40651
   632
bulwahn@40651
   633
definition less_eq_finite_2 :: "finite_2 \<Rightarrow> finite_2 \<Rightarrow> bool"
bulwahn@40651
   634
where
haftmann@49950
   635
  "x \<le> y \<longleftrightarrow> x = y \<or> x < (y :: finite_2)"
bulwahn@40651
   636
bulwahn@40651
   637
instance
bulwahn@40651
   638
apply (intro_classes)
bulwahn@40651
   639
apply (auto simp add: less_finite_2_def less_eq_finite_2_def)
haftmann@49950
   640
apply (metis finite_2.nchotomy)+
bulwahn@40651
   641
done
bulwahn@40651
   642
bulwahn@40651
   643
end
bulwahn@40651
   644
Andreas@57922
   645
instance finite_2 :: wellorder
Andreas@57922
   646
by(rule wf_wellorderI)(simp add: less_finite_2_def, intro_classes)
Andreas@57922
   647
Andreas@57818
   648
instantiation finite_2 :: complete_lattice
Andreas@57818
   649
begin
Andreas@57818
   650
Andreas@57818
   651
definition "\<Sqinter>A = (if a\<^sub>1 \<in> A then a\<^sub>1 else a\<^sub>2)"
Andreas@57818
   652
definition "\<Squnion>A = (if a\<^sub>2 \<in> A then a\<^sub>2 else a\<^sub>1)"
Andreas@57818
   653
definition [simp]: "bot = a\<^sub>1"
Andreas@57818
   654
definition [simp]: "top = a\<^sub>2"
Andreas@57818
   655
definition "x \<sqinter> y = (if x = a\<^sub>1 \<or> y = a\<^sub>1 then a\<^sub>1 else a\<^sub>2)"
Andreas@57818
   656
definition "x \<squnion> y = (if x = a\<^sub>2 \<or> y = a\<^sub>2 then a\<^sub>2 else a\<^sub>1)"
Andreas@57818
   657
Andreas@57818
   658
lemma neq_finite_2_a\<^sub>1_iff [simp]: "x \<noteq> a\<^sub>1 \<longleftrightarrow> x = a\<^sub>2"
Andreas@57818
   659
by(cases x) simp_all
Andreas@57818
   660
Andreas@57818
   661
lemma neq_finite_2_a\<^sub>1_iff' [simp]: "a\<^sub>1 \<noteq> x \<longleftrightarrow> x = a\<^sub>2"
Andreas@57818
   662
by(cases x) simp_all
Andreas@57818
   663
Andreas@57818
   664
lemma neq_finite_2_a\<^sub>2_iff [simp]: "x \<noteq> a\<^sub>2 \<longleftrightarrow> x = a\<^sub>1"
Andreas@57818
   665
by(cases x) simp_all
Andreas@57818
   666
Andreas@57818
   667
lemma neq_finite_2_a\<^sub>2_iff' [simp]: "a\<^sub>2 \<noteq> x \<longleftrightarrow> x = a\<^sub>1"
Andreas@57818
   668
by(cases x) simp_all
Andreas@57818
   669
Andreas@57818
   670
instance
Andreas@57818
   671
proof
Andreas@57818
   672
  fix x :: finite_2 and A
Andreas@57818
   673
  assume "x \<in> A"
Andreas@57818
   674
  then show "\<Sqinter>A \<le> x" "x \<le> \<Squnion>A"
Andreas@57818
   675
    by(case_tac [!] x)(auto simp add: less_eq_finite_2_def less_finite_2_def Inf_finite_2_def Sup_finite_2_def)
Andreas@57818
   676
qed(auto simp add: less_eq_finite_2_def less_finite_2_def inf_finite_2_def sup_finite_2_def Inf_finite_2_def Sup_finite_2_def)
Andreas@57818
   677
end
Andreas@57818
   678
Andreas@57818
   679
instance finite_2 :: complete_distrib_lattice
Andreas@57818
   680
by(intro_classes)(auto simp add: INF_def SUP_def sup_finite_2_def inf_finite_2_def Inf_finite_2_def Sup_finite_2_def)
Andreas@57818
   681
Andreas@57818
   682
instance finite_2 :: complete_linorder ..
Andreas@57818
   683
haftmann@58646
   684
instantiation finite_2 :: "{field_inverse_zero, abs_if, ring_div, sgn_if, semiring_div}" begin
Andreas@57922
   685
definition [simp]: "0 = a\<^sub>1"
Andreas@57922
   686
definition [simp]: "1 = a\<^sub>2"
Andreas@57922
   687
definition "x + y = (case (x, y) of (a\<^sub>1, a\<^sub>1) \<Rightarrow> a\<^sub>1 | (a\<^sub>2, a\<^sub>2) \<Rightarrow> a\<^sub>1 | _ \<Rightarrow> a\<^sub>2)"
Andreas@57922
   688
definition "uminus = (\<lambda>x :: finite_2. x)"
Andreas@57922
   689
definition "op - = (op + :: finite_2 \<Rightarrow> _)"
Andreas@57922
   690
definition "x * y = (case (x, y) of (a\<^sub>2, a\<^sub>2) \<Rightarrow> a\<^sub>2 | _ \<Rightarrow> a\<^sub>1)"
Andreas@57922
   691
definition "inverse = (\<lambda>x :: finite_2. x)"
Andreas@57922
   692
definition "op / = (op * :: finite_2 \<Rightarrow> _)"
Andreas@57922
   693
definition "abs = (\<lambda>x :: finite_2. x)"
Andreas@57922
   694
definition "op div = (op / :: finite_2 \<Rightarrow> _)"
Andreas@57922
   695
definition "x mod y = (case (x, y) of (a\<^sub>2, a\<^sub>1) \<Rightarrow> a\<^sub>2 | _ \<Rightarrow> a\<^sub>1)"
Andreas@57922
   696
definition "sgn = (\<lambda>x :: finite_2. x)"
Andreas@57922
   697
instance
Andreas@57922
   698
by intro_classes
Andreas@57922
   699
  (simp_all add: plus_finite_2_def uminus_finite_2_def minus_finite_2_def times_finite_2_def
Andreas@57922
   700
       inverse_finite_2_def divide_finite_2_def abs_finite_2_def div_finite_2_def mod_finite_2_def sgn_finite_2_def
Andreas@57922
   701
     split: finite_2.splits)
Andreas@57922
   702
end
Andreas@57922
   703
haftmann@58646
   704
lemma two_finite_2 [simp]:
haftmann@58646
   705
  "2 = a\<^sub>1"
haftmann@58646
   706
  by (simp add: numeral.simps plus_finite_2_def)
haftmann@58646
   707
  
haftmann@58646
   708
instance finite_2 :: semiring_div_parity
haftmann@58646
   709
by intro_classes (simp_all add: mod_finite_2_def split: finite_2.splits)
haftmann@58646
   710
haftmann@58646
   711
wenzelm@53015
   712
hide_const (open) a\<^sub>1 a\<^sub>2
bulwahn@40657
   713
blanchet@58350
   714
datatype (plugins only: code "quickcheck*" extraction) finite_3 =
blanchet@58350
   715
  a\<^sub>1 | a\<^sub>2 | a\<^sub>3
bulwahn@40647
   716
wenzelm@53015
   717
notation (output) a\<^sub>1  ("a\<^sub>1")
wenzelm@53015
   718
notation (output) a\<^sub>2  ("a\<^sub>2")
wenzelm@53015
   719
notation (output) a\<^sub>3  ("a\<^sub>3")
bulwahn@40900
   720
haftmann@49950
   721
lemma UNIV_finite_3:
wenzelm@53015
   722
  "UNIV = {a\<^sub>1, a\<^sub>2, a\<^sub>3}"
haftmann@49950
   723
  by (auto intro: finite_3.exhaust)
haftmann@49950
   724
bulwahn@40647
   725
instantiation finite_3 :: enum
bulwahn@40647
   726
begin
bulwahn@40647
   727
bulwahn@40647
   728
definition
wenzelm@53015
   729
  "enum = [a\<^sub>1, a\<^sub>2, a\<^sub>3]"
bulwahn@40647
   730
bulwahn@41078
   731
definition
wenzelm@53015
   732
  "enum_all P \<longleftrightarrow> P a\<^sub>1 \<and> P a\<^sub>2 \<and> P a\<^sub>3"
bulwahn@41078
   733
bulwahn@41078
   734
definition
wenzelm@53015
   735
  "enum_ex P \<longleftrightarrow> P a\<^sub>1 \<or> P a\<^sub>2 \<or> P a\<^sub>3"
bulwahn@41078
   736
bulwahn@40647
   737
instance proof
haftmann@49950
   738
qed (simp_all only: enum_finite_3_def enum_all_finite_3_def enum_ex_finite_3_def UNIV_finite_3, simp_all)
bulwahn@40647
   739
bulwahn@40647
   740
end
bulwahn@40647
   741
bulwahn@40651
   742
instantiation finite_3 :: linorder
bulwahn@40651
   743
begin
bulwahn@40651
   744
bulwahn@40651
   745
definition less_finite_3 :: "finite_3 \<Rightarrow> finite_3 \<Rightarrow> bool"
bulwahn@40651
   746
where
wenzelm@53015
   747
  "x < y = (case x of a\<^sub>1 \<Rightarrow> y \<noteq> a\<^sub>1 | a\<^sub>2 \<Rightarrow> y = a\<^sub>3 | a\<^sub>3 \<Rightarrow> False)"
bulwahn@40651
   748
bulwahn@40651
   749
definition less_eq_finite_3 :: "finite_3 \<Rightarrow> finite_3 \<Rightarrow> bool"
bulwahn@40651
   750
where
haftmann@49950
   751
  "x \<le> y \<longleftrightarrow> x = y \<or> x < (y :: finite_3)"
bulwahn@40651
   752
bulwahn@40651
   753
instance proof (intro_classes)
bulwahn@40651
   754
qed (auto simp add: less_finite_3_def less_eq_finite_3_def split: finite_3.split_asm)
bulwahn@40651
   755
bulwahn@40651
   756
end
bulwahn@40651
   757
Andreas@57922
   758
instance finite_3 :: wellorder
Andreas@57922
   759
proof(rule wf_wellorderI)
Andreas@57922
   760
  have "inv_image less_than (case_finite_3 0 1 2) = {(x, y). x < y}"
Andreas@57922
   761
    by(auto simp add: less_finite_3_def split: finite_3.splits)
Andreas@57922
   762
  from this[symmetric] show "wf \<dots>" by simp
Andreas@57922
   763
qed intro_classes
Andreas@57922
   764
Andreas@57818
   765
instantiation finite_3 :: complete_lattice
Andreas@57818
   766
begin
Andreas@57818
   767
Andreas@57818
   768
definition "\<Sqinter>A = (if a\<^sub>1 \<in> A then a\<^sub>1 else if a\<^sub>2 \<in> A then a\<^sub>2 else a\<^sub>3)"
Andreas@57818
   769
definition "\<Squnion>A = (if a\<^sub>3 \<in> A then a\<^sub>3 else if a\<^sub>2 \<in> A then a\<^sub>2 else a\<^sub>1)"
Andreas@57818
   770
definition [simp]: "bot = a\<^sub>1"
Andreas@57818
   771
definition [simp]: "top = a\<^sub>3"
Andreas@57818
   772
definition [simp]: "inf = (min :: finite_3 \<Rightarrow> _)"
Andreas@57818
   773
definition [simp]: "sup = (max :: finite_3 \<Rightarrow> _)"
Andreas@57818
   774
Andreas@57818
   775
instance
Andreas@57818
   776
proof
Andreas@57818
   777
  fix x :: finite_3 and A
Andreas@57818
   778
  assume "x \<in> A"
Andreas@57818
   779
  then show "\<Sqinter>A \<le> x" "x \<le> \<Squnion>A"
Andreas@57818
   780
    by(case_tac [!] x)(auto simp add: Inf_finite_3_def Sup_finite_3_def less_eq_finite_3_def less_finite_3_def)
Andreas@57818
   781
next
Andreas@57818
   782
  fix A and z :: finite_3
Andreas@57818
   783
  assume "\<And>x. x \<in> A \<Longrightarrow> z \<le> x"
Andreas@57818
   784
  then show "z \<le> \<Sqinter>A"
Andreas@57818
   785
    by(cases z)(auto simp add: Inf_finite_3_def less_eq_finite_3_def less_finite_3_def)
Andreas@57818
   786
next
Andreas@57818
   787
  fix A and z :: finite_3
Andreas@57818
   788
  assume *: "\<And>x. x \<in> A \<Longrightarrow> x \<le> z"
Andreas@57818
   789
  show "\<Squnion>A \<le> z"
Andreas@57818
   790
    by(auto simp add: Sup_finite_3_def less_eq_finite_3_def less_finite_3_def dest: *)
Andreas@57818
   791
qed(auto simp add: Inf_finite_3_def Sup_finite_3_def)
Andreas@57818
   792
end
Andreas@57818
   793
Andreas@57818
   794
instance finite_3 :: complete_distrib_lattice
Andreas@57818
   795
proof
Andreas@57818
   796
  fix a :: finite_3 and B
Andreas@57818
   797
  show "a \<squnion> \<Sqinter>B = (\<Sqinter>b\<in>B. a \<squnion> b)"
Andreas@57818
   798
  proof(cases a "\<Sqinter>B" rule: finite_3.exhaust[case_product finite_3.exhaust])
Andreas@57818
   799
    case a\<^sub>2_a\<^sub>3
Andreas@57818
   800
    then have "\<And>x. x \<in> B \<Longrightarrow> x = a\<^sub>3"
Andreas@57818
   801
      by(case_tac x)(auto simp add: Inf_finite_3_def split: split_if_asm)
Andreas@57818
   802
    then show ?thesis using a\<^sub>2_a\<^sub>3
Andreas@57818
   803
      by(auto simp add: INF_def Inf_finite_3_def max_def less_eq_finite_3_def less_finite_3_def split: split_if_asm)
Andreas@57818
   804
  qed(auto simp add: INF_def Inf_finite_3_def max_def less_finite_3_def less_eq_finite_3_def split: split_if_asm)
Andreas@57818
   805
  show "a \<sqinter> \<Squnion>B = (\<Squnion>b\<in>B. a \<sqinter> b)"
Andreas@57818
   806
    by(cases a "\<Squnion>B" rule: finite_3.exhaust[case_product finite_3.exhaust])
Andreas@57818
   807
      (auto simp add: SUP_def Sup_finite_3_def min_def less_finite_3_def less_eq_finite_3_def split: split_if_asm)
Andreas@57818
   808
qed
Andreas@57818
   809
Andreas@57818
   810
instance finite_3 :: complete_linorder ..
Andreas@57818
   811
Andreas@57922
   812
instantiation finite_3 :: "{field_inverse_zero, abs_if, ring_div, semiring_div, sgn_if}" begin
Andreas@57922
   813
definition [simp]: "0 = a\<^sub>1"
Andreas@57922
   814
definition [simp]: "1 = a\<^sub>2"
Andreas@57922
   815
definition
Andreas@57922
   816
  "x + y = (case (x, y) of
Andreas@57922
   817
     (a\<^sub>1, a\<^sub>1) \<Rightarrow> a\<^sub>1 | (a\<^sub>2, a\<^sub>3) \<Rightarrow> a\<^sub>1 | (a\<^sub>3, a\<^sub>2) \<Rightarrow> a\<^sub>1
Andreas@57922
   818
   | (a\<^sub>1, a\<^sub>2) \<Rightarrow> a\<^sub>2 | (a\<^sub>2, a\<^sub>1) \<Rightarrow> a\<^sub>2 | (a\<^sub>3, a\<^sub>3) \<Rightarrow> a\<^sub>2
Andreas@57922
   819
   | _ \<Rightarrow> a\<^sub>3)"
Andreas@57922
   820
definition "- x = (case x of a\<^sub>1 \<Rightarrow> a\<^sub>1 | a\<^sub>2 \<Rightarrow> a\<^sub>3 | a\<^sub>3 \<Rightarrow> a\<^sub>2)"
Andreas@57922
   821
definition "x - y = x + (- y :: finite_3)"
Andreas@57922
   822
definition "x * y = (case (x, y) of (a\<^sub>2, a\<^sub>2) \<Rightarrow> a\<^sub>2 | (a\<^sub>3, a\<^sub>3) \<Rightarrow> a\<^sub>2 | (a\<^sub>2, a\<^sub>3) \<Rightarrow> a\<^sub>3 | (a\<^sub>3, a\<^sub>2) \<Rightarrow> a\<^sub>3 | _ \<Rightarrow> a\<^sub>1)"
Andreas@57922
   823
definition "inverse = (\<lambda>x :: finite_3. x)" 
Andreas@57922
   824
definition "x / y = x * inverse (y :: finite_3)"
Andreas@57922
   825
definition "abs = (\<lambda>x :: finite_3. x)"
Andreas@57922
   826
definition "op div = (op / :: finite_3 \<Rightarrow> _)"
Andreas@57922
   827
definition "x mod y = (case (x, y) of (a\<^sub>2, a\<^sub>1) \<Rightarrow> a\<^sub>2 | (a\<^sub>3, a\<^sub>1) \<Rightarrow> a\<^sub>3 | _ \<Rightarrow> a\<^sub>1)"
Andreas@57922
   828
definition "sgn = (\<lambda>x. case x of a\<^sub>1 \<Rightarrow> a\<^sub>1 | _ \<Rightarrow> a\<^sub>2)"
Andreas@57922
   829
instance
Andreas@57922
   830
by intro_classes
Andreas@57922
   831
  (simp_all add: plus_finite_3_def uminus_finite_3_def minus_finite_3_def times_finite_3_def
Andreas@57922
   832
       inverse_finite_3_def divide_finite_3_def abs_finite_3_def div_finite_3_def mod_finite_3_def sgn_finite_3_def
Andreas@57922
   833
       less_finite_3_def
Andreas@57922
   834
     split: finite_3.splits)
Andreas@57922
   835
end
Andreas@57922
   836
haftmann@58646
   837
haftmann@58646
   838
wenzelm@53015
   839
hide_const (open) a\<^sub>1 a\<^sub>2 a\<^sub>3
bulwahn@40657
   840
blanchet@58350
   841
datatype (plugins only: code "quickcheck*" extraction) finite_4 =
blanchet@58350
   842
  a\<^sub>1 | a\<^sub>2 | a\<^sub>3 | a\<^sub>4
bulwahn@40647
   843
wenzelm@53015
   844
notation (output) a\<^sub>1  ("a\<^sub>1")
wenzelm@53015
   845
notation (output) a\<^sub>2  ("a\<^sub>2")
wenzelm@53015
   846
notation (output) a\<^sub>3  ("a\<^sub>3")
wenzelm@53015
   847
notation (output) a\<^sub>4  ("a\<^sub>4")
bulwahn@40900
   848
haftmann@49950
   849
lemma UNIV_finite_4:
wenzelm@53015
   850
  "UNIV = {a\<^sub>1, a\<^sub>2, a\<^sub>3, a\<^sub>4}"
haftmann@49950
   851
  by (auto intro: finite_4.exhaust)
haftmann@49950
   852
bulwahn@40647
   853
instantiation finite_4 :: enum
bulwahn@40647
   854
begin
bulwahn@40647
   855
bulwahn@40647
   856
definition
wenzelm@53015
   857
  "enum = [a\<^sub>1, a\<^sub>2, a\<^sub>3, a\<^sub>4]"
bulwahn@40647
   858
bulwahn@41078
   859
definition
wenzelm@53015
   860
  "enum_all P \<longleftrightarrow> P a\<^sub>1 \<and> P a\<^sub>2 \<and> P a\<^sub>3 \<and> P a\<^sub>4"
bulwahn@41078
   861
bulwahn@41078
   862
definition
wenzelm@53015
   863
  "enum_ex P \<longleftrightarrow> P a\<^sub>1 \<or> P a\<^sub>2 \<or> P a\<^sub>3 \<or> P a\<^sub>4"
bulwahn@41078
   864
bulwahn@40647
   865
instance proof
haftmann@49950
   866
qed (simp_all only: enum_finite_4_def enum_all_finite_4_def enum_ex_finite_4_def UNIV_finite_4, simp_all)
bulwahn@40647
   867
bulwahn@40647
   868
end
bulwahn@40647
   869
Andreas@57818
   870
instantiation finite_4 :: complete_lattice begin
Andreas@57818
   871
Andreas@57818
   872
text {* @{term a\<^sub>1} $<$ @{term a\<^sub>2},@{term a\<^sub>3} $<$ @{term a\<^sub>4},
Andreas@57818
   873
  but @{term a\<^sub>2} and @{term a\<^sub>3} are incomparable. *}
Andreas@57818
   874
Andreas@57818
   875
definition
Andreas@57818
   876
  "x < y \<longleftrightarrow> (case (x, y) of
Andreas@57818
   877
     (a\<^sub>1, a\<^sub>1) \<Rightarrow> False | (a\<^sub>1, _) \<Rightarrow> True
Andreas@57818
   878
   |  (a\<^sub>2, a\<^sub>4) \<Rightarrow> True
Andreas@57818
   879
   |  (a\<^sub>3, a\<^sub>4) \<Rightarrow> True  | _ \<Rightarrow> False)"
Andreas@57818
   880
Andreas@57818
   881
definition 
Andreas@57818
   882
  "x \<le> y \<longleftrightarrow> (case (x, y) of
Andreas@57818
   883
     (a\<^sub>1, _) \<Rightarrow> True
Andreas@57818
   884
   | (a\<^sub>2, a\<^sub>2) \<Rightarrow> True | (a\<^sub>2, a\<^sub>4) \<Rightarrow> True
Andreas@57818
   885
   | (a\<^sub>3, a\<^sub>3) \<Rightarrow> True | (a\<^sub>3, a\<^sub>4) \<Rightarrow> True
Andreas@57818
   886
   | (a\<^sub>4, a\<^sub>4) \<Rightarrow> True | _ \<Rightarrow> False)"
Andreas@57818
   887
Andreas@57818
   888
definition
Andreas@57818
   889
  "\<Sqinter>A = (if a\<^sub>1 \<in> A \<or> a\<^sub>2 \<in> A \<and> a\<^sub>3 \<in> A then a\<^sub>1 else if a\<^sub>2 \<in> A then a\<^sub>2 else if a\<^sub>3 \<in> A then a\<^sub>3 else a\<^sub>4)"
Andreas@57818
   890
definition
Andreas@57818
   891
  "\<Squnion>A = (if a\<^sub>4 \<in> A \<or> a\<^sub>2 \<in> A \<and> a\<^sub>3 \<in> A then a\<^sub>4 else if a\<^sub>2 \<in> A then a\<^sub>2 else if a\<^sub>3 \<in> A then a\<^sub>3 else a\<^sub>1)"
Andreas@57818
   892
definition [simp]: "bot = a\<^sub>1"
Andreas@57818
   893
definition [simp]: "top = a\<^sub>4"
Andreas@57818
   894
definition
Andreas@57818
   895
  "x \<sqinter> y = (case (x, y) of
Andreas@57818
   896
     (a\<^sub>1, _) \<Rightarrow> a\<^sub>1 | (_, a\<^sub>1) \<Rightarrow> a\<^sub>1 | (a\<^sub>2, a\<^sub>3) \<Rightarrow> a\<^sub>1 | (a\<^sub>3, a\<^sub>2) \<Rightarrow> a\<^sub>1
Andreas@57818
   897
   | (a\<^sub>2, _) \<Rightarrow> a\<^sub>2 | (_, a\<^sub>2) \<Rightarrow> a\<^sub>2
Andreas@57818
   898
   | (a\<^sub>3, _) \<Rightarrow> a\<^sub>3 | (_, a\<^sub>3) \<Rightarrow> a\<^sub>3
Andreas@57818
   899
   | _ \<Rightarrow> a\<^sub>4)"
Andreas@57818
   900
definition
Andreas@57818
   901
  "x \<squnion> y = (case (x, y) of
Andreas@57818
   902
     (a\<^sub>4, _) \<Rightarrow> a\<^sub>4 | (_, a\<^sub>4) \<Rightarrow> a\<^sub>4 | (a\<^sub>2, a\<^sub>3) \<Rightarrow> a\<^sub>4 | (a\<^sub>3, a\<^sub>2) \<Rightarrow> a\<^sub>4
Andreas@57818
   903
  | (a\<^sub>2, _) \<Rightarrow> a\<^sub>2 | (_, a\<^sub>2) \<Rightarrow> a\<^sub>2
Andreas@57818
   904
  | (a\<^sub>3, _) \<Rightarrow> a\<^sub>3 | (_, a\<^sub>3) \<Rightarrow> a\<^sub>3
Andreas@57818
   905
  | _ \<Rightarrow> a\<^sub>1)"
Andreas@57818
   906
Andreas@57818
   907
instance
Andreas@57818
   908
proof
Andreas@57818
   909
  fix A and z :: finite_4
Andreas@57818
   910
  assume *: "\<And>x. x \<in> A \<Longrightarrow> x \<le> z"
Andreas@57818
   911
  show "\<Squnion>A \<le> z"
Andreas@57818
   912
    by(auto simp add: Sup_finite_4_def less_eq_finite_4_def dest!: * split: finite_4.splits)
Andreas@57818
   913
next
Andreas@57818
   914
  fix A and z :: finite_4
Andreas@57818
   915
  assume *: "\<And>x. x \<in> A \<Longrightarrow> z \<le> x"
Andreas@57818
   916
  show "z \<le> \<Sqinter>A"
Andreas@57818
   917
    by(auto simp add: Inf_finite_4_def less_eq_finite_4_def dest!: * split: finite_4.splits)
Andreas@57818
   918
qed(auto simp add: less_finite_4_def less_eq_finite_4_def Inf_finite_4_def Sup_finite_4_def inf_finite_4_def sup_finite_4_def split: finite_4.splits)
Andreas@57818
   919
Andreas@57818
   920
end
Andreas@57818
   921
Andreas@57818
   922
instance finite_4 :: complete_distrib_lattice
Andreas@57818
   923
proof
Andreas@57818
   924
  fix a :: finite_4 and B
Andreas@57818
   925
  show "a \<squnion> \<Sqinter>B = (\<Sqinter>b\<in>B. a \<squnion> b)"
Andreas@57818
   926
    by(cases a "\<Sqinter>B" rule: finite_4.exhaust[case_product finite_4.exhaust])
Andreas@57818
   927
      (auto simp add: sup_finite_4_def Inf_finite_4_def INF_def split: finite_4.splits split_if_asm)
Andreas@57818
   928
  show "a \<sqinter> \<Squnion>B = (\<Squnion>b\<in>B. a \<sqinter> b)"
Andreas@57818
   929
    by(cases a "\<Squnion>B" rule: finite_4.exhaust[case_product finite_4.exhaust])
Andreas@57818
   930
      (auto simp add: inf_finite_4_def Sup_finite_4_def SUP_def split: finite_4.splits split_if_asm)
Andreas@57818
   931
qed
Andreas@57818
   932
Andreas@57922
   933
instantiation finite_4 :: complete_boolean_algebra begin
Andreas@57922
   934
definition "- x = (case x of a\<^sub>1 \<Rightarrow> a\<^sub>4 | a\<^sub>2 \<Rightarrow> a\<^sub>3 | a\<^sub>3 \<Rightarrow> a\<^sub>2 | a\<^sub>4 \<Rightarrow> a\<^sub>1)"
Andreas@57922
   935
definition "x - y = x \<sqinter> - (y :: finite_4)"
Andreas@57922
   936
instance
Andreas@57922
   937
by intro_classes
Andreas@57922
   938
  (simp_all add: inf_finite_4_def sup_finite_4_def uminus_finite_4_def minus_finite_4_def split: finite_4.splits)
Andreas@57922
   939
end
Andreas@57922
   940
wenzelm@53015
   941
hide_const (open) a\<^sub>1 a\<^sub>2 a\<^sub>3 a\<^sub>4
bulwahn@40651
   942
blanchet@58350
   943
datatype (plugins only: code "quickcheck*" extraction) finite_5 =
blanchet@58350
   944
  a\<^sub>1 | a\<^sub>2 | a\<^sub>3 | a\<^sub>4 | a\<^sub>5
bulwahn@40647
   945
wenzelm@53015
   946
notation (output) a\<^sub>1  ("a\<^sub>1")
wenzelm@53015
   947
notation (output) a\<^sub>2  ("a\<^sub>2")
wenzelm@53015
   948
notation (output) a\<^sub>3  ("a\<^sub>3")
wenzelm@53015
   949
notation (output) a\<^sub>4  ("a\<^sub>4")
wenzelm@53015
   950
notation (output) a\<^sub>5  ("a\<^sub>5")
bulwahn@40900
   951
haftmann@49950
   952
lemma UNIV_finite_5:
wenzelm@53015
   953
  "UNIV = {a\<^sub>1, a\<^sub>2, a\<^sub>3, a\<^sub>4, a\<^sub>5}"
haftmann@49950
   954
  by (auto intro: finite_5.exhaust)
haftmann@49950
   955
bulwahn@40647
   956
instantiation finite_5 :: enum
bulwahn@40647
   957
begin
bulwahn@40647
   958
bulwahn@40647
   959
definition
wenzelm@53015
   960
  "enum = [a\<^sub>1, a\<^sub>2, a\<^sub>3, a\<^sub>4, a\<^sub>5]"
bulwahn@40647
   961
bulwahn@41078
   962
definition
wenzelm@53015
   963
  "enum_all P \<longleftrightarrow> P a\<^sub>1 \<and> P a\<^sub>2 \<and> P a\<^sub>3 \<and> P a\<^sub>4 \<and> P a\<^sub>5"
bulwahn@41078
   964
bulwahn@41078
   965
definition
wenzelm@53015
   966
  "enum_ex P \<longleftrightarrow> P a\<^sub>1 \<or> P a\<^sub>2 \<or> P a\<^sub>3 \<or> P a\<^sub>4 \<or> P a\<^sub>5"
bulwahn@41078
   967
bulwahn@40647
   968
instance proof
haftmann@49950
   969
qed (simp_all only: enum_finite_5_def enum_all_finite_5_def enum_ex_finite_5_def UNIV_finite_5, simp_all)
bulwahn@40647
   970
bulwahn@40647
   971
end
bulwahn@40647
   972
Andreas@57818
   973
instantiation finite_5 :: complete_lattice
Andreas@57818
   974
begin
Andreas@57818
   975
Andreas@57818
   976
text {* The non-distributive pentagon lattice $N_5$ *}
Andreas@57818
   977
Andreas@57818
   978
definition
Andreas@57818
   979
  "x < y \<longleftrightarrow> (case (x, y) of
Andreas@57818
   980
     (a\<^sub>1, a\<^sub>1) \<Rightarrow> False | (a\<^sub>1, _) \<Rightarrow> True
Andreas@57818
   981
   | (a\<^sub>2, a\<^sub>3) \<Rightarrow> True  | (a\<^sub>2, a\<^sub>5) \<Rightarrow> True
Andreas@57818
   982
   | (a\<^sub>3, a\<^sub>5) \<Rightarrow> True
Andreas@57818
   983
   | (a\<^sub>4, a\<^sub>5) \<Rightarrow> True  | _ \<Rightarrow> False)"
Andreas@57818
   984
Andreas@57818
   985
definition
Andreas@57818
   986
  "x \<le> y \<longleftrightarrow> (case (x, y) of
Andreas@57818
   987
     (a\<^sub>1, _) \<Rightarrow> True
Andreas@57818
   988
   | (a\<^sub>2, a\<^sub>2) \<Rightarrow> True | (a\<^sub>2, a\<^sub>3) \<Rightarrow> True | (a\<^sub>2, a\<^sub>5) \<Rightarrow> True
Andreas@57818
   989
   | (a\<^sub>3, a\<^sub>3) \<Rightarrow> True | (a\<^sub>3, a\<^sub>5) \<Rightarrow> True
Andreas@57818
   990
   | (a\<^sub>4, a\<^sub>4) \<Rightarrow> True | (a\<^sub>4, a\<^sub>5) \<Rightarrow> True
Andreas@57818
   991
   | (a\<^sub>5, a\<^sub>5) \<Rightarrow> True | _ \<Rightarrow> False)"
Andreas@57818
   992
Andreas@57818
   993
definition
Andreas@57818
   994
  "\<Sqinter>A = 
Andreas@57818
   995
  (if a\<^sub>1 \<in> A \<or> a\<^sub>4 \<in> A \<and> (a\<^sub>2 \<in> A \<or> a\<^sub>3 \<in> A) then a\<^sub>1
Andreas@57818
   996
   else if a\<^sub>2 \<in> A then a\<^sub>2
Andreas@57818
   997
   else if a\<^sub>3 \<in> A then a\<^sub>3
Andreas@57818
   998
   else if a\<^sub>4 \<in> A then a\<^sub>4
Andreas@57818
   999
   else a\<^sub>5)"
Andreas@57818
  1000
definition
Andreas@57818
  1001
  "\<Squnion>A = 
Andreas@57818
  1002
  (if a\<^sub>5 \<in> A \<or> a\<^sub>4 \<in> A \<and> (a\<^sub>2 \<in> A \<or> a\<^sub>3 \<in> A) then a\<^sub>5
Andreas@57818
  1003
   else if a\<^sub>3 \<in> A then a\<^sub>3
Andreas@57818
  1004
   else if a\<^sub>2 \<in> A then a\<^sub>2
Andreas@57818
  1005
   else if a\<^sub>4 \<in> A then a\<^sub>4
Andreas@57818
  1006
   else a\<^sub>1)"
Andreas@57818
  1007
definition [simp]: "bot = a\<^sub>1"
Andreas@57818
  1008
definition [simp]: "top = a\<^sub>5"
Andreas@57818
  1009
definition
Andreas@57818
  1010
  "x \<sqinter> y = (case (x, y) of
Andreas@57818
  1011
     (a\<^sub>1, _) \<Rightarrow> a\<^sub>1 | (_, a\<^sub>1) \<Rightarrow> a\<^sub>1 | (a\<^sub>2, a\<^sub>4) \<Rightarrow> a\<^sub>1 | (a\<^sub>4, a\<^sub>2) \<Rightarrow> a\<^sub>1 | (a\<^sub>3, a\<^sub>4) \<Rightarrow> a\<^sub>1 | (a\<^sub>4, a\<^sub>3) \<Rightarrow> a\<^sub>1
Andreas@57818
  1012
   | (a\<^sub>2, _) \<Rightarrow> a\<^sub>2 | (_, a\<^sub>2) \<Rightarrow> a\<^sub>2
Andreas@57818
  1013
   | (a\<^sub>3, _) \<Rightarrow> a\<^sub>3 | (_, a\<^sub>3) \<Rightarrow> a\<^sub>3
Andreas@57818
  1014
   | (a\<^sub>4, _) \<Rightarrow> a\<^sub>4 | (_, a\<^sub>4) \<Rightarrow> a\<^sub>4
Andreas@57818
  1015
   | _ \<Rightarrow> a\<^sub>5)"
Andreas@57818
  1016
definition
Andreas@57818
  1017
  "x \<squnion> y = (case (x, y) of
Andreas@57818
  1018
     (a\<^sub>5, _) \<Rightarrow> a\<^sub>5 | (_, a\<^sub>5) \<Rightarrow> a\<^sub>5 | (a\<^sub>2, a\<^sub>4) \<Rightarrow> a\<^sub>5 | (a\<^sub>4, a\<^sub>2) \<Rightarrow> a\<^sub>5 | (a\<^sub>3, a\<^sub>4) \<Rightarrow> a\<^sub>5 | (a\<^sub>4, a\<^sub>3) \<Rightarrow> a\<^sub>5
Andreas@57818
  1019
   | (a\<^sub>3, _) \<Rightarrow> a\<^sub>3 | (_, a\<^sub>3) \<Rightarrow> a\<^sub>3
Andreas@57818
  1020
   | (a\<^sub>2, _) \<Rightarrow> a\<^sub>2 | (_, a\<^sub>2) \<Rightarrow> a\<^sub>2
Andreas@57818
  1021
   | (a\<^sub>4, _) \<Rightarrow> a\<^sub>4 | (_, a\<^sub>4) \<Rightarrow> a\<^sub>4
Andreas@57818
  1022
   | _ \<Rightarrow> a\<^sub>1)"
Andreas@57818
  1023
Andreas@57818
  1024
instance 
Andreas@57818
  1025
proof intro_classes
Andreas@57818
  1026
  fix A and z :: finite_5
Andreas@57818
  1027
  assume *: "\<And>x. x \<in> A \<Longrightarrow> z \<le> x"
Andreas@57818
  1028
  show "z \<le> \<Sqinter>A"
Andreas@57818
  1029
    by(auto simp add: less_eq_finite_5_def Inf_finite_5_def split: finite_5.splits split_if_asm dest!: *)
Andreas@57818
  1030
next
Andreas@57818
  1031
  fix A and z :: finite_5
Andreas@57818
  1032
  assume *: "\<And>x. x \<in> A \<Longrightarrow> x \<le> z"
Andreas@57818
  1033
  show "\<Squnion>A \<le> z"
Andreas@57818
  1034
    by(auto simp add: less_eq_finite_5_def Sup_finite_5_def split: finite_5.splits split_if_asm dest!: *)
Andreas@57818
  1035
qed(auto simp add: less_eq_finite_5_def less_finite_5_def inf_finite_5_def sup_finite_5_def Inf_finite_5_def Sup_finite_5_def split: finite_5.splits split_if_asm)
Andreas@57818
  1036
Andreas@57818
  1037
end
Andreas@57818
  1038
wenzelm@53015
  1039
hide_const (open) a\<^sub>1 a\<^sub>2 a\<^sub>3 a\<^sub>4 a\<^sub>5
bulwahn@46352
  1040
haftmann@49948
  1041
bulwahn@46352
  1042
subsection {* Closing up *}
bulwahn@40657
  1043
bulwahn@41085
  1044
hide_type (open) finite_1 finite_2 finite_3 finite_4 finite_5
haftmann@49948
  1045
hide_const (open) enum enum_all enum_ex all_n_lists ex_n_lists ntrancl
bulwahn@40647
  1046
bulwahn@40647
  1047
end