src/HOL/Metis_Examples/Big_O.thy
author haftmann
Fri Oct 10 19:55:32 2014 +0200 (2014-10-10)
changeset 58646 cd63a4b12a33
parent 57514 bdc2c6b40bf2
child 58889 5b7a9633cfa8
permissions -rw-r--r--
specialized specification: avoid trivial instances
blanchet@43197
     1
(*  Title:      HOL/Metis_Examples/Big_O.thy
blanchet@43197
     2
    Author:     Lawrence C. Paulson, Cambridge University Computer Laboratory
blanchet@41144
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@23449
     4
blanchet@43197
     5
Metis example featuring the Big O notation.
paulson@23449
     6
*)
paulson@23449
     7
blanchet@43197
     8
header {* Metis Example Featuring the Big O Notation *}
paulson@23449
     9
blanchet@43197
    10
theory Big_O
wenzelm@41413
    11
imports
wenzelm@41413
    12
  "~~/src/HOL/Decision_Procs/Dense_Linear_Order"
wenzelm@41413
    13
  "~~/src/HOL/Library/Function_Algebras"
wenzelm@41413
    14
  "~~/src/HOL/Library/Set_Algebras"
paulson@23449
    15
begin
paulson@23449
    16
paulson@23449
    17
subsection {* Definitions *}
paulson@23449
    18
huffman@47108
    19
definition bigo :: "('a => 'b\<Colon>linordered_idom) => ('a => 'b) set" ("(1O'(_'))") where
blanchet@45575
    20
  "O(f\<Colon>('a => 'b)) == {h. \<exists>c. \<forall>x. abs (h x) <= c * abs (f x)}"
paulson@23449
    21
blanchet@45575
    22
lemma bigo_pos_const:
blanchet@46364
    23
  "(\<exists>c\<Colon>'a\<Colon>linordered_idom.
blanchet@46364
    24
    \<forall>x. abs (h x) \<le> c * abs (f x))
blanchet@46364
    25
    \<longleftrightarrow> (\<exists>c. 0 < c \<and> (\<forall>x. abs(h x) \<le> c * abs (f x)))"
blanchet@46364
    26
by (metis (no_types) abs_ge_zero
blanchet@45575
    27
      comm_semiring_1_class.normalizing_semiring_rules(7) mult.comm_neutral
blanchet@45575
    28
      mult_nonpos_nonneg not_leE order_trans zero_less_one)
paulson@23449
    29
blanchet@36407
    30
(*** Now various verions with an increasing shrink factor ***)
paulson@23449
    31
blanchet@57245
    32
sledgehammer_params [isar_proofs, compress = 1]
paulson@23449
    33
blanchet@45575
    34
lemma
blanchet@46364
    35
  "(\<exists>c\<Colon>'a\<Colon>linordered_idom.
blanchet@46364
    36
    \<forall>x. abs (h x) \<le> c * abs (f x))
blanchet@46364
    37
    \<longleftrightarrow> (\<exists>c. 0 < c \<and> (\<forall>x. abs(h x) \<le> c * abs (f x)))"
paulson@23449
    38
  apply auto
paulson@23449
    39
  apply (case_tac "c = 0", simp)
paulson@23449
    40
  apply (rule_tac x = "1" in exI, simp)
paulson@23449
    41
  apply (rule_tac x = "abs c" in exI, auto)
blanchet@36561
    42
proof -
blanchet@36561
    43
  fix c :: 'a and x :: 'b
blanchet@36561
    44
  assume A1: "\<forall>x. \<bar>h x\<bar> \<le> c * \<bar>f x\<bar>"
wenzelm@53015
    45
  have F1: "\<forall>x\<^sub>1\<Colon>'a\<Colon>linordered_idom. 0 \<le> \<bar>x\<^sub>1\<bar>" by (metis abs_ge_zero)
wenzelm@53015
    46
  have F2: "\<forall>x\<^sub>1\<Colon>'a\<Colon>linordered_idom. 1 * x\<^sub>1 = x\<^sub>1" by (metis mult_1)
wenzelm@53015
    47
  have F3: "\<forall>x\<^sub>1 x\<^sub>3. x\<^sub>3 \<le> \<bar>h x\<^sub>1\<bar> \<longrightarrow> x\<^sub>3 \<le> c * \<bar>f x\<^sub>1\<bar>" by (metis A1 order_trans)
wenzelm@53015
    48
  have F4: "\<forall>x\<^sub>2 x\<^sub>3\<Colon>'a\<Colon>linordered_idom. \<bar>x\<^sub>3\<bar> * \<bar>x\<^sub>2\<bar> = \<bar>x\<^sub>3 * x\<^sub>2\<bar>"
blanchet@36561
    49
    by (metis abs_mult)
wenzelm@53015
    50
  have F5: "\<forall>x\<^sub>3 x\<^sub>1\<Colon>'a\<Colon>linordered_idom. 0 \<le> x\<^sub>1 \<longrightarrow> \<bar>x\<^sub>3 * x\<^sub>1\<bar> = \<bar>x\<^sub>3\<bar> * x\<^sub>1"
blanchet@36561
    51
    by (metis abs_mult_pos)
wenzelm@53015
    52
  hence "\<forall>x\<^sub>1\<ge>0. \<bar>x\<^sub>1\<Colon>'a\<Colon>linordered_idom\<bar> = \<bar>1\<bar> * x\<^sub>1" by (metis F2)
wenzelm@53015
    53
  hence "\<forall>x\<^sub>1\<ge>0. \<bar>x\<^sub>1\<Colon>'a\<Colon>linordered_idom\<bar> = x\<^sub>1" by (metis F2 abs_one)
wenzelm@53015
    54
  hence "\<forall>x\<^sub>3. 0 \<le> \<bar>h x\<^sub>3\<bar> \<longrightarrow> \<bar>c * \<bar>f x\<^sub>3\<bar>\<bar> = c * \<bar>f x\<^sub>3\<bar>" by (metis F3)
wenzelm@53015
    55
  hence "\<forall>x\<^sub>3. \<bar>c * \<bar>f x\<^sub>3\<bar>\<bar> = c * \<bar>f x\<^sub>3\<bar>" by (metis F1)
wenzelm@53015
    56
  hence "\<forall>x\<^sub>3. (0\<Colon>'a) \<le> \<bar>f x\<^sub>3\<bar> \<longrightarrow> c * \<bar>f x\<^sub>3\<bar> = \<bar>c\<bar> * \<bar>f x\<^sub>3\<bar>" by (metis F5)
wenzelm@53015
    57
  hence "\<forall>x\<^sub>3. (0\<Colon>'a) \<le> \<bar>f x\<^sub>3\<bar> \<longrightarrow> c * \<bar>f x\<^sub>3\<bar> = \<bar>c * f x\<^sub>3\<bar>" by (metis F4)
wenzelm@53015
    58
  hence "\<forall>x\<^sub>3. c * \<bar>f x\<^sub>3\<bar> = \<bar>c * f x\<^sub>3\<bar>" by (metis F1)
blanchet@36561
    59
  hence "\<bar>h x\<bar> \<le> \<bar>c * f x\<bar>" by (metis A1)
blanchet@36561
    60
  thus "\<bar>h x\<bar> \<le> \<bar>c\<bar> * \<bar>f x\<bar>" by (metis F4)
paulson@23449
    61
qed
paulson@23449
    62
blanchet@57245
    63
sledgehammer_params [isar_proofs, compress = 2]
paulson@25710
    64
blanchet@45575
    65
lemma
blanchet@46364
    66
  "(\<exists>c\<Colon>'a\<Colon>linordered_idom.
blanchet@46364
    67
    \<forall>x. abs (h x) \<le> c * abs (f x))
blanchet@46364
    68
    \<longleftrightarrow> (\<exists>c. 0 < c \<and> (\<forall>x. abs(h x) \<le> c * abs (f x)))"
paulson@23449
    69
  apply auto
paulson@23449
    70
  apply (case_tac "c = 0", simp)
paulson@23449
    71
  apply (rule_tac x = "1" in exI, simp)
hoelzl@36844
    72
  apply (rule_tac x = "abs c" in exI, auto)
blanchet@36561
    73
proof -
blanchet@36561
    74
  fix c :: 'a and x :: 'b
blanchet@36561
    75
  assume A1: "\<forall>x. \<bar>h x\<bar> \<le> c * \<bar>f x\<bar>"
wenzelm@53015
    76
  have F1: "\<forall>x\<^sub>1\<Colon>'a\<Colon>linordered_idom. 1 * x\<^sub>1 = x\<^sub>1" by (metis mult_1)
wenzelm@53015
    77
  have F2: "\<forall>x\<^sub>2 x\<^sub>3\<Colon>'a\<Colon>linordered_idom. \<bar>x\<^sub>3\<bar> * \<bar>x\<^sub>2\<bar> = \<bar>x\<^sub>3 * x\<^sub>2\<bar>"
blanchet@36561
    78
    by (metis abs_mult)
wenzelm@53015
    79
  have "\<forall>x\<^sub>1\<ge>0. \<bar>x\<^sub>1\<Colon>'a\<Colon>linordered_idom\<bar> = x\<^sub>1" by (metis F1 abs_mult_pos abs_one)
wenzelm@53015
    80
  hence "\<forall>x\<^sub>3. \<bar>c * \<bar>f x\<^sub>3\<bar>\<bar> = c * \<bar>f x\<^sub>3\<bar>" by (metis A1 abs_ge_zero order_trans)
wenzelm@53015
    81
  hence "\<forall>x\<^sub>3. 0 \<le> \<bar>f x\<^sub>3\<bar> \<longrightarrow> c * \<bar>f x\<^sub>3\<bar> = \<bar>c * f x\<^sub>3\<bar>" by (metis F2 abs_mult_pos)
blanchet@36561
    82
  hence "\<bar>h x\<bar> \<le> \<bar>c * f x\<bar>" by (metis A1 abs_ge_zero)
blanchet@36561
    83
  thus "\<bar>h x\<bar> \<le> \<bar>c\<bar> * \<bar>f x\<bar>" by (metis F2)
paulson@23449
    84
qed
paulson@23449
    85
blanchet@57245
    86
sledgehammer_params [isar_proofs, compress = 3]
paulson@25710
    87
blanchet@45575
    88
lemma
blanchet@46364
    89
  "(\<exists>c\<Colon>'a\<Colon>linordered_idom.
blanchet@46364
    90
    \<forall>x. abs (h x) \<le> c * abs (f x))
blanchet@46364
    91
    \<longleftrightarrow> (\<exists>c. 0 < c \<and> (\<forall>x. abs(h x) \<le> c * abs (f x)))"
paulson@23449
    92
  apply auto
paulson@23449
    93
  apply (case_tac "c = 0", simp)
paulson@23449
    94
  apply (rule_tac x = "1" in exI, simp)
blanchet@36561
    95
  apply (rule_tac x = "abs c" in exI, auto)
blanchet@36561
    96
proof -
blanchet@36561
    97
  fix c :: 'a and x :: 'b
blanchet@36561
    98
  assume A1: "\<forall>x. \<bar>h x\<bar> \<le> c * \<bar>f x\<bar>"
wenzelm@53015
    99
  have F1: "\<forall>x\<^sub>1\<Colon>'a\<Colon>linordered_idom. 1 * x\<^sub>1 = x\<^sub>1" by (metis mult_1)
wenzelm@53015
   100
  have F2: "\<forall>x\<^sub>3 x\<^sub>1\<Colon>'a\<Colon>linordered_idom. 0 \<le> x\<^sub>1 \<longrightarrow> \<bar>x\<^sub>3 * x\<^sub>1\<bar> = \<bar>x\<^sub>3\<bar> * x\<^sub>1" by (metis abs_mult_pos)
wenzelm@53015
   101
  hence "\<forall>x\<^sub>1\<ge>0. \<bar>x\<^sub>1\<Colon>'a\<Colon>linordered_idom\<bar> = x\<^sub>1" by (metis F1 abs_one)
wenzelm@53015
   102
  hence "\<forall>x\<^sub>3. 0 \<le> \<bar>f x\<^sub>3\<bar> \<longrightarrow> c * \<bar>f x\<^sub>3\<bar> = \<bar>c\<bar> * \<bar>f x\<^sub>3\<bar>" by (metis F2 A1 abs_ge_zero order_trans)
blanchet@46644
   103
  thus "\<bar>h x\<bar> \<le> \<bar>c\<bar> * \<bar>f x\<bar>" by (metis A1 abs_ge_zero)
paulson@23449
   104
qed
paulson@23449
   105
blanchet@57245
   106
sledgehammer_params [isar_proofs, compress = 4]
paulson@24545
   107
blanchet@45575
   108
lemma
blanchet@46364
   109
  "(\<exists>c\<Colon>'a\<Colon>linordered_idom.
blanchet@46364
   110
    \<forall>x. abs (h x) \<le> c * abs (f x))
blanchet@46364
   111
    \<longleftrightarrow> (\<exists>c. 0 < c \<and> (\<forall>x. abs(h x) \<le> c * abs (f x)))"
paulson@24545
   112
  apply auto
paulson@24545
   113
  apply (case_tac "c = 0", simp)
paulson@24545
   114
  apply (rule_tac x = "1" in exI, simp)
blanchet@36561
   115
  apply (rule_tac x = "abs c" in exI, auto)
blanchet@36561
   116
proof -
blanchet@36561
   117
  fix c :: 'a and x :: 'b
blanchet@36561
   118
  assume A1: "\<forall>x. \<bar>h x\<bar> \<le> c * \<bar>f x\<bar>"
wenzelm@53015
   119
  have "\<forall>x\<^sub>1\<Colon>'a\<Colon>linordered_idom. 1 * x\<^sub>1 = x\<^sub>1" by (metis mult_1)
wenzelm@53015
   120
  hence "\<forall>x\<^sub>3. \<bar>c * \<bar>f x\<^sub>3\<bar>\<bar> = c * \<bar>f x\<^sub>3\<bar>"
blanchet@36561
   121
    by (metis A1 abs_ge_zero order_trans abs_mult_pos abs_one)
blanchet@36561
   122
  hence "\<bar>h x\<bar> \<le> \<bar>c * f x\<bar>" by (metis A1 abs_ge_zero abs_mult_pos abs_mult)
blanchet@36561
   123
  thus "\<bar>h x\<bar> \<le> \<bar>c\<bar> * \<bar>f x\<bar>" by (metis abs_mult)
paulson@24545
   124
qed
paulson@24545
   125
blanchet@57245
   126
sledgehammer_params [isar_proofs, compress = 1]
paulson@24545
   127
blanchet@46364
   128
lemma bigo_alt_def: "O(f) = {h. \<exists>c. (0 < c \<and> (\<forall>x. abs (h x) <= c * abs (f x)))}"
paulson@23449
   129
by (auto simp add: bigo_def bigo_pos_const)
paulson@23449
   130
blanchet@46364
   131
lemma bigo_elt_subset [intro]: "f : O(g) \<Longrightarrow> O(f) \<le> O(g)"
blanchet@45575
   132
apply (auto simp add: bigo_alt_def)
blanchet@45575
   133
apply (rule_tac x = "ca * c" in exI)
blanchet@46364
   134
by (metis comm_semiring_1_class.normalizing_semiring_rules(7,19)
blanchet@46364
   135
          mult_le_cancel_left_pos order_trans mult_pos_pos)
paulson@23449
   136
paulson@23449
   137
lemma bigo_refl [intro]: "f : O(f)"
blanchet@46364
   138
unfolding bigo_def mem_Collect_eq
hoelzl@36844
   139
by (metis mult_1 order_refl)
paulson@23449
   140
paulson@23449
   141
lemma bigo_zero: "0 : O(g)"
blanchet@36561
   142
apply (auto simp add: bigo_def func_zero)
hoelzl@36844
   143
by (metis mult_zero_left order_refl)
paulson@23449
   144
blanchet@45575
   145
lemma bigo_zero2: "O(\<lambda>x. 0) = {\<lambda>x. 0}"
blanchet@45575
   146
by (auto simp add: bigo_def)
paulson@23449
   147
blanchet@43197
   148
lemma bigo_plus_self_subset [intro]:
krauss@47445
   149
  "O(f) + O(f) <= O(f)"
blanchet@45575
   150
apply (auto simp add: bigo_alt_def set_plus_def)
blanchet@45575
   151
apply (rule_tac x = "c + ca" in exI)
blanchet@45575
   152
apply auto
blanchet@45575
   153
apply (simp add: ring_distribs func_plus)
blanchet@45575
   154
by (metis order_trans abs_triangle_ineq add_mono)
paulson@23449
   155
krauss@47445
   156
lemma bigo_plus_idemp [simp]: "O(f) + O(f) = O(f)"
blanchet@45575
   157
by (metis bigo_plus_self_subset bigo_zero set_eq_subset set_zero_plus2)
paulson@23449
   158
krauss@47445
   159
lemma bigo_plus_subset [intro]: "O(f + g) <= O(f) + O(g)"
blanchet@45575
   160
apply (rule subsetI)
blanchet@45575
   161
apply (auto simp add: bigo_def bigo_pos_const func_plus set_plus_def)
blanchet@45575
   162
apply (subst bigo_pos_const [symmetric])+
blanchet@45575
   163
apply (rule_tac x = "\<lambda>n. if abs (g n) <= (abs (f n)) then x n else 0" in exI)
blanchet@45575
   164
apply (rule conjI)
blanchet@45575
   165
 apply (rule_tac x = "c + c" in exI)
blanchet@45575
   166
 apply clarsimp
nipkow@56536
   167
 apply (subgoal_tac "c * abs (f xa + g xa) <= (c + c) * abs (f xa)")
nipkow@56536
   168
  apply (metis mult_2 order_trans)
nipkow@56536
   169
 apply (subgoal_tac "c * abs (f xa + g xa) <= c * (abs (f xa) + abs (g xa))")
nipkow@56536
   170
  apply (erule order_trans)
nipkow@56536
   171
  apply (simp add: ring_distribs)
nipkow@56536
   172
 apply (rule mult_left_mono)
nipkow@56536
   173
  apply (simp add: abs_triangle_ineq)
nipkow@56536
   174
 apply (simp add: order_less_le)
blanchet@45575
   175
apply (rule_tac x = "\<lambda>n. if (abs (f n)) < abs (g n) then x n else 0" in exI)
blanchet@45575
   176
apply (rule conjI)
blanchet@45575
   177
 apply (rule_tac x = "c + c" in exI)
blanchet@45575
   178
 apply auto
nipkow@56536
   179
apply (subgoal_tac "c * abs (f xa + g xa) <= (c + c) * abs (g xa)")
nipkow@56536
   180
 apply (metis order_trans mult_2)
nipkow@56536
   181
apply (subgoal_tac "c * abs (f xa + g xa) <= c * (abs (f xa) + abs (g xa))")
nipkow@56536
   182
 apply (erule order_trans)
nipkow@56536
   183
 apply (simp add: ring_distribs)
nipkow@56536
   184
by (metis abs_triangle_ineq mult_le_cancel_left_pos)
paulson@23449
   185
krauss@47445
   186
lemma bigo_plus_subset2 [intro]: "A <= O(f) \<Longrightarrow> B <= O(f) \<Longrightarrow> A + B <= O(f)"
blanchet@45575
   187
by (metis bigo_plus_idemp set_plus_mono2)
paulson@23449
   188
krauss@47445
   189
lemma bigo_plus_eq: "\<forall>x. 0 <= f x \<Longrightarrow> \<forall>x. 0 <= g x \<Longrightarrow> O(f + g) = O(f) + O(g)"
blanchet@45575
   190
apply (rule equalityI)
blanchet@45575
   191
apply (rule bigo_plus_subset)
blanchet@45575
   192
apply (simp add: bigo_alt_def set_plus_def func_plus)
blanchet@45575
   193
apply clarify
blanchet@45575
   194
(* sledgehammer *)
blanchet@45575
   195
apply (rule_tac x = "max c ca" in exI)
blanchet@46369
   196
blanchet@45575
   197
apply (rule conjI)
blanchet@45575
   198
 apply (metis less_max_iff_disj)
blanchet@45575
   199
apply clarify
blanchet@45575
   200
apply (drule_tac x = "xa" in spec)+
blanchet@45575
   201
apply (subgoal_tac "0 <= f xa + g xa")
blanchet@45575
   202
 apply (simp add: ring_distribs)
blanchet@45575
   203
 apply (subgoal_tac "abs (a xa + b xa) <= abs (a xa) + abs (b xa)")
blanchet@45575
   204
  apply (subgoal_tac "abs (a xa) + abs (b xa) <=
blanchet@45575
   205
           max c ca * f xa + max c ca * g xa")
blanchet@45575
   206
   apply (metis order_trans)
paulson@23449
   207
  defer 1
blanchet@45575
   208
  apply (metis abs_triangle_ineq)
blanchet@45575
   209
 apply (metis add_nonneg_nonneg)
blanchet@46644
   210
apply (rule add_mono)
haftmann@54863
   211
 apply (metis max.cobounded2 linorder_linear max.absorb1 mult_right_mono xt1(6))
haftmann@54863
   212
by (metis max.cobounded2 linorder_not_le mult_le_cancel_right order_trans)
paulson@23449
   213
blanchet@45575
   214
lemma bigo_bounded_alt: "\<forall>x. 0 <= f x \<Longrightarrow> \<forall>x. f x <= c * g x \<Longrightarrow> f : O(g)"
blanchet@45575
   215
apply (auto simp add: bigo_def)
blanchet@36561
   216
(* Version 1: one-line proof *)
blanchet@45575
   217
by (metis abs_le_D1 linorder_class.not_less order_less_le Orderings.xt1(12) abs_mult)
paulson@23449
   218
blanchet@45575
   219
lemma "\<forall>x. 0 <= f x \<Longrightarrow> \<forall>x. f x <= c * g x \<Longrightarrow> f : O(g)"
blanchet@36561
   220
apply (auto simp add: bigo_def)
blanchet@36561
   221
(* Version 2: structured proof *)
blanchet@36561
   222
proof -
blanchet@36561
   223
  assume "\<forall>x. f x \<le> c * g x"
blanchet@36561
   224
  thus "\<exists>c. \<forall>x. f x \<le> c * \<bar>g x\<bar>" by (metis abs_mult abs_ge_self order_trans)
paulson@23449
   225
qed
paulson@23449
   226
blanchet@45575
   227
lemma bigo_bounded: "\<forall>x. 0 <= f x \<Longrightarrow> \<forall>x. f x <= g x \<Longrightarrow> f : O(g)"
blanchet@45575
   228
apply (erule bigo_bounded_alt [of f 1 g])
blanchet@45575
   229
by (metis mult_1)
paulson@23449
   230
blanchet@45575
   231
lemma bigo_bounded2: "\<forall>x. lb x <= f x \<Longrightarrow> \<forall>x. f x <= lb x + g x \<Longrightarrow> f : lb +o O(g)"
blanchet@36561
   232
apply (rule set_minus_imp_plus)
blanchet@36561
   233
apply (rule bigo_bounded)
blanchet@46369
   234
 apply (metis add_le_cancel_left diff_add_cancel diff_self minus_apply
blanchet@46369
   235
              comm_semiring_1_class.normalizing_semiring_rules(24))
blanchet@46369
   236
by (metis add_le_cancel_left diff_add_cancel func_plus le_fun_def
blanchet@46369
   237
          comm_semiring_1_class.normalizing_semiring_rules(24))
paulson@23449
   238
blanchet@45575
   239
lemma bigo_abs: "(\<lambda>x. abs(f x)) =o O(f)"
blanchet@36561
   240
apply (unfold bigo_def)
blanchet@36561
   241
apply auto
hoelzl@36844
   242
by (metis mult_1 order_refl)
paulson@23449
   243
blanchet@45575
   244
lemma bigo_abs2: "f =o O(\<lambda>x. abs(f x))"
blanchet@36561
   245
apply (unfold bigo_def)
blanchet@36561
   246
apply auto
hoelzl@36844
   247
by (metis mult_1 order_refl)
blanchet@43197
   248
blanchet@45575
   249
lemma bigo_abs3: "O(f) = O(\<lambda>x. abs(f x))"
blanchet@36561
   250
proof -
blanchet@36561
   251
  have F1: "\<forall>v u. u \<in> O(v) \<longrightarrow> O(u) \<subseteq> O(v)" by (metis bigo_elt_subset)
blanchet@36561
   252
  have F2: "\<forall>u. (\<lambda>R. \<bar>u R\<bar>) \<in> O(u)" by (metis bigo_abs)
blanchet@36561
   253
  have "\<forall>u. u \<in> O(\<lambda>R. \<bar>u R\<bar>)" by (metis bigo_abs2)
blanchet@36561
   254
  thus "O(f) = O(\<lambda>x. \<bar>f x\<bar>)" using F1 F2 by auto
blanchet@43197
   255
qed
paulson@23449
   256
blanchet@45575
   257
lemma bigo_abs4: "f =o g +o O(h) \<Longrightarrow> (\<lambda>x. abs (f x)) =o (\<lambda>x. abs (g x)) +o O(h)"
paulson@23449
   258
  apply (drule set_plus_imp_minus)
paulson@23449
   259
  apply (rule set_minus_imp_plus)
berghofe@26814
   260
  apply (subst fun_diff_def)
paulson@23449
   261
proof -
paulson@23449
   262
  assume a: "f - g : O(h)"
blanchet@45575
   263
  have "(\<lambda>x. abs (f x) - abs (g x)) =o O(\<lambda>x. abs(abs (f x) - abs (g x)))"
paulson@23449
   264
    by (rule bigo_abs2)
blanchet@45575
   265
  also have "... <= O(\<lambda>x. abs (f x - g x))"
paulson@23449
   266
    apply (rule bigo_elt_subset)
paulson@23449
   267
    apply (rule bigo_bounded)
blanchet@46369
   268
     apply (metis abs_ge_zero)
blanchet@46369
   269
    by (metis abs_triangle_ineq3)
paulson@23449
   270
  also have "... <= O(f - g)"
paulson@23449
   271
    apply (rule bigo_elt_subset)
berghofe@26814
   272
    apply (subst fun_diff_def)
paulson@23449
   273
    apply (rule bigo_abs)
paulson@23449
   274
    done
paulson@23449
   275
  also have "... <= O(h)"
wenzelm@23464
   276
    using a by (rule bigo_elt_subset)
blanchet@45575
   277
  finally show "(\<lambda>x. abs (f x) - abs (g x)) : O(h)".
paulson@23449
   278
qed
paulson@23449
   279
blanchet@45575
   280
lemma bigo_abs5: "f =o O(g) \<Longrightarrow> (\<lambda>x. abs(f x)) =o O(g)"
paulson@23449
   281
by (unfold bigo_def, auto)
paulson@23449
   282
krauss@47445
   283
lemma bigo_elt_subset2 [intro]: "f : g +o O(h) \<Longrightarrow> O(f) <= O(g) + O(h)"
paulson@23449
   284
proof -
paulson@23449
   285
  assume "f : g +o O(h)"
krauss@47445
   286
  also have "... <= O(g) + O(h)"
paulson@23449
   287
    by (auto del: subsetI)
krauss@47445
   288
  also have "... = O(\<lambda>x. abs(g x)) + O(\<lambda>x. abs(h x))"
blanchet@46369
   289
    by (metis bigo_abs3)
blanchet@45575
   290
  also have "... = O((\<lambda>x. abs(g x)) + (\<lambda>x. abs(h x)))"
paulson@23449
   291
    by (rule bigo_plus_eq [symmetric], auto)
paulson@23449
   292
  finally have "f : ...".
paulson@23449
   293
  then have "O(f) <= ..."
paulson@23449
   294
    by (elim bigo_elt_subset)
krauss@47445
   295
  also have "... = O(\<lambda>x. abs(g x)) + O(\<lambda>x. abs(h x))"
paulson@23449
   296
    by (rule bigo_plus_eq, auto)
paulson@23449
   297
  finally show ?thesis
paulson@23449
   298
    by (simp add: bigo_abs3 [symmetric])
paulson@23449
   299
qed
paulson@23449
   300
krauss@47445
   301
lemma bigo_mult [intro]: "O(f) * O(g) <= O(f * g)"
blanchet@46369
   302
apply (rule subsetI)
blanchet@46369
   303
apply (subst bigo_def)
haftmann@57514
   304
apply (auto simp del: abs_mult ac_simps
blanchet@46369
   305
            simp add: bigo_alt_def set_times_def func_times)
blanchet@45575
   306
(* sledgehammer *)
blanchet@46369
   307
apply (rule_tac x = "c * ca" in exI)
blanchet@46369
   308
apply (rule allI)
blanchet@46369
   309
apply (erule_tac x = x in allE)+
blanchet@46369
   310
apply (subgoal_tac "c * ca * abs (f x * g x) = (c * abs(f x)) * (ca * abs (g x))")
blanchet@46369
   311
 apply (metis (no_types) abs_ge_zero abs_mult mult_mono')
haftmann@57512
   312
by (metis mult.assoc mult.left_commute abs_of_pos mult.left_commute abs_mult)
paulson@23449
   313
paulson@23449
   314
lemma bigo_mult2 [intro]: "f *o O(g) <= O(f * g)"
blanchet@46369
   315
by (metis bigo_mult bigo_refl set_times_mono3 subset_trans)
paulson@23449
   316
blanchet@45575
   317
lemma bigo_mult3: "f : O(h) \<Longrightarrow> g : O(j) \<Longrightarrow> f * g : O(h * j)"
blanchet@36561
   318
by (metis bigo_mult set_rev_mp set_times_intro)
paulson@23449
   319
blanchet@45575
   320
lemma bigo_mult4 [intro]:"f : k +o O(h) \<Longrightarrow> g * f : (g * k) +o O(g * h)"
paulson@23449
   321
by (metis bigo_mult2 set_plus_mono_b set_times_intro2 set_times_plus_distrib)
paulson@23449
   322
blanchet@45575
   323
lemma bigo_mult5: "\<forall>x. f x ~= 0 \<Longrightarrow>
huffman@47108
   324
    O(f * g) <= (f\<Colon>'a => ('b\<Colon>linordered_field)) *o O(g)"
paulson@23449
   325
proof -
blanchet@45575
   326
  assume a: "\<forall>x. f x ~= 0"
paulson@23449
   327
  show "O(f * g) <= f *o O(g)"
paulson@23449
   328
  proof
paulson@23449
   329
    fix h
wenzelm@41541
   330
    assume h: "h : O(f * g)"
blanchet@45575
   331
    then have "(\<lambda>x. 1 / (f x)) * h : (\<lambda>x. 1 / f x) *o O(f * g)"
paulson@23449
   332
      by auto
blanchet@45575
   333
    also have "... <= O((\<lambda>x. 1 / f x) * (f * g))"
paulson@23449
   334
      by (rule bigo_mult2)
blanchet@45575
   335
    also have "(\<lambda>x. 1 / f x) * (f * g) = g"
blanchet@43197
   336
      apply (simp add: func_times)
haftmann@57514
   337
      by (metis (lifting, no_types) a ext mult.commute nonzero_divide_eq_eq)
blanchet@45575
   338
    finally have "(\<lambda>x. (1\<Colon>'b) / f x) * h : O(g)".
blanchet@45575
   339
    then have "f * ((\<lambda>x. (1\<Colon>'b) / f x) * h) : f *o O(g)"
paulson@23449
   340
      by auto
blanchet@45575
   341
    also have "f * ((\<lambda>x. (1\<Colon>'b) / f x) * h) = h"
blanchet@43197
   342
      apply (simp add: func_times)
blanchet@46369
   343
      by (metis (lifting, no_types) a eq_divide_imp ext
blanchet@46369
   344
                comm_semiring_1_class.normalizing_semiring_rules(7))
paulson@23449
   345
    finally show "h : f *o O(g)".
paulson@23449
   346
  qed
paulson@23449
   347
qed
paulson@23449
   348
blanchet@46369
   349
lemma bigo_mult6:
huffman@47108
   350
"\<forall>x. f x \<noteq> 0 \<Longrightarrow> O(f * g) = (f\<Colon>'a \<Rightarrow> ('b\<Colon>linordered_field)) *o O(g)"
paulson@23449
   351
by (metis bigo_mult2 bigo_mult5 order_antisym)
paulson@23449
   352
paulson@23449
   353
(*proof requires relaxing relevance: 2007-01-25*)
blanchet@45705
   354
declare bigo_mult6 [simp]
blanchet@45705
   355
blanchet@46369
   356
lemma bigo_mult7:
krauss@47445
   357
"\<forall>x. f x \<noteq> 0 \<Longrightarrow> O(f * g) \<le> O(f\<Colon>'a \<Rightarrow> ('b\<Colon>linordered_field)) * O(g)"
blanchet@46369
   358
by (metis bigo_refl bigo_mult6 set_times_mono3)
paulson@23449
   359
blanchet@45575
   360
declare bigo_mult6 [simp del]
blanchet@45575
   361
declare bigo_mult7 [intro!]
blanchet@45575
   362
blanchet@46369
   363
lemma bigo_mult8:
krauss@47445
   364
"\<forall>x. f x \<noteq> 0 \<Longrightarrow> O(f * g) = O(f\<Colon>'a \<Rightarrow> ('b\<Colon>linordered_field)) * O(g)"
paulson@23449
   365
by (metis bigo_mult bigo_mult7 order_antisym_conv)
paulson@23449
   366
blanchet@45575
   367
lemma bigo_minus [intro]: "f : O(g) \<Longrightarrow> - f : O(g)"
blanchet@46369
   368
by (auto simp add: bigo_def fun_Compl_def)
paulson@23449
   369
blanchet@45575
   370
lemma bigo_minus2: "f : g +o O(h) \<Longrightarrow> -f : -g +o O(h)"
blanchet@46369
   371
by (metis (no_types) bigo_elt_subset bigo_minus bigo_mult4 bigo_refl
blanchet@46369
   372
          comm_semiring_1_class.normalizing_semiring_rules(11) minus_mult_left
blanchet@46369
   373
          set_plus_mono_b)
paulson@23449
   374
paulson@23449
   375
lemma bigo_minus3: "O(-f) = O(f)"
blanchet@46369
   376
by (metis bigo_elt_subset bigo_minus bigo_refl equalityI minus_minus)
paulson@23449
   377
blanchet@46369
   378
lemma bigo_plus_absorb_lemma1: "f : O(g) \<Longrightarrow> f +o O(g) \<le> O(g)"
blanchet@46369
   379
by (metis bigo_plus_idemp set_plus_mono3)
paulson@23449
   380
blanchet@46369
   381
lemma bigo_plus_absorb_lemma2: "f : O(g) \<Longrightarrow> O(g) \<le> f +o O(g)"
blanchet@46369
   382
by (metis (no_types) bigo_minus bigo_plus_absorb_lemma1 right_minus
blanchet@46644
   383
          set_plus_mono set_plus_rearrange2 set_zero_plus subsetD subset_refl
blanchet@46644
   384
          subset_trans)
paulson@23449
   385
blanchet@45575
   386
lemma bigo_plus_absorb [simp]: "f : O(g) \<Longrightarrow> f +o O(g) = O(g)"
paulson@41865
   387
by (metis bigo_plus_absorb_lemma1 bigo_plus_absorb_lemma2 order_eq_iff)
paulson@23449
   388
blanchet@46369
   389
lemma bigo_plus_absorb2 [intro]: "f : O(g) \<Longrightarrow> A <= O(g) \<Longrightarrow> f +o A \<le> O(g)"
blanchet@46369
   390
by (metis bigo_plus_absorb set_plus_mono)
paulson@23449
   391
blanchet@45575
   392
lemma bigo_add_commute_imp: "f : g +o O(h) \<Longrightarrow> g : f +o O(h)"
blanchet@46369
   393
by (metis bigo_minus minus_diff_eq set_plus_imp_minus set_minus_plus)
paulson@23449
   394
paulson@23449
   395
lemma bigo_add_commute: "(f : g +o O(h)) = (g : f +o O(h))"
blanchet@46369
   396
by (metis bigo_add_commute_imp)
paulson@23449
   397
blanchet@45575
   398
lemma bigo_const1: "(\<lambda>x. c) : O(\<lambda>x. 1)"
haftmann@57514
   399
by (auto simp add: bigo_def ac_simps)
paulson@23449
   400
blanchet@46369
   401
lemma bigo_const2 [intro]: "O(\<lambda>x. c) \<le> O(\<lambda>x. 1)"
paulson@41865
   402
by (metis bigo_const1 bigo_elt_subset)
paulson@23449
   403
huffman@47108
   404
lemma bigo_const3: "(c\<Colon>'a\<Colon>linordered_field) ~= 0 \<Longrightarrow> (\<lambda>x. 1) : O(\<lambda>x. c)"
paulson@23449
   405
apply (simp add: bigo_def)
blanchet@36561
   406
by (metis abs_eq_0 left_inverse order_refl)
paulson@23449
   407
huffman@47108
   408
lemma bigo_const4: "(c\<Colon>'a\<Colon>linordered_field) ~= 0 \<Longrightarrow> O(\<lambda>x. 1) <= O(\<lambda>x. c)"
blanchet@46369
   409
by (metis bigo_elt_subset bigo_const3)
paulson@23449
   410
huffman@47108
   411
lemma bigo_const [simp]: "(c\<Colon>'a\<Colon>linordered_field) ~= 0 \<Longrightarrow>
blanchet@45575
   412
    O(\<lambda>x. c) = O(\<lambda>x. 1)"
blanchet@46369
   413
by (metis bigo_const2 bigo_const4 equalityI)
paulson@23449
   414
blanchet@45575
   415
lemma bigo_const_mult1: "(\<lambda>x. c * f x) : O(f)"
blanchet@46369
   416
apply (simp add: bigo_def abs_mult)
blanchet@36561
   417
by (metis le_less)
paulson@23449
   418
blanchet@46369
   419
lemma bigo_const_mult2: "O(\<lambda>x. c * f x) \<le> O(f)"
paulson@23449
   420
by (rule bigo_elt_subset, rule bigo_const_mult1)
paulson@23449
   421
huffman@47108
   422
lemma bigo_const_mult3: "(c\<Colon>'a\<Colon>linordered_field) ~= 0 \<Longrightarrow> f : O(\<lambda>x. c * f x)"
blanchet@45575
   423
apply (simp add: bigo_def)
haftmann@57512
   424
by (metis (no_types) abs_mult mult.assoc mult_1 order_refl left_inverse)
paulson@23449
   425
blanchet@46369
   426
lemma bigo_const_mult4:
huffman@47108
   427
"(c\<Colon>'a\<Colon>linordered_field) \<noteq> 0 \<Longrightarrow> O(f) \<le> O(\<lambda>x. c * f x)"
blanchet@46369
   428
by (metis bigo_elt_subset bigo_const_mult3)
paulson@23449
   429
huffman@47108
   430
lemma bigo_const_mult [simp]: "(c\<Colon>'a\<Colon>linordered_field) ~= 0 \<Longrightarrow>
blanchet@45575
   431
    O(\<lambda>x. c * f x) = O(f)"
blanchet@46369
   432
by (metis equalityI bigo_const_mult2 bigo_const_mult4)
paulson@23449
   433
huffman@47108
   434
lemma bigo_const_mult5 [simp]: "(c\<Colon>'a\<Colon>linordered_field) ~= 0 \<Longrightarrow>
blanchet@45575
   435
    (\<lambda>x. c) *o O(f) = O(f)"
paulson@23449
   436
  apply (auto del: subsetI)
paulson@23449
   437
  apply (rule order_trans)
paulson@23449
   438
  apply (rule bigo_mult2)
paulson@23449
   439
  apply (simp add: func_times)
paulson@23449
   440
  apply (auto intro!: subsetI simp add: bigo_def elt_set_times_def func_times)
blanchet@45575
   441
  apply (rule_tac x = "\<lambda>y. inverse c * x y" in exI)
blanchet@43197
   442
  apply (rename_tac g d)
paulson@24942
   443
  apply safe
blanchet@43197
   444
  apply (rule_tac [2] ext)
blanchet@43197
   445
   prefer 2
haftmann@26041
   446
   apply simp
haftmann@57512
   447
  apply (simp add: mult.assoc [symmetric] abs_mult)
blanchet@39259
   448
  (* couldn't get this proof without the step above *)
blanchet@39259
   449
proof -
blanchet@39259
   450
  fix g :: "'b \<Rightarrow> 'a" and d :: 'a
blanchet@39259
   451
  assume A1: "c \<noteq> (0\<Colon>'a)"
blanchet@39259
   452
  assume A2: "\<forall>x\<Colon>'b. \<bar>g x\<bar> \<le> d * \<bar>f x\<bar>"
blanchet@39259
   453
  have F1: "inverse \<bar>c\<bar> = \<bar>inverse c\<bar>" using A1 by (metis nonzero_abs_inverse)
blanchet@39259
   454
  have F2: "(0\<Colon>'a) < \<bar>c\<bar>" using A1 by (metis zero_less_abs_iff)
blanchet@39259
   455
  have "(0\<Colon>'a) < \<bar>c\<bar> \<longrightarrow> (0\<Colon>'a) < \<bar>inverse c\<bar>" using F1 by (metis positive_imp_inverse_positive)
blanchet@39259
   456
  hence "(0\<Colon>'a) < \<bar>inverse c\<bar>" using F2 by metis
blanchet@39259
   457
  hence F3: "(0\<Colon>'a) \<le> \<bar>inverse c\<bar>" by (metis order_le_less)
wenzelm@53015
   458
  have "\<exists>(u\<Colon>'a) SKF\<^sub>7\<Colon>'a \<Rightarrow> 'b. \<bar>g (SKF\<^sub>7 (\<bar>inverse c\<bar> * u))\<bar> \<le> u * \<bar>f (SKF\<^sub>7 (\<bar>inverse c\<bar> * u))\<bar>"
blanchet@39259
   459
    using A2 by metis
wenzelm@53015
   460
  hence F4: "\<exists>(u\<Colon>'a) SKF\<^sub>7\<Colon>'a \<Rightarrow> 'b. \<bar>g (SKF\<^sub>7 (\<bar>inverse c\<bar> * u))\<bar> \<le> u * \<bar>f (SKF\<^sub>7 (\<bar>inverse c\<bar> * u))\<bar> \<and> (0\<Colon>'a) \<le> \<bar>inverse c\<bar>"
blanchet@39259
   461
    using F3 by metis
wenzelm@53015
   462
  hence "\<exists>(v\<Colon>'a) (u\<Colon>'a) SKF\<^sub>7\<Colon>'a \<Rightarrow> 'b. \<bar>inverse c\<bar> * \<bar>g (SKF\<^sub>7 (u * v))\<bar> \<le> u * (v * \<bar>f (SKF\<^sub>7 (u * v))\<bar>)"
blanchet@39259
   463
    by (metis comm_mult_left_mono)
blanchet@39259
   464
  thus "\<exists>ca\<Colon>'a. \<forall>x\<Colon>'b. \<bar>inverse c\<bar> * \<bar>g x\<bar> \<le> ca * \<bar>f x\<bar>"
haftmann@57514
   465
    using A2 F4 by (metis mult.assoc comm_mult_left_mono)
blanchet@39259
   466
qed
paulson@23449
   467
blanchet@45575
   468
lemma bigo_const_mult6 [intro]: "(\<lambda>x. c) *o O(f) <= O(f)"
paulson@23449
   469
  apply (auto intro!: subsetI
paulson@23449
   470
    simp add: bigo_def elt_set_times_def func_times
haftmann@57514
   471
    simp del: abs_mult ac_simps)
blanchet@45575
   472
(* sledgehammer *)
paulson@23449
   473
  apply (rule_tac x = "ca * (abs c)" in exI)
paulson@23449
   474
  apply (rule allI)
paulson@23449
   475
  apply (subgoal_tac "ca * abs(c) * abs(f x) = abs(c) * (ca * abs(f x))")
paulson@23449
   476
  apply (erule ssubst)
paulson@23449
   477
  apply (subst abs_mult)
paulson@23449
   478
  apply (rule mult_left_mono)
paulson@23449
   479
  apply (erule spec)
paulson@23449
   480
  apply simp
haftmann@57514
   481
  apply (simp add: ac_simps)
paulson@23449
   482
done
paulson@23449
   483
blanchet@45575
   484
lemma bigo_const_mult7 [intro]: "f =o O(g) \<Longrightarrow> (\<lambda>x. c * f x) =o O(g)"
blanchet@46369
   485
by (metis bigo_const_mult1 bigo_elt_subset order_less_le psubsetD)
paulson@23449
   486
blanchet@45575
   487
lemma bigo_compose1: "f =o O(g) \<Longrightarrow> (\<lambda>x. f(k x)) =o O(\<lambda>x. g(k x))"
paulson@23449
   488
by (unfold bigo_def, auto)
paulson@23449
   489
blanchet@46369
   490
lemma bigo_compose2:
blanchet@46369
   491
"f =o g +o O(h) \<Longrightarrow> (\<lambda>x. f(k x)) =o (\<lambda>x. g(k x)) +o O(\<lambda>x. h(k x))"
haftmann@54230
   492
apply (simp only: set_minus_plus [symmetric] fun_Compl_def func_plus)
haftmann@54230
   493
apply (drule bigo_compose1 [of "f - g" h k])
haftmann@54230
   494
apply (simp add: fun_diff_def)
haftmann@54230
   495
done
paulson@23449
   496
paulson@23449
   497
subsection {* Setsum *}
paulson@23449
   498
blanchet@45575
   499
lemma bigo_setsum_main: "\<forall>x. \<forall>y \<in> A x. 0 <= h x y \<Longrightarrow>
blanchet@45575
   500
    \<exists>c. \<forall>x. \<forall>y \<in> A x. abs (f x y) <= c * (h x y) \<Longrightarrow>
blanchet@45575
   501
      (\<lambda>x. SUM y : A x. f x y) =o O(\<lambda>x. SUM y : A x. h x y)"
blanchet@46369
   502
apply (auto simp add: bigo_def)
blanchet@46369
   503
apply (rule_tac x = "abs c" in exI)
blanchet@46369
   504
apply (subst abs_of_nonneg) back back
blanchet@46369
   505
 apply (rule setsum_nonneg)
blanchet@46369
   506
 apply force
blanchet@46369
   507
apply (subst setsum_right_distrib)
blanchet@46369
   508
apply (rule allI)
blanchet@46369
   509
apply (rule order_trans)
blanchet@46369
   510
 apply (rule setsum_abs)
blanchet@46369
   511
apply (rule setsum_mono)
blanchet@46369
   512
by (metis abs_ge_self abs_mult_pos order_trans)
paulson@23449
   513
blanchet@45575
   514
lemma bigo_setsum1: "\<forall>x y. 0 <= h x y \<Longrightarrow>
blanchet@45575
   515
    \<exists>c. \<forall>x y. abs (f x y) <= c * (h x y) \<Longrightarrow>
blanchet@45575
   516
      (\<lambda>x. SUM y : A x. f x y) =o O(\<lambda>x. SUM y : A x. h x y)"
blanchet@45575
   517
by (metis (no_types) bigo_setsum_main)
paulson@23449
   518
blanchet@45575
   519
lemma bigo_setsum2: "\<forall>y. 0 <= h y \<Longrightarrow>
blanchet@46369
   520
    \<exists>c. \<forall>y. abs (f y) <= c * (h y) \<Longrightarrow>
blanchet@45575
   521
      (\<lambda>x. SUM y : A x. f y) =o O(\<lambda>x. SUM y : A x. h y)"
blanchet@46369
   522
apply (rule bigo_setsum1)
blanchet@46369
   523
by metis+
paulson@23449
   524
blanchet@45575
   525
lemma bigo_setsum3: "f =o O(h) \<Longrightarrow>
blanchet@45575
   526
    (\<lambda>x. SUM y : A x. (l x y) * f(k x y)) =o
blanchet@45575
   527
      O(\<lambda>x. SUM y : A x. abs(l x y * h(k x y)))"
blanchet@45575
   528
apply (rule bigo_setsum1)
blanchet@45575
   529
 apply (rule allI)+
blanchet@45575
   530
 apply (rule abs_ge_zero)
blanchet@45575
   531
apply (unfold bigo_def)
blanchet@45575
   532
apply (auto simp add: abs_mult)
haftmann@57512
   533
by (metis abs_ge_zero mult.left_commute mult_left_mono)
paulson@23449
   534
blanchet@45575
   535
lemma bigo_setsum4: "f =o g +o O(h) \<Longrightarrow>
blanchet@45575
   536
    (\<lambda>x. SUM y : A x. l x y * f(k x y)) =o
blanchet@45575
   537
      (\<lambda>x. SUM y : A x. l x y * g(k x y)) +o
blanchet@45575
   538
        O(\<lambda>x. SUM y : A x. abs(l x y * h(k x y)))"
blanchet@45575
   539
apply (rule set_minus_imp_plus)
blanchet@45575
   540
apply (subst fun_diff_def)
blanchet@45575
   541
apply (subst setsum_subtractf [symmetric])
blanchet@45575
   542
apply (subst right_diff_distrib [symmetric])
blanchet@45575
   543
apply (rule bigo_setsum3)
blanchet@46369
   544
by (metis (lifting, no_types) fun_diff_def set_plus_imp_minus ext)
paulson@23449
   545
blanchet@45575
   546
lemma bigo_setsum5: "f =o O(h) \<Longrightarrow> \<forall>x y. 0 <= l x y \<Longrightarrow>
blanchet@45575
   547
    \<forall>x. 0 <= h x \<Longrightarrow>
blanchet@45575
   548
      (\<lambda>x. SUM y : A x. (l x y) * f(k x y)) =o
blanchet@45575
   549
        O(\<lambda>x. SUM y : A x. (l x y) * h(k x y))"
blanchet@46369
   550
apply (subgoal_tac "(\<lambda>x. SUM y : A x. (l x y) * h(k x y)) =
blanchet@45575
   551
      (\<lambda>x. SUM y : A x. abs((l x y) * h(k x y)))")
blanchet@46369
   552
 apply (erule ssubst)
blanchet@46369
   553
 apply (erule bigo_setsum3)
blanchet@46369
   554
apply (rule ext)
haftmann@57418
   555
apply (rule setsum.cong)
haftmann@57418
   556
apply (rule refl)
blanchet@46369
   557
by (metis abs_of_nonneg zero_le_mult_iff)
paulson@23449
   558
blanchet@45575
   559
lemma bigo_setsum6: "f =o g +o O(h) \<Longrightarrow> \<forall>x y. 0 <= l x y \<Longrightarrow>
blanchet@45575
   560
    \<forall>x. 0 <= h x \<Longrightarrow>
blanchet@45575
   561
      (\<lambda>x. SUM y : A x. (l x y) * f(k x y)) =o
blanchet@45575
   562
        (\<lambda>x. SUM y : A x. (l x y) * g(k x y)) +o
blanchet@45575
   563
          O(\<lambda>x. SUM y : A x. (l x y) * h(k x y))"
paulson@23449
   564
  apply (rule set_minus_imp_plus)
berghofe@26814
   565
  apply (subst fun_diff_def)
paulson@23449
   566
  apply (subst setsum_subtractf [symmetric])
paulson@23449
   567
  apply (subst right_diff_distrib [symmetric])
paulson@23449
   568
  apply (rule bigo_setsum5)
berghofe@26814
   569
  apply (subst fun_diff_def [symmetric])
paulson@23449
   570
  apply (drule set_plus_imp_minus)
paulson@23449
   571
  apply auto
paulson@23449
   572
done
paulson@23449
   573
paulson@23449
   574
subsection {* Misc useful stuff *}
paulson@23449
   575
blanchet@45575
   576
lemma bigo_useful_intro: "A <= O(f) \<Longrightarrow> B <= O(f) \<Longrightarrow>
krauss@47445
   577
  A + B <= O(f)"
paulson@23449
   578
  apply (subst bigo_plus_idemp [symmetric])
paulson@23449
   579
  apply (rule set_plus_mono2)
paulson@23449
   580
  apply assumption+
paulson@23449
   581
done
paulson@23449
   582
blanchet@45575
   583
lemma bigo_useful_add: "f =o O(h) \<Longrightarrow> g =o O(h) \<Longrightarrow> f + g =o O(h)"
paulson@23449
   584
  apply (subst bigo_plus_idemp [symmetric])
paulson@23449
   585
  apply (rule set_plus_intro)
paulson@23449
   586
  apply assumption+
paulson@23449
   587
done
blanchet@43197
   588
huffman@47108
   589
lemma bigo_useful_const_mult: "(c\<Colon>'a\<Colon>linordered_field) ~= 0 \<Longrightarrow>
blanchet@45575
   590
    (\<lambda>x. c) * f =o O(h) \<Longrightarrow> f =o O(h)"
paulson@23449
   591
  apply (rule subsetD)
blanchet@45575
   592
  apply (subgoal_tac "(\<lambda>x. 1 / c) *o O(h) <= O(h)")
paulson@23449
   593
  apply assumption
paulson@23449
   594
  apply (rule bigo_const_mult6)
blanchet@45575
   595
  apply (subgoal_tac "f = (\<lambda>x. 1 / c) * ((\<lambda>x. c) * f)")
paulson@23449
   596
  apply (erule ssubst)
paulson@23449
   597
  apply (erule set_times_intro2)
blanchet@43197
   598
  apply (simp add: func_times)
paulson@23449
   599
done
paulson@23449
   600
blanchet@45575
   601
lemma bigo_fix: "(\<lambda>x. f ((x\<Colon>nat) + 1)) =o O(\<lambda>x. h(x + 1)) \<Longrightarrow> f 0 = 0 \<Longrightarrow>
paulson@23449
   602
    f =o O(h)"
blanchet@45575
   603
apply (simp add: bigo_alt_def)
blanchet@45575
   604
by (metis abs_ge_zero abs_mult abs_of_pos abs_zero not0_implies_Suc)
paulson@23449
   605
blanchet@43197
   606
lemma bigo_fix2:
blanchet@45575
   607
    "(\<lambda>x. f ((x\<Colon>nat) + 1)) =o (\<lambda>x. g(x + 1)) +o O(\<lambda>x. h(x + 1)) \<Longrightarrow>
blanchet@45575
   608
       f 0 = g 0 \<Longrightarrow> f =o g +o O(h)"
paulson@23449
   609
  apply (rule set_minus_imp_plus)
paulson@23449
   610
  apply (rule bigo_fix)
berghofe@26814
   611
  apply (subst fun_diff_def)
berghofe@26814
   612
  apply (subst fun_diff_def [symmetric])
paulson@23449
   613
  apply (rule set_plus_imp_minus)
paulson@23449
   614
  apply simp
berghofe@26814
   615
  apply (simp add: fun_diff_def)
paulson@23449
   616
done
paulson@23449
   617
paulson@23449
   618
subsection {* Less than or equal to *}
paulson@23449
   619
blanchet@45575
   620
definition lesso :: "('a => 'b\<Colon>linordered_idom) => ('a => 'b) => ('a => 'b)" (infixl "<o" 70) where
blanchet@45575
   621
  "f <o g == (\<lambda>x. max (f x - g x) 0)"
paulson@23449
   622
blanchet@45575
   623
lemma bigo_lesseq1: "f =o O(h) \<Longrightarrow> \<forall>x. abs (g x) <= abs (f x) \<Longrightarrow>
paulson@23449
   624
    g =o O(h)"
paulson@23449
   625
  apply (unfold bigo_def)
paulson@23449
   626
  apply clarsimp
blanchet@43197
   627
apply (blast intro: order_trans)
paulson@23449
   628
done
paulson@23449
   629
blanchet@45575
   630
lemma bigo_lesseq2: "f =o O(h) \<Longrightarrow> \<forall>x. abs (g x) <= f x \<Longrightarrow>
paulson@23449
   631
      g =o O(h)"
paulson@23449
   632
  apply (erule bigo_lesseq1)
blanchet@43197
   633
apply (blast intro: abs_ge_self order_trans)
paulson@23449
   634
done
paulson@23449
   635
blanchet@45575
   636
lemma bigo_lesseq3: "f =o O(h) \<Longrightarrow> \<forall>x. 0 <= g x \<Longrightarrow> \<forall>x. g x <= f x \<Longrightarrow>
paulson@23449
   637
      g =o O(h)"
paulson@23449
   638
  apply (erule bigo_lesseq2)
paulson@23449
   639
  apply (rule allI)
paulson@23449
   640
  apply (subst abs_of_nonneg)
paulson@23449
   641
  apply (erule spec)+
paulson@23449
   642
done
paulson@23449
   643
blanchet@45575
   644
lemma bigo_lesseq4: "f =o O(h) \<Longrightarrow>
blanchet@45575
   645
    \<forall>x. 0 <= g x \<Longrightarrow> \<forall>x. g x <= abs (f x) \<Longrightarrow>
paulson@23449
   646
      g =o O(h)"
paulson@23449
   647
  apply (erule bigo_lesseq1)
paulson@23449
   648
  apply (rule allI)
paulson@23449
   649
  apply (subst abs_of_nonneg)
paulson@23449
   650
  apply (erule spec)+
paulson@23449
   651
done
paulson@23449
   652
blanchet@45575
   653
lemma bigo_lesso1: "\<forall>x. f x <= g x \<Longrightarrow> f <o g =o O(h)"
blanchet@36561
   654
apply (unfold lesso_def)
blanchet@45575
   655
apply (subgoal_tac "(\<lambda>x. max (f x - g x) 0) = 0")
blanchet@45575
   656
 apply (metis bigo_zero)
blanchet@46364
   657
by (metis (lifting, no_types) func_zero le_fun_def le_iff_diff_le_0
haftmann@54863
   658
      max.absorb2 order_eq_iff)
paulson@23449
   659
blanchet@45575
   660
lemma bigo_lesso2: "f =o g +o O(h) \<Longrightarrow>
blanchet@45575
   661
    \<forall>x. 0 <= k x \<Longrightarrow> \<forall>x. k x <= f x \<Longrightarrow>
paulson@23449
   662
      k <o g =o O(h)"
paulson@23449
   663
  apply (unfold lesso_def)
paulson@23449
   664
  apply (rule bigo_lesseq4)
paulson@23449
   665
  apply (erule set_plus_imp_minus)
paulson@23449
   666
  apply (rule allI)
haftmann@54863
   667
  apply (rule max.cobounded2)
paulson@23449
   668
  apply (rule allI)
berghofe@26814
   669
  apply (subst fun_diff_def)
paulson@23449
   670
apply (erule thin_rl)
blanchet@45575
   671
(* sledgehammer *)
blanchet@45575
   672
apply (case_tac "0 <= k x - g x")
blanchet@46644
   673
 apply (metis (lifting) abs_le_D1 linorder_linear min_diff_distrib_left
haftmann@54863
   674
          min.absorb1 min.absorb2 max.absorb1)
haftmann@54863
   675
by (metis abs_ge_zero le_cases max.absorb2)
paulson@23449
   676
blanchet@45575
   677
lemma bigo_lesso3: "f =o g +o O(h) \<Longrightarrow>
blanchet@45575
   678
    \<forall>x. 0 <= k x \<Longrightarrow> \<forall>x. g x <= k x \<Longrightarrow>
paulson@23449
   679
      f <o k =o O(h)"
blanchet@46644
   680
apply (unfold lesso_def)
blanchet@46644
   681
apply (rule bigo_lesseq4)
paulson@23449
   682
  apply (erule set_plus_imp_minus)
blanchet@46644
   683
 apply (rule allI)
haftmann@54863
   684
 apply (rule max.cobounded2)
blanchet@46644
   685
apply (rule allI)
blanchet@46644
   686
apply (subst fun_diff_def)
blanchet@46644
   687
apply (erule thin_rl)
blanchet@46644
   688
(* sledgehammer *)
blanchet@46644
   689
apply (case_tac "0 <= f x - k x")
blanchet@46644
   690
 apply simp
blanchet@46644
   691
 apply (subst abs_of_nonneg)
paulson@23449
   692
  apply (drule_tac x = x in spec) back
blanchet@45705
   693
  apply (metis diff_less_0_iff_less linorder_not_le not_leE xt1(12) xt1(6))
blanchet@45575
   694
 apply (metis add_minus_cancel diff_le_eq le_diff_eq uminus_add_conv_diff)
haftmann@54863
   695
by (metis abs_ge_zero linorder_linear max.absorb1 max.commute)
paulson@23449
   696
blanchet@45705
   697
lemma bigo_lesso4:
huffman@47108
   698
  "f <o g =o O(k\<Colon>'a=>'b\<Colon>{linordered_field}) \<Longrightarrow>
blanchet@45705
   699
   g =o h +o O(k) \<Longrightarrow> f <o h =o O(k)"
blanchet@45705
   700
apply (unfold lesso_def)
blanchet@45705
   701
apply (drule set_plus_imp_minus)
blanchet@45705
   702
apply (drule bigo_abs5) back
blanchet@45705
   703
apply (simp add: fun_diff_def)
blanchet@45705
   704
apply (drule bigo_useful_add, assumption)
blanchet@45705
   705
apply (erule bigo_lesseq2) back
blanchet@45705
   706
apply (rule allI)
blanchet@45705
   707
by (auto simp add: func_plus fun_diff_def algebra_simps
paulson@23449
   708
    split: split_max abs_split)
paulson@23449
   709
blanchet@45705
   710
lemma bigo_lesso5: "f <o g =o O(h) \<Longrightarrow> \<exists>C. \<forall>x. f x <= g x + C * abs (h x)"
blanchet@45705
   711
apply (simp only: lesso_def bigo_alt_def)
blanchet@45705
   712
apply clarsimp
haftmann@57512
   713
by (metis add.commute diff_le_eq)
paulson@23449
   714
paulson@23449
   715
end