src/HOL/simpdata.ML
author wenzelm
Sat Jan 20 14:09:11 2007 +0100 (2007-01-20)
changeset 22128 cdd92316dd31
parent 21674 8a6bf9d7c751
child 22147 f4ed4d940d44
permissions -rw-r--r--
added @{clasimpset};
haftmann@21163
     1
(*  Title:      HOL/simpdata.ML
haftmann@21163
     2
    ID:         $Id$
haftmann@21163
     3
    Author:     Tobias Nipkow
haftmann@21163
     4
    Copyright   1991  University of Cambridge
haftmann@21163
     5
haftmann@21163
     6
Instantiation of the generic simplifier for HOL.
haftmann@21163
     7
*)
haftmann@21163
     8
haftmann@21163
     9
(** tools setup **)
haftmann@21163
    10
haftmann@21163
    11
structure Quantifier1 = Quantifier1Fun
haftmann@21163
    12
(struct
haftmann@21163
    13
  (*abstract syntax*)
haftmann@21163
    14
  fun dest_eq ((c as Const("op =",_)) $ s $ t) = SOME (c, s, t)
haftmann@21163
    15
    | dest_eq _ = NONE;
haftmann@21163
    16
  fun dest_conj ((c as Const("op &",_)) $ s $ t) = SOME (c, s, t)
haftmann@21163
    17
    | dest_conj _ = NONE;
haftmann@21163
    18
  fun dest_imp ((c as Const("op -->",_)) $ s $ t) = SOME (c, s, t)
haftmann@21163
    19
    | dest_imp _ = NONE;
haftmann@21163
    20
  val conj = HOLogic.conj
haftmann@21163
    21
  val imp  = HOLogic.imp
haftmann@21163
    22
  (*rules*)
haftmann@21551
    23
  val iff_reflection = thm "eq_reflection"
haftmann@21551
    24
  val iffI = thm "iffI"
haftmann@21551
    25
  val iff_trans = thm "trans"
haftmann@21551
    26
  val conjI= thm "conjI"
haftmann@21551
    27
  val conjE= thm "conjE"
haftmann@21551
    28
  val impI = thm "impI"
haftmann@21551
    29
  val mp   = thm "mp"
haftmann@21163
    30
  val uncurry = thm "uncurry"
haftmann@21551
    31
  val exI  = thm "exI"
haftmann@21551
    32
  val exE  = thm "exE"
haftmann@21163
    33
  val iff_allI = thm "iff_allI"
haftmann@21163
    34
  val iff_exI = thm "iff_exI"
haftmann@21163
    35
  val all_comm = thm "all_comm"
haftmann@21163
    36
  val ex_comm = thm "ex_comm"
haftmann@21163
    37
end);
haftmann@21163
    38
haftmann@21551
    39
structure Simpdata =
haftmann@21163
    40
struct
haftmann@21163
    41
haftmann@21551
    42
local
haftmann@21551
    43
  val eq_reflection = thm "eq_reflection"
haftmann@21551
    44
in fun mk_meta_eq r = r RS eq_reflection end;
haftmann@21163
    45
fun safe_mk_meta_eq r = mk_meta_eq r handle Thm.THM _ => r;
haftmann@21163
    46
haftmann@21551
    47
local
haftmann@21551
    48
  val Eq_FalseI = thm "Eq_FalseI"
haftmann@21551
    49
  val Eq_TrueI = thm "Eq_TrueI"
haftmann@21551
    50
in fun mk_eq th = case concl_of th
haftmann@21163
    51
  (*expects Trueprop if not == *)
haftmann@21551
    52
  of Const ("==",_) $ _ $ _ => th
haftmann@21551
    53
   | _ $ (Const ("op =", _) $ _ $ _) => mk_meta_eq th
haftmann@21551
    54
   | _ $ (Const ("Not", _) $ _) => th RS Eq_FalseI
haftmann@21551
    55
   | _ => th RS Eq_TrueI
haftmann@21551
    56
end;
haftmann@21163
    57
haftmann@21551
    58
local
haftmann@21551
    59
  val meta_eq_to_obj_eq = thm "meta_eq_to_obj_eq"
haftmann@21551
    60
  val Eq_TrueI = thm "Eq_TrueI"
haftmann@21551
    61
in fun mk_eq_True r =
haftmann@21163
    62
  SOME (r RS meta_eq_to_obj_eq RS Eq_TrueI) handle Thm.THM _ => NONE;
haftmann@21551
    63
end;
haftmann@21163
    64
haftmann@21163
    65
(* Produce theorems of the form
haftmann@21163
    66
  (P1 =simp=> ... =simp=> Pn => x == y) ==> (P1 =simp=> ... =simp=> Pn => x = y)
haftmann@21163
    67
*)
haftmann@21551
    68
local
haftmann@21551
    69
  val meta_eq_to_obj_eq = thm "meta_eq_to_obj_eq"
haftmann@21551
    70
  val simp_implies_def = thm "simp_implies_def"
haftmann@21551
    71
in fun lift_meta_eq_to_obj_eq i st =
haftmann@21163
    72
  let
haftmann@21163
    73
    fun count_imp (Const ("HOL.simp_implies", _) $ P $ Q) = 1 + count_imp Q
haftmann@21163
    74
      | count_imp _ = 0;
haftmann@21163
    75
    val j = count_imp (Logic.strip_assums_concl (List.nth (prems_of st, i - 1)))
haftmann@21163
    76
  in if j = 0 then meta_eq_to_obj_eq
haftmann@21163
    77
    else
haftmann@21163
    78
      let
haftmann@21163
    79
        val Ps = map (fn k => Free ("P" ^ string_of_int k, propT)) (1 upto j);
haftmann@21163
    80
        fun mk_simp_implies Q = foldr (fn (R, S) =>
haftmann@21163
    81
          Const ("HOL.simp_implies", propT --> propT --> propT) $ R $ S) Q Ps
haftmann@21163
    82
        val aT = TFree ("'a", HOLogic.typeS);
haftmann@21163
    83
        val x = Free ("x", aT);
haftmann@21163
    84
        val y = Free ("y", aT)
haftmann@21163
    85
      in Goal.prove_global (Thm.theory_of_thm st) []
haftmann@21163
    86
        [mk_simp_implies (Logic.mk_equals (x, y))]
haftmann@21163
    87
        (mk_simp_implies (HOLogic.mk_Trueprop (HOLogic.mk_eq (x, y))))
haftmann@21163
    88
        (fn prems => EVERY
haftmann@21163
    89
         [rewrite_goals_tac [simp_implies_def],
haftmann@21163
    90
          REPEAT (ares_tac (meta_eq_to_obj_eq :: map (rewrite_rule [simp_implies_def]) prems) 1)])
haftmann@21163
    91
      end
haftmann@21163
    92
  end;
haftmann@21551
    93
end;
haftmann@21163
    94
haftmann@21163
    95
(*Congruence rules for = (instead of ==)*)
haftmann@21163
    96
fun mk_meta_cong rl = zero_var_indexes
haftmann@21163
    97
  (let val rl' = Seq.hd (TRYALL (fn i => fn st =>
haftmann@21163
    98
     rtac (lift_meta_eq_to_obj_eq i st) i st) rl)
haftmann@21163
    99
   in mk_meta_eq rl' handle THM _ =>
haftmann@21163
   100
     if can Logic.dest_equals (concl_of rl') then rl'
haftmann@21163
   101
     else error "Conclusion of congruence rules must be =-equality"
haftmann@21163
   102
   end);
haftmann@21163
   103
haftmann@21163
   104
fun mk_atomize pairs =
haftmann@21163
   105
  let
wenzelm@21313
   106
    fun atoms thm =
wenzelm@21313
   107
      let
wenzelm@21313
   108
        fun res th = map (fn rl => th RS rl);   (*exception THM*)
wenzelm@21313
   109
        fun res_fixed rls =
wenzelm@21313
   110
          if Thm.maxidx_of (Thm.adjust_maxidx_thm ~1 thm) = ~1 then res thm rls
wenzelm@21313
   111
          else Variable.trade (K (fn [thm'] => res thm' rls)) (Variable.thm_context thm) [thm];
wenzelm@21313
   112
      in
wenzelm@21313
   113
        case concl_of thm
wenzelm@21313
   114
          of Const ("Trueprop", _) $ p => (case head_of p
wenzelm@21313
   115
            of Const (a, _) => (case AList.lookup (op =) pairs a
wenzelm@21313
   116
              of SOME rls => (maps atoms (res_fixed rls) handle THM _ => [thm])
wenzelm@21313
   117
              | NONE => [thm])
wenzelm@21313
   118
            | _ => [thm])
wenzelm@21313
   119
          | _ => [thm]
wenzelm@21313
   120
      end;
haftmann@21163
   121
  in atoms end;
haftmann@21163
   122
haftmann@21163
   123
fun mksimps pairs =
wenzelm@21313
   124
  map_filter (try mk_eq) o mk_atomize pairs o gen_all;
haftmann@21163
   125
haftmann@21551
   126
local
haftmann@21551
   127
  val simp_impliesI = thm "simp_impliesI"
haftmann@21551
   128
  val TrueI = thm "TrueI"
haftmann@21551
   129
  val FalseE = thm "FalseE"
haftmann@21551
   130
  val refl = thm "refl"
haftmann@21551
   131
in fun unsafe_solver_tac prems =
haftmann@21163
   132
  (fn i => REPEAT_DETERM (match_tac [simp_impliesI] i)) THEN'
haftmann@21163
   133
  FIRST'[resolve_tac(reflexive_thm :: TrueI :: refl :: prems), atac, etac FalseE];
haftmann@21551
   134
end;
haftmann@21163
   135
val unsafe_solver = mk_solver "HOL unsafe" unsafe_solver_tac;
haftmann@21163
   136
haftmann@21163
   137
(*No premature instantiation of variables during simplification*)
haftmann@21551
   138
local
haftmann@21551
   139
  val simp_impliesI = thm "simp_impliesI"
haftmann@21551
   140
  val TrueI = thm "TrueI"
haftmann@21551
   141
  val FalseE = thm "FalseE"
haftmann@21551
   142
  val refl = thm "refl"
haftmann@21551
   143
in fun safe_solver_tac prems =
haftmann@21163
   144
  (fn i => REPEAT_DETERM (match_tac [simp_impliesI] i)) THEN'
haftmann@21163
   145
  FIRST'[match_tac(reflexive_thm :: TrueI :: refl :: prems),
haftmann@21163
   146
         eq_assume_tac, ematch_tac [FalseE]];
haftmann@21551
   147
end;
haftmann@21163
   148
val safe_solver = mk_solver "HOL safe" safe_solver_tac;
haftmann@21163
   149
haftmann@21163
   150
structure SplitterData =
haftmann@21163
   151
struct
haftmann@21163
   152
  structure Simplifier = Simplifier
haftmann@21551
   153
  val mk_eq           = mk_eq
haftmann@21551
   154
  val meta_eq_to_iff  = thm "meta_eq_to_obj_eq"
haftmann@21551
   155
  val iffD            = thm "iffD2"
haftmann@21551
   156
  val disjE           = thm "disjE"
haftmann@21551
   157
  val conjE           = thm "conjE"
haftmann@21551
   158
  val exE             = thm "exE"
haftmann@21551
   159
  val contrapos       = thm "contrapos_nn"
haftmann@21551
   160
  val contrapos2      = thm "contrapos_pp"
haftmann@21551
   161
  val notnotD         = thm "notnotD"
haftmann@21163
   162
end;
haftmann@21163
   163
haftmann@21163
   164
structure Splitter = SplitterFun(SplitterData);
haftmann@21163
   165
wenzelm@21674
   166
val split_tac        = Splitter.split_tac;
wenzelm@21674
   167
val split_inside_tac = Splitter.split_inside_tac;
wenzelm@21674
   168
wenzelm@21674
   169
val op addsplits     = Splitter.addsplits;
wenzelm@21674
   170
val op delsplits     = Splitter.delsplits;
wenzelm@21674
   171
val Addsplits        = Splitter.Addsplits;
wenzelm@21674
   172
val Delsplits        = Splitter.Delsplits;
wenzelm@21674
   173
wenzelm@21674
   174
haftmann@21163
   175
(* integration of simplifier with classical reasoner *)
haftmann@21163
   176
haftmann@21163
   177
structure Clasimp = ClasimpFun
haftmann@21163
   178
 (structure Simplifier = Simplifier and Splitter = Splitter
haftmann@21163
   179
  and Classical  = Classical and Blast = Blast
wenzelm@22128
   180
  val iffD1 = thm "iffD1" val iffD2 = thm "iffD2" val notE = thm "notE");
wenzelm@21674
   181
open Clasimp;
haftmann@21163
   182
wenzelm@22128
   183
val _ = ML_Context.value_antiq "clasimpset"
wenzelm@22128
   184
  (Scan.succeed ("clasimpset", "Clasimp.local_clasimpset_of (ML_Context.the_local_context ())"));
wenzelm@22128
   185
haftmann@21163
   186
val mksimps_pairs =
haftmann@21551
   187
  [("op -->", [thm "mp"]), ("op &", [thm "conjunct1", thm "conjunct2"]),
haftmann@21551
   188
   ("All", [thm "spec"]), ("True", []), ("False", []),
haftmann@21551
   189
   ("HOL.If", [thm "if_bool_eq_conj" RS thm "iffD1"])];
haftmann@21163
   190
wenzelm@21674
   191
val HOL_basic_ss =
haftmann@21163
   192
  Simplifier.theory_context (the_context ()) empty_ss
haftmann@21163
   193
    setsubgoaler asm_simp_tac
haftmann@21163
   194
    setSSolver safe_solver
haftmann@21163
   195
    setSolver unsafe_solver
haftmann@21163
   196
    setmksimps (mksimps mksimps_pairs)
haftmann@21163
   197
    setmkeqTrue mk_eq_True
haftmann@21163
   198
    setmkcong mk_meta_cong;
haftmann@21163
   199
wenzelm@21674
   200
fun hol_simplify rews = Simplifier.full_simplify (HOL_basic_ss addsimps rews);
haftmann@21163
   201
haftmann@21163
   202
fun unfold_tac ths =
wenzelm@21674
   203
  let val ss0 = Simplifier.clear_ss HOL_basic_ss addsimps ths
haftmann@21163
   204
  in fn ss => ALLGOALS (full_simp_tac (Simplifier.inherit_context ss ss0)) end;
haftmann@21163
   205
wenzelm@21313
   206
wenzelm@21313
   207
haftmann@21163
   208
(** simprocs **)
haftmann@21163
   209
haftmann@21163
   210
(* simproc for proving "(y = x) == False" from premise "~(x = y)" *)
haftmann@21163
   211
haftmann@21163
   212
val use_neq_simproc = ref true;
haftmann@21163
   213
haftmann@21163
   214
local
haftmann@21163
   215
  val thy = the_context ();
haftmann@21551
   216
  val neq_to_EQ_False = thm "not_sym" RS thm "Eq_FalseI";
haftmann@21163
   217
  fun neq_prover sg ss (eq $ lhs $ rhs) =
haftmann@21163
   218
    let
haftmann@21163
   219
      fun test thm = (case #prop (rep_thm thm) of
haftmann@21163
   220
                    _ $ (Not $ (eq' $ l' $ r')) =>
haftmann@21163
   221
                      Not = HOLogic.Not andalso eq' = eq andalso
haftmann@21163
   222
                      r' aconv lhs andalso l' aconv rhs
haftmann@21163
   223
                  | _ => false)
haftmann@21163
   224
    in if !use_neq_simproc then case find_first test (prems_of_ss ss)
haftmann@21163
   225
     of NONE => NONE
haftmann@21163
   226
      | SOME thm => SOME (thm RS neq_to_EQ_False)
haftmann@21163
   227
     else NONE
haftmann@21163
   228
    end
haftmann@21163
   229
in
haftmann@21163
   230
haftmann@21163
   231
val neq_simproc = Simplifier.simproc thy "neq_simproc" ["x = y"] neq_prover;
haftmann@21163
   232
wenzelm@21313
   233
end;
haftmann@21163
   234
haftmann@21163
   235
haftmann@21163
   236
(* simproc for Let *)
haftmann@21163
   237
haftmann@21163
   238
val use_let_simproc = ref true;
haftmann@21163
   239
haftmann@21163
   240
local
haftmann@21163
   241
  val thy = the_context ();
haftmann@21163
   242
  val Let_folded = thm "Let_folded";
haftmann@21163
   243
  val Let_unfold = thm "Let_unfold";
haftmann@21551
   244
  val Let_def = thm "Let_def";
haftmann@21163
   245
  val (f_Let_unfold, x_Let_unfold) =
haftmann@21163
   246
      let val [(_$(f$x)$_)] = prems_of Let_unfold
haftmann@21163
   247
      in (cterm_of thy f, cterm_of thy x) end
haftmann@21163
   248
  val (f_Let_folded, x_Let_folded) =
haftmann@21163
   249
      let val [(_$(f$x)$_)] = prems_of Let_folded
haftmann@21163
   250
      in (cterm_of thy f, cterm_of thy x) end;
haftmann@21163
   251
  val g_Let_folded =
haftmann@21163
   252
      let val [(_$_$(g$_))] = prems_of Let_folded in cterm_of thy g end;
haftmann@21163
   253
in
haftmann@21163
   254
haftmann@21163
   255
val let_simproc =
haftmann@21163
   256
  Simplifier.simproc thy "let_simp" ["Let x f"]
haftmann@21163
   257
   (fn sg => fn ss => fn t =>
haftmann@21163
   258
     let val ctxt = Simplifier.the_context ss;
haftmann@21163
   259
         val ([t'], ctxt') = Variable.import_terms false [t] ctxt;
haftmann@21163
   260
     in Option.map (hd o Variable.export ctxt' ctxt o single)
haftmann@21163
   261
      (case t' of (Const ("Let",_)$x$f) => (* x and f are already in normal form *)
haftmann@21163
   262
         if not (!use_let_simproc) then NONE
haftmann@21163
   263
         else if is_Free x orelse is_Bound x orelse is_Const x
haftmann@21551
   264
         then SOME Let_def
haftmann@21163
   265
         else
haftmann@21163
   266
          let
haftmann@21163
   267
             val n = case f of (Abs (x,_,_)) => x | _ => "x";
haftmann@21163
   268
             val cx = cterm_of sg x;
haftmann@21163
   269
             val {T=xT,...} = rep_cterm cx;
haftmann@21163
   270
             val cf = cterm_of sg f;
haftmann@21163
   271
             val fx_g = Simplifier.rewrite ss (Thm.capply cf cx);
haftmann@21163
   272
             val (_$_$g) = prop_of fx_g;
haftmann@21163
   273
             val g' = abstract_over (x,g);
haftmann@21163
   274
           in (if (g aconv g')
haftmann@21163
   275
               then
haftmann@21163
   276
                  let
haftmann@21163
   277
                    val rl = cterm_instantiate [(f_Let_unfold,cf),(x_Let_unfold,cx)] Let_unfold;
haftmann@21163
   278
                  in SOME (rl OF [fx_g]) end
haftmann@21163
   279
               else if Term.betapply (f,x) aconv g then NONE (*avoid identity conversion*)
haftmann@21163
   280
               else let
haftmann@21163
   281
                     val abs_g'= Abs (n,xT,g');
haftmann@21163
   282
                     val g'x = abs_g'$x;
haftmann@21163
   283
                     val g_g'x = symmetric (beta_conversion false (cterm_of sg g'x));
haftmann@21163
   284
                     val rl = cterm_instantiate
haftmann@21163
   285
                               [(f_Let_folded,cterm_of sg f),(x_Let_folded,cx),
haftmann@21163
   286
                                (g_Let_folded,cterm_of sg abs_g')]
haftmann@21163
   287
                               Let_folded;
haftmann@21163
   288
                   in SOME (rl OF [transitive fx_g g_g'x])
haftmann@21163
   289
                   end)
haftmann@21163
   290
           end
haftmann@21163
   291
        | _ => NONE)
haftmann@21163
   292
     end)
haftmann@21163
   293
wenzelm@21313
   294
end;
wenzelm@21313
   295
haftmann@21163
   296
haftmann@21163
   297
(* generic refutation procedure *)
haftmann@21163
   298
haftmann@21163
   299
(* parameters:
haftmann@21163
   300
haftmann@21163
   301
   test: term -> bool
haftmann@21163
   302
   tests if a term is at all relevant to the refutation proof;
haftmann@21163
   303
   if not, then it can be discarded. Can improve performance,
haftmann@21163
   304
   esp. if disjunctions can be discarded (no case distinction needed!).
haftmann@21163
   305
haftmann@21163
   306
   prep_tac: int -> tactic
haftmann@21163
   307
   A preparation tactic to be applied to the goal once all relevant premises
haftmann@21163
   308
   have been moved to the conclusion.
haftmann@21163
   309
haftmann@21163
   310
   ref_tac: int -> tactic
haftmann@21163
   311
   the actual refutation tactic. Should be able to deal with goals
haftmann@21163
   312
   [| A1; ...; An |] ==> False
haftmann@21163
   313
   where the Ai are atomic, i.e. no top-level &, | or EX
haftmann@21163
   314
*)
haftmann@21163
   315
haftmann@21163
   316
local
haftmann@21551
   317
  val conjE = thm "conjE"
haftmann@21551
   318
  val exE = thm "exE"
haftmann@21551
   319
  val disjE = thm "disjE"
haftmann@21551
   320
  val notE = thm "notE"
haftmann@21551
   321
  val rev_mp = thm "rev_mp"
haftmann@21551
   322
  val ccontr = thm "ccontr"
haftmann@21163
   323
  val nnf_simpset =
haftmann@21163
   324
    empty_ss setmkeqTrue mk_eq_True
haftmann@21163
   325
    setmksimps (mksimps mksimps_pairs)
haftmann@21163
   326
    addsimps [thm "imp_conv_disj", thm "iff_conv_conj_imp", thm "de_Morgan_disj", thm "de_Morgan_conj",
haftmann@21163
   327
      thm "not_all", thm "not_ex", thm "not_not"];
haftmann@21163
   328
  fun prem_nnf_tac i st =
haftmann@21163
   329
    full_simp_tac (Simplifier.theory_context (Thm.theory_of_thm st) nnf_simpset) i st;
haftmann@21163
   330
in
haftmann@21163
   331
fun refute_tac test prep_tac ref_tac =
haftmann@21163
   332
  let val refute_prems_tac =
haftmann@21163
   333
        REPEAT_DETERM
haftmann@21163
   334
              (eresolve_tac [conjE, exE] 1 ORELSE
haftmann@21163
   335
               filter_prems_tac test 1 ORELSE
haftmann@21163
   336
               etac disjE 1) THEN
haftmann@21163
   337
        ((etac notE 1 THEN eq_assume_tac 1) ORELSE
haftmann@21163
   338
         ref_tac 1);
haftmann@21163
   339
  in EVERY'[TRY o filter_prems_tac test,
haftmann@21163
   340
            REPEAT_DETERM o etac rev_mp, prep_tac, rtac ccontr, prem_nnf_tac,
haftmann@21163
   341
            SELECT_GOAL (DEPTH_SOLVE refute_prems_tac)]
haftmann@21163
   342
  end;
wenzelm@21313
   343
end;
haftmann@21163
   344
haftmann@21163
   345
val defALL_regroup =
haftmann@21163
   346
  Simplifier.simproc (the_context ())
haftmann@21163
   347
    "defined ALL" ["ALL x. P x"] Quantifier1.rearrange_all;
haftmann@21163
   348
haftmann@21163
   349
val defEX_regroup =
haftmann@21163
   350
  Simplifier.simproc (the_context ())
haftmann@21163
   351
    "defined EX" ["EX x. P x"] Quantifier1.rearrange_ex;
haftmann@21163
   352
haftmann@21163
   353
wenzelm@21674
   354
val simpset_simprocs = HOL_basic_ss
haftmann@21163
   355
  addsimprocs [defALL_regroup, defEX_regroup, neq_simproc, let_simproc]
haftmann@21163
   356
wenzelm@21313
   357
end;
haftmann@21551
   358
haftmann@21551
   359
structure Splitter = Simpdata.Splitter;
haftmann@21551
   360
structure Clasimp = Simpdata.Clasimp;