src/HOL/SMT.thy
author haftmann
Fri Oct 10 19:55:32 2014 +0200 (2014-10-10)
changeset 58646 cd63a4b12a33
parent 58598 d9892c88cb56
child 58776 95e58e04e534
permissions -rw-r--r--
specialized specification: avoid trivial instances
blanchet@58061
     1
(*  Title:      HOL/SMT.thy
blanchet@56078
     2
    Author:     Sascha Boehme, TU Muenchen
blanchet@56078
     3
*)
blanchet@56078
     4
blanchet@56078
     5
header {* Bindings to Satisfiability Modulo Theories (SMT) solvers based on SMT-LIB 2 *}
blanchet@56078
     6
blanchet@58061
     7
theory SMT
blanchet@57230
     8
imports Divides
blanchet@58061
     9
keywords "smt_status" :: diag
blanchet@56078
    10
begin
blanchet@56078
    11
blanchet@58481
    12
subsection {* A skolemization tactic and proof method *}
blanchet@58481
    13
blanchet@58481
    14
lemma choices:
blanchet@58481
    15
  "\<And>Q. \<forall>x. \<exists>y ya. Q x y ya \<Longrightarrow> \<exists>f fa. \<forall>x. Q x (f x) (fa x)"
blanchet@58481
    16
  "\<And>Q. \<forall>x. \<exists>y ya yb. Q x y ya yb \<Longrightarrow> \<exists>f fa fb. \<forall>x. Q x (f x) (fa x) (fb x)"
blanchet@58481
    17
  "\<And>Q. \<forall>x. \<exists>y ya yb yc. Q x y ya yb yc \<Longrightarrow> \<exists>f fa fb fc. \<forall>x. Q x (f x) (fa x) (fb x) (fc x)"
blanchet@58598
    18
  "\<And>Q. \<forall>x. \<exists>y ya yb yc yd. Q x y ya yb yc yd \<Longrightarrow>
blanchet@58598
    19
     \<exists>f fa fb fc fd. \<forall>x. Q x (f x) (fa x) (fb x) (fc x) (fd x)"
blanchet@58598
    20
  "\<And>Q. \<forall>x. \<exists>y ya yb yc yd ye. Q x y ya yb yc yd ye \<Longrightarrow>
blanchet@58598
    21
     \<exists>f fa fb fc fd fe. \<forall>x. Q x (f x) (fa x) (fb x) (fc x) (fd x) (fe x)"
blanchet@58598
    22
  "\<And>Q. \<forall>x. \<exists>y ya yb yc yd ye yf. Q x y ya yb yc yd ye yf \<Longrightarrow>
blanchet@58598
    23
     \<exists>f fa fb fc fd fe ff. \<forall>x. Q x (f x) (fa x) (fb x) (fc x) (fd x) (fe x) (ff x)"
blanchet@58598
    24
  "\<And>Q. \<forall>x. \<exists>y ya yb yc yd ye yf yg. Q x y ya yb yc yd ye yf yg \<Longrightarrow>
blanchet@58598
    25
     \<exists>f fa fb fc fd fe ff fg. \<forall>x. Q x (f x) (fa x) (fb x) (fc x) (fd x) (fe x) (ff x) (fg x)"
blanchet@58481
    26
  by metis+
blanchet@58481
    27
blanchet@58481
    28
lemma bchoices:
blanchet@58481
    29
  "\<And>Q. \<forall>x \<in> S. \<exists>y ya. Q x y ya \<Longrightarrow> \<exists>f fa. \<forall>x \<in> S. Q x (f x) (fa x)"
blanchet@58481
    30
  "\<And>Q. \<forall>x \<in> S. \<exists>y ya yb. Q x y ya yb \<Longrightarrow> \<exists>f fa fb. \<forall>x \<in> S. Q x (f x) (fa x) (fb x)"
blanchet@58481
    31
  "\<And>Q. \<forall>x \<in> S. \<exists>y ya yb yc. Q x y ya yb yc \<Longrightarrow> \<exists>f fa fb fc. \<forall>x \<in> S. Q x (f x) (fa x) (fb x) (fc x)"
blanchet@58598
    32
  "\<And>Q. \<forall>x \<in> S. \<exists>y ya yb yc yd. Q x y ya yb yc yd \<Longrightarrow>
blanchet@58598
    33
    \<exists>f fa fb fc fd. \<forall>x \<in> S. Q x (f x) (fa x) (fb x) (fc x) (fd x)"
blanchet@58598
    34
  "\<And>Q. \<forall>x \<in> S. \<exists>y ya yb yc yd ye. Q x y ya yb yc yd ye \<Longrightarrow>
blanchet@58598
    35
    \<exists>f fa fb fc fd fe. \<forall>x \<in> S. Q x (f x) (fa x) (fb x) (fc x) (fd x) (fe x)"
blanchet@58598
    36
  "\<And>Q. \<forall>x \<in> S. \<exists>y ya yb yc yd ye yf. Q x y ya yb yc yd ye yf \<Longrightarrow>
blanchet@58598
    37
    \<exists>f fa fb fc fd fe ff. \<forall>x \<in> S. Q x (f x) (fa x) (fb x) (fc x) (fd x) (fe x) (ff x)"
blanchet@58598
    38
  "\<And>Q. \<forall>x \<in> S. \<exists>y ya yb yc yd ye yf yg. Q x y ya yb yc yd ye yf yg \<Longrightarrow>
blanchet@58598
    39
    \<exists>f fa fb fc fd fe ff fg. \<forall>x \<in> S. Q x (f x) (fa x) (fb x) (fc x) (fd x) (fe x) (ff x) (fg x)"
blanchet@58481
    40
  by metis+
blanchet@58481
    41
blanchet@58481
    42
ML {*
blanchet@58481
    43
fun moura_tac ctxt =
blanchet@58481
    44
  Atomize_Elim.atomize_elim_tac ctxt THEN'
blanchet@58481
    45
  SELECT_GOAL (Clasimp.auto_tac (ctxt addSIs @{thms choice choices bchoice bchoices}) THEN
blanchet@58598
    46
    ALLGOALS (Metis_Tactic.metis_tac (take 1 ATP_Proof_Reconstruct.partial_type_encs)
blanchet@58598
    47
        ATP_Proof_Reconstruct.default_metis_lam_trans ctxt [] ORELSE'
blanchet@58598
    48
      blast_tac ctxt))
blanchet@58481
    49
*}
blanchet@58481
    50
blanchet@58481
    51
method_setup moura = {*
blanchet@58481
    52
 Scan.succeed (SIMPLE_METHOD' o moura_tac)
blanchet@58481
    53
*} "solve skolemization goals, especially those arising from Z3 proofs"
blanchet@58481
    54
blanchet@58481
    55
hide_fact (open) choices bchoices
blanchet@58481
    56
blanchet@58481
    57
blanchet@56078
    58
subsection {* Triggers for quantifier instantiation *}
blanchet@56078
    59
blanchet@56078
    60
text {*
blanchet@56078
    61
Some SMT solvers support patterns as a quantifier instantiation
blanchet@57696
    62
heuristics. Patterns may either be positive terms (tagged by "pat")
blanchet@56078
    63
triggering quantifier instantiations -- when the solver finds a
blanchet@56078
    64
term matching a positive pattern, it instantiates the corresponding
blanchet@56078
    65
quantifier accordingly -- or negative terms (tagged by "nopat")
blanchet@57696
    66
inhibiting quantifier instantiations. A list of patterns
blanchet@56078
    67
of the same kind is called a multipattern, and all patterns in a
blanchet@56078
    68
multipattern are considered conjunctively for quantifier instantiation.
blanchet@56078
    69
A list of multipatterns is called a trigger, and their multipatterns
blanchet@57696
    70
act disjunctively during quantifier instantiation. Each multipattern
blanchet@56078
    71
should mention at least all quantified variables of the preceding
blanchet@56078
    72
quantifier block.
blanchet@56078
    73
*}
blanchet@56078
    74
blanchet@57230
    75
typedecl 'a symb_list
blanchet@57230
    76
blanchet@57230
    77
consts
blanchet@57230
    78
  Symb_Nil :: "'a symb_list"
blanchet@57230
    79
  Symb_Cons :: "'a \<Rightarrow> 'a symb_list \<Rightarrow> 'a symb_list"
blanchet@57230
    80
blanchet@56078
    81
typedecl pattern
blanchet@56078
    82
blanchet@56078
    83
consts
blanchet@56078
    84
  pat :: "'a \<Rightarrow> pattern"
blanchet@56078
    85
  nopat :: "'a \<Rightarrow> pattern"
blanchet@56078
    86
blanchet@57230
    87
definition trigger :: "pattern symb_list symb_list \<Rightarrow> bool \<Rightarrow> bool" where
blanchet@57230
    88
  "trigger _ P = P"
blanchet@56078
    89
blanchet@56078
    90
blanchet@56078
    91
subsection {* Higher-order encoding *}
blanchet@56078
    92
blanchet@56078
    93
text {*
blanchet@56078
    94
Application is made explicit for constants occurring with varying
blanchet@57696
    95
numbers of arguments. This is achieved by the introduction of the
blanchet@56078
    96
following constant.
blanchet@56078
    97
*}
blanchet@56078
    98
blanchet@56078
    99
definition fun_app :: "'a \<Rightarrow> 'a" where "fun_app f = f"
blanchet@56078
   100
blanchet@56078
   101
text {*
blanchet@56078
   102
Some solvers support a theory of arrays which can be used to encode
blanchet@57696
   103
higher-order functions. The following set of lemmas specifies the
blanchet@56078
   104
properties of such (extensional) arrays.
blanchet@56078
   105
*}
blanchet@56078
   106
blanchet@56078
   107
lemmas array_rules = ext fun_upd_apply fun_upd_same fun_upd_other  fun_upd_upd fun_app_def
blanchet@56078
   108
blanchet@56078
   109
blanchet@56103
   110
subsection {* Normalization *}
blanchet@56103
   111
blanchet@56103
   112
lemma case_bool_if[abs_def]: "case_bool x y P = (if P then x else y)"
blanchet@56103
   113
  by simp
blanchet@56103
   114
blanchet@56103
   115
lemmas Ex1_def_raw = Ex1_def[abs_def]
blanchet@56103
   116
lemmas Ball_def_raw = Ball_def[abs_def]
blanchet@56103
   117
lemmas Bex_def_raw = Bex_def[abs_def]
blanchet@56103
   118
lemmas abs_if_raw = abs_if[abs_def]
blanchet@56103
   119
lemmas min_def_raw = min_def[abs_def]
blanchet@56103
   120
lemmas max_def_raw = max_def[abs_def]
blanchet@56103
   121
blanchet@56103
   122
blanchet@56078
   123
subsection {* Integer division and modulo for Z3 *}
blanchet@56078
   124
blanchet@56102
   125
text {*
blanchet@56102
   126
The following Z3-inspired definitions are overspecified for the case where @{text "l = 0"}. This
blanchet@56102
   127
Schönheitsfehler is corrected in the @{text div_as_z3div} and @{text mod_as_z3mod} theorems.
blanchet@56102
   128
*}
blanchet@56102
   129
blanchet@56078
   130
definition z3div :: "int \<Rightarrow> int \<Rightarrow> int" where
blanchet@56102
   131
  "z3div k l = (if l \<ge> 0 then k div l else - (k div - l))"
blanchet@56078
   132
blanchet@56078
   133
definition z3mod :: "int \<Rightarrow> int \<Rightarrow> int" where
blanchet@56102
   134
  "z3mod k l = k mod (if l \<ge> 0 then l else - l)"
blanchet@56078
   135
blanchet@56101
   136
lemma div_as_z3div:
blanchet@56102
   137
  "\<forall>k l. k div l = (if l = 0 then 0 else if l > 0 then z3div k l else z3div (- k) (- l))"
blanchet@56101
   138
  by (simp add: z3div_def)
blanchet@56101
   139
blanchet@56101
   140
lemma mod_as_z3mod:
blanchet@56102
   141
  "\<forall>k l. k mod l = (if l = 0 then k else if l > 0 then z3mod k l else - z3mod (- k) (- l))"
blanchet@56101
   142
  by (simp add: z3mod_def)
blanchet@56101
   143
blanchet@56078
   144
blanchet@56078
   145
subsection {* Setup *}
blanchet@56078
   146
blanchet@58061
   147
ML_file "Tools/SMT/smt_util.ML"
blanchet@58061
   148
ML_file "Tools/SMT/smt_failure.ML"
blanchet@58061
   149
ML_file "Tools/SMT/smt_config.ML"
blanchet@58061
   150
ML_file "Tools/SMT/smt_builtin.ML"
blanchet@58061
   151
ML_file "Tools/SMT/smt_datatypes.ML"
blanchet@58061
   152
ML_file "Tools/SMT/smt_normalize.ML"
blanchet@58061
   153
ML_file "Tools/SMT/smt_translate.ML"
blanchet@58061
   154
ML_file "Tools/SMT/smtlib.ML"
blanchet@58061
   155
ML_file "Tools/SMT/smtlib_interface.ML"
blanchet@58061
   156
ML_file "Tools/SMT/smtlib_proof.ML"
blanchet@58061
   157
ML_file "Tools/SMT/smtlib_isar.ML"
blanchet@58061
   158
ML_file "Tools/SMT/z3_proof.ML"
blanchet@58061
   159
ML_file "Tools/SMT/z3_isar.ML"
blanchet@58061
   160
ML_file "Tools/SMT/smt_solver.ML"
blanchet@58360
   161
ML_file "Tools/SMT/cvc4_interface.ML"
blanchet@58360
   162
ML_file "Tools/SMT/verit_proof.ML"
blanchet@58360
   163
ML_file "Tools/SMT/verit_isar.ML"
blanchet@58360
   164
ML_file "Tools/SMT/verit_proof_parse.ML"
blanchet@58061
   165
ML_file "Tools/SMT/z3_interface.ML"
blanchet@58061
   166
ML_file "Tools/SMT/z3_replay_util.ML"
blanchet@58061
   167
ML_file "Tools/SMT/z3_replay_literals.ML"
blanchet@58061
   168
ML_file "Tools/SMT/z3_replay_rules.ML"
blanchet@58061
   169
ML_file "Tools/SMT/z3_replay_methods.ML"
blanchet@58061
   170
ML_file "Tools/SMT/z3_replay.ML"
blanchet@58061
   171
ML_file "Tools/SMT/smt_systems.ML"
blanchet@56078
   172
blanchet@58061
   173
method_setup smt = {*
blanchet@56078
   174
  Scan.optional Attrib.thms [] >>
blanchet@56078
   175
    (fn thms => fn ctxt =>
blanchet@58061
   176
      METHOD (fn facts => HEADGOAL (SMT_Solver.smt_tac ctxt (thms @ facts))))
blanchet@58072
   177
*} "apply an SMT solver to the current goal"
blanchet@56078
   178
blanchet@56078
   179
blanchet@56078
   180
subsection {* Configuration *}
blanchet@56078
   181
blanchet@56078
   182
text {*
blanchet@56078
   183
The current configuration can be printed by the command
blanchet@58061
   184
@{text smt_status}, which shows the values of most options.
blanchet@56078
   185
*}
blanchet@56078
   186
blanchet@56078
   187
blanchet@56078
   188
subsection {* General configuration options *}
blanchet@56078
   189
blanchet@56078
   190
text {*
blanchet@58061
   191
The option @{text smt_solver} can be used to change the target SMT
blanchet@58061
   192
solver. The possible values can be obtained from the @{text smt_status}
blanchet@56078
   193
command.
blanchet@56078
   194
blanchet@57696
   195
Due to licensing restrictions, Z3 is not enabled by default. Z3 is free
blanchet@57237
   196
for non-commercial applications and can be enabled by setting Isabelle
blanchet@57237
   197
system option @{text z3_non_commercial} to @{text yes}.
blanchet@56078
   198
*}
blanchet@56078
   199
blanchet@58061
   200
declare [[smt_solver = z3]]
blanchet@56078
   201
blanchet@56078
   202
text {*
blanchet@57696
   203
Since SMT solvers are potentially nonterminating, there is a timeout
blanchet@57696
   204
(given in seconds) to restrict their runtime.
blanchet@56078
   205
*}
blanchet@56078
   206
blanchet@58061
   207
declare [[smt_timeout = 20]]
blanchet@56078
   208
blanchet@56078
   209
text {*
blanchet@57696
   210
SMT solvers apply randomized heuristics. In case a problem is not
blanchet@56078
   211
solvable by an SMT solver, changing the following option might help.
blanchet@56078
   212
*}
blanchet@56078
   213
blanchet@58061
   214
declare [[smt_random_seed = 1]]
blanchet@56078
   215
blanchet@56078
   216
text {*
blanchet@56078
   217
In general, the binding to SMT solvers runs as an oracle, i.e, the SMT
blanchet@57696
   218
solvers are fully trusted without additional checks. The following
blanchet@56078
   219
option can cause the SMT solver to run in proof-producing mode, giving
blanchet@57696
   220
a checkable certificate. This is currently only implemented for Z3.
blanchet@56078
   221
*}
blanchet@56078
   222
blanchet@58061
   223
declare [[smt_oracle = false]]
blanchet@56078
   224
blanchet@56078
   225
text {*
blanchet@56078
   226
Each SMT solver provides several commandline options to tweak its
blanchet@57696
   227
behaviour. They can be passed to the solver by setting the following
blanchet@56078
   228
options.
blanchet@56078
   229
*}
blanchet@56078
   230
blanchet@58061
   231
declare [[cvc3_options = ""]]
blanchet@58441
   232
declare [[cvc4_options = "--full-saturate-quant --quant-cf"]]
blanchet@58061
   233
declare [[veriT_options = ""]]
blanchet@58061
   234
declare [[z3_options = ""]]
blanchet@56078
   235
blanchet@56078
   236
text {*
blanchet@56078
   237
The SMT method provides an inference mechanism to detect simple triggers
blanchet@56078
   238
in quantified formulas, which might increase the number of problems
blanchet@56078
   239
solvable by SMT solvers (note: triggers guide quantifier instantiations
blanchet@57696
   240
in the SMT solver). To turn it on, set the following option.
blanchet@56078
   241
*}
blanchet@56078
   242
blanchet@58061
   243
declare [[smt_infer_triggers = false]]
blanchet@56078
   244
blanchet@56078
   245
text {*
blanchet@58360
   246
Enable the following option to use built-in support for datatypes,
blanchet@58360
   247
codatatypes, and records in CVC4. Currently, this is implemented only
blanchet@58360
   248
in oracle mode.
blanchet@58360
   249
*}
blanchet@58360
   250
blanchet@58360
   251
declare [[cvc4_extensions = false]]
blanchet@58360
   252
blanchet@58360
   253
text {*
blanchet@56078
   254
Enable the following option to use built-in support for div/mod, datatypes,
blanchet@57696
   255
and records in Z3. Currently, this is implemented only in oracle mode.
blanchet@56078
   256
*}
blanchet@56078
   257
blanchet@58061
   258
declare [[z3_extensions = false]]
blanchet@56078
   259
blanchet@56078
   260
blanchet@56078
   261
subsection {* Certificates *}
blanchet@56078
   262
blanchet@56078
   263
text {*
blanchet@58061
   264
By setting the option @{text smt_certificates} to the name of a file,
blanchet@56078
   265
all following applications of an SMT solver a cached in that file.
blanchet@56078
   266
Any further application of the same SMT solver (using the very same
blanchet@56078
   267
configuration) re-uses the cached certificate instead of invoking the
blanchet@57696
   268
solver. An empty string disables caching certificates.
blanchet@56078
   269
blanchet@57696
   270
The filename should be given as an explicit path. It is good
blanchet@56078
   271
practice to use the name of the current theory (with ending
blanchet@56078
   272
@{text ".certs"} instead of @{text ".thy"}) as the certificates file.
blanchet@56078
   273
Certificate files should be used at most once in a certain theory context,
blanchet@56078
   274
to avoid race conditions with other concurrent accesses.
blanchet@56078
   275
*}
blanchet@56078
   276
blanchet@58061
   277
declare [[smt_certificates = ""]]
blanchet@56078
   278
blanchet@56078
   279
text {*
blanchet@58061
   280
The option @{text smt_read_only_certificates} controls whether only
blanchet@56078
   281
stored certificates are should be used or invocation of an SMT solver
blanchet@57696
   282
is allowed. When set to @{text true}, no SMT solver will ever be
blanchet@56078
   283
invoked and only the existing certificates found in the configured
blanchet@56078
   284
cache are used;  when set to @{text false} and there is no cached
blanchet@56078
   285
certificate for some proposition, then the configured SMT solver is
blanchet@56078
   286
invoked.
blanchet@56078
   287
*}
blanchet@56078
   288
blanchet@58061
   289
declare [[smt_read_only_certificates = false]]
blanchet@56078
   290
blanchet@56078
   291
blanchet@56078
   292
subsection {* Tracing *}
blanchet@56078
   293
blanchet@56078
   294
text {*
blanchet@57696
   295
The SMT method, when applied, traces important information. To
blanchet@56078
   296
make it entirely silent, set the following option to @{text false}.
blanchet@56078
   297
*}
blanchet@56078
   298
blanchet@58061
   299
declare [[smt_verbose = true]]
blanchet@56078
   300
blanchet@56078
   301
text {*
blanchet@56078
   302
For tracing the generated problem file given to the SMT solver as
blanchet@56078
   303
well as the returned result of the solver, the option
blanchet@58061
   304
@{text smt_trace} should be set to @{text true}.
blanchet@56078
   305
*}
blanchet@56078
   306
blanchet@58061
   307
declare [[smt_trace = false]]
blanchet@56078
   308
blanchet@56078
   309
blanchet@56078
   310
subsection {* Schematic rules for Z3 proof reconstruction *}
blanchet@56078
   311
blanchet@56078
   312
text {*
blanchet@57696
   313
Several prof rules of Z3 are not very well documented. There are two
blanchet@56078
   314
lemma groups which can turn failing Z3 proof reconstruction attempts
blanchet@56078
   315
into succeeding ones: the facts in @{text z3_rule} are tried prior to
blanchet@56078
   316
any implemented reconstruction procedure for all uncertain Z3 proof
blanchet@56078
   317
rules;  the facts in @{text z3_simp} are only fed to invocations of
blanchet@56078
   318
the simplifier when reconstructing theory-specific proof steps.
blanchet@56078
   319
*}
blanchet@56078
   320
blanchet@58061
   321
lemmas [z3_rule] =
blanchet@56078
   322
  refl eq_commute conj_commute disj_commute simp_thms nnf_simps
blanchet@56078
   323
  ring_distribs field_simps times_divide_eq_right times_divide_eq_left
blanchet@56078
   324
  if_True if_False not_not
blanchet@56078
   325
blanchet@58061
   326
lemma [z3_rule]:
blanchet@57169
   327
  "(P \<and> Q) = (\<not> (\<not> P \<or> \<not> Q))"
blanchet@57169
   328
  "(P \<and> Q) = (\<not> (\<not> Q \<or> \<not> P))"
blanchet@57169
   329
  "(\<not> P \<and> Q) = (\<not> (P \<or> \<not> Q))"
blanchet@57169
   330
  "(\<not> P \<and> Q) = (\<not> (\<not> Q \<or> P))"
blanchet@57169
   331
  "(P \<and> \<not> Q) = (\<not> (\<not> P \<or> Q))"
blanchet@57169
   332
  "(P \<and> \<not> Q) = (\<not> (Q \<or> \<not> P))"
blanchet@57169
   333
  "(\<not> P \<and> \<not> Q) = (\<not> (P \<or> Q))"
blanchet@57169
   334
  "(\<not> P \<and> \<not> Q) = (\<not> (Q \<or> P))"
blanchet@56078
   335
  by auto
blanchet@56078
   336
blanchet@58061
   337
lemma [z3_rule]:
blanchet@57169
   338
  "(P \<longrightarrow> Q) = (Q \<or> \<not> P)"
blanchet@57169
   339
  "(\<not> P \<longrightarrow> Q) = (P \<or> Q)"
blanchet@57169
   340
  "(\<not> P \<longrightarrow> Q) = (Q \<or> P)"
blanchet@56078
   341
  "(True \<longrightarrow> P) = P"
blanchet@56078
   342
  "(P \<longrightarrow> True) = True"
blanchet@56078
   343
  "(False \<longrightarrow> P) = True"
blanchet@56078
   344
  "(P \<longrightarrow> P) = True"
blanchet@56078
   345
  by auto
blanchet@56078
   346
blanchet@58061
   347
lemma [z3_rule]:
blanchet@57169
   348
  "((P = Q) \<longrightarrow> R) = (R | (Q = (\<not> P)))"
blanchet@56078
   349
  by auto
blanchet@56078
   350
blanchet@58061
   351
lemma [z3_rule]:
blanchet@57169
   352
  "(\<not> True) = False"
blanchet@57169
   353
  "(\<not> False) = True"
blanchet@56078
   354
  "(x = x) = True"
blanchet@56078
   355
  "(P = True) = P"
blanchet@56078
   356
  "(True = P) = P"
blanchet@57169
   357
  "(P = False) = (\<not> P)"
blanchet@57169
   358
  "(False = P) = (\<not> P)"
blanchet@57169
   359
  "((\<not> P) = P) = False"
blanchet@57169
   360
  "(P = (\<not> P)) = False"
blanchet@57169
   361
  "((\<not> P) = (\<not> Q)) = (P = Q)"
blanchet@57169
   362
  "\<not> (P = (\<not> Q)) = (P = Q)"
blanchet@57169
   363
  "\<not> ((\<not> P) = Q) = (P = Q)"
blanchet@57169
   364
  "(P \<noteq> Q) = (Q = (\<not> P))"
blanchet@57169
   365
  "(P = Q) = ((\<not> P \<or> Q) \<and> (P \<or> \<not> Q))"
blanchet@57169
   366
  "(P \<noteq> Q) = ((\<not> P \<or> \<not> Q) \<and> (P \<or> Q))"
blanchet@56078
   367
  by auto
blanchet@56078
   368
blanchet@58061
   369
lemma [z3_rule]:
blanchet@57169
   370
  "(if P then P else \<not> P) = True"
blanchet@57169
   371
  "(if \<not> P then \<not> P else P) = True"
blanchet@56078
   372
  "(if P then True else False) = P"
blanchet@57169
   373
  "(if P then False else True) = (\<not> P)"
blanchet@57169
   374
  "(if P then Q else True) = ((\<not> P) \<or> Q)"
blanchet@57169
   375
  "(if P then Q else True) = (Q \<or> (\<not> P))"
blanchet@57169
   376
  "(if P then Q else \<not> Q) = (P = Q)"
blanchet@57169
   377
  "(if P then Q else \<not> Q) = (Q = P)"
blanchet@57169
   378
  "(if P then \<not> Q else Q) = (P = (\<not> Q))"
blanchet@57169
   379
  "(if P then \<not> Q else Q) = ((\<not> Q) = P)"
blanchet@57169
   380
  "(if \<not> P then x else y) = (if P then y else x)"
blanchet@57169
   381
  "(if P then (if Q then x else y) else x) = (if P \<and> (\<not> Q) then y else x)"
blanchet@57169
   382
  "(if P then (if Q then x else y) else x) = (if (\<not> Q) \<and> P then y else x)"
blanchet@56078
   383
  "(if P then (if Q then x else y) else y) = (if P \<and> Q then x else y)"
blanchet@56078
   384
  "(if P then (if Q then x else y) else y) = (if Q \<and> P then x else y)"
blanchet@56078
   385
  "(if P then x else if P then y else z) = (if P then x else z)"
blanchet@56078
   386
  "(if P then x else if Q then x else y) = (if P \<or> Q then x else y)"
blanchet@56078
   387
  "(if P then x else if Q then x else y) = (if Q \<or> P then x else y)"
blanchet@56078
   388
  "(if P then x = y else x = z) = (x = (if P then y else z))"
blanchet@56078
   389
  "(if P then x = y else y = z) = (y = (if P then x else z))"
blanchet@56078
   390
  "(if P then x = y else z = y) = (y = (if P then x else z))"
blanchet@56078
   391
  by auto
blanchet@56078
   392
blanchet@58061
   393
lemma [z3_rule]:
blanchet@56078
   394
  "0 + (x::int) = x"
blanchet@56078
   395
  "x + 0 = x"
blanchet@56078
   396
  "x + x = 2 * x"
blanchet@56078
   397
  "0 * x = 0"
blanchet@56078
   398
  "1 * x = x"
blanchet@56078
   399
  "x + y = y + x"
blanchet@57230
   400
  by (auto simp add: mult_2)
blanchet@56078
   401
blanchet@58061
   402
lemma [z3_rule]:  (* for def-axiom *)
blanchet@56078
   403
  "P = Q \<or> P \<or> Q"
blanchet@57169
   404
  "P = Q \<or> \<not> P \<or> \<not> Q"
blanchet@57169
   405
  "(\<not> P) = Q \<or> \<not> P \<or> Q"
blanchet@57169
   406
  "(\<not> P) = Q \<or> P \<or> \<not> Q"
blanchet@57169
   407
  "P = (\<not> Q) \<or> \<not> P \<or> Q"
blanchet@57169
   408
  "P = (\<not> Q) \<or> P \<or> \<not> Q"
blanchet@57169
   409
  "P \<noteq> Q \<or> P \<or> \<not> Q"
blanchet@57169
   410
  "P \<noteq> Q \<or> \<not> P \<or> Q"
blanchet@57169
   411
  "P \<noteq> (\<not> Q) \<or> P \<or> Q"
blanchet@57169
   412
  "(\<not> P) \<noteq> Q \<or> P \<or> Q"
blanchet@57169
   413
  "P \<or> Q \<or> P \<noteq> (\<not> Q)"
blanchet@57169
   414
  "P \<or> Q \<or> (\<not> P) \<noteq> Q"
blanchet@57169
   415
  "P \<or> \<not> Q \<or> P \<noteq> Q"
blanchet@57169
   416
  "\<not> P \<or> Q \<or> P \<noteq> Q"
blanchet@56078
   417
  "P \<or> y = (if P then x else y)"
blanchet@56078
   418
  "P \<or> (if P then x else y) = y"
blanchet@57169
   419
  "\<not> P \<or> x = (if P then x else y)"
blanchet@57169
   420
  "\<not> P \<or> (if P then x else y) = x"
blanchet@57169
   421
  "P \<or> R \<or> \<not> (if P then Q else R)"
blanchet@57169
   422
  "\<not> P \<or> Q \<or> \<not> (if P then Q else R)"
blanchet@57169
   423
  "\<not> (if P then Q else R) \<or> \<not> P \<or> Q"
blanchet@57169
   424
  "\<not> (if P then Q else R) \<or> P \<or> R"
blanchet@57169
   425
  "(if P then Q else R) \<or> \<not> P \<or> \<not> Q"
blanchet@57169
   426
  "(if P then Q else R) \<or> P \<or> \<not> R"
blanchet@57169
   427
  "(if P then \<not> Q else R) \<or> \<not> P \<or> Q"
blanchet@57169
   428
  "(if P then Q else \<not> R) \<or> P \<or> R"
blanchet@56078
   429
  by auto
blanchet@56078
   430
blanchet@57230
   431
hide_type (open) symb_list pattern
blanchet@57230
   432
hide_const (open) Symb_Nil Symb_Cons trigger pat nopat fun_app z3div z3mod
blanchet@56078
   433
blanchet@56078
   434
end