author  paulson 
Fri, 16 Feb 1996 18:00:47 +0100  
changeset 1512  ce37c64244c0 
parent 70  8a29f8b4aca1 
permissions  rwrr 
0  1 
(* Title: ZF/indsyntax.ML 
2 
ID: $Id$ 

3 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory 

4 
Copyright 1993 University of Cambridge 

5 

6 
Abstract Syntax functions for Inductive Definitions 

7 
*) 

8 

9 

10 
(*SHOULD BE ABLE TO DELETE THESE!*) 

11 
fun flatten_typ sign T = 

12 
let val {syn,...} = Sign.rep_sg sign 

13 
in Pretty.str_of (Syntax.pretty_typ syn T) 

14 
end; 

15 
fun flatten_term sign t = Pretty.str_of (Sign.pretty_term sign t); 

16 

17 
(*Add constants to a theory*) 

18 
infix addconsts; 

19 
fun thy addconsts const_decs = 

20 
extend_theory thy (space_implode "_" (flat (map #1 const_decs)) 

21 
^ "_Theory") 

22 
([], [], [], [], const_decs, None) []; 

23 

24 

25 
(*Make a definition, lhs==rhs, checking that vars on lhs contain *) 

26 
fun mk_defpair sign (lhs,rhs) = 

27 
let val Const(name,_) = head_of lhs 

28 
val dummy = assert (term_vars rhs subset term_vars lhs 

29 
andalso 

30 
term_frees rhs subset term_frees lhs 

31 
andalso 

32 
term_tvars rhs subset term_tvars lhs 

33 
andalso 

34 
term_tfrees rhs subset term_tfrees lhs) 

35 
("Extra variables on RHS in definition of " ^ name) 

36 
in (name ^ "_def", 

37 
flatten_term sign (Logic.mk_equals (lhs,rhs))) 

38 
end; 

39 

40 
fun lookup_const sign a = Symtab.lookup(#const_tab (Sign.rep_sg sign), a); 

41 

42 
(*export to Pure/library? *) 

43 
fun assert_all pred l msg_fn = 

44 
let fun asl [] = () 

45 
 asl (x::xs) = if pred x then asl xs 

46 
else error (msg_fn x) 

47 
in asl l end; 

48 

49 

50 
(** Abstract syntax definitions for FOL and ZF **) 

51 

52 
val iT = Type("i",[]) 

53 
and oT = Type("o",[]); 

54 

55 
fun ap t u = t$u; 

56 
fun app t (u1,u2) = t $ u1 $ u2; 

57 

58 
(*Given u expecting arguments of types [T1,...,Tn], create term of 

59 
type T1*...*Tn => i using split*) 

60 
fun ap_split split u [ ] = Abs("null", iT, u) 

61 
 ap_split split u [_] = u 

62 
 ap_split split u [_,_] = split $ u 

63 
 ap_split split u (T::Ts) = 

64 
split $ (Abs("v", T, ap_split split (u $ Bound(length Ts  2)) Ts)); 

65 

66 
val conj = Const("op &", [oT,oT]>oT) 

67 
and disj = Const("op ", [oT,oT]>oT) 

68 
and imp = Const("op >", [oT,oT]>oT); 

69 

70 
val eq_const = Const("op =", [iT,iT]>oT); 

71 

72 
val mem_const = Const("op :", [iT,iT]>oT); 

73 

74 
val exists_const = Const("Ex", [iT>oT]>oT); 

75 
fun mk_exists (Free(x,T),P) = exists_const $ (absfree (x,T,P)); 

76 

77 
val all_const = Const("All", [iT>oT]>oT); 

78 
fun mk_all (Free(x,T),P) = all_const $ (absfree (x,T,P)); 

79 

80 
(*Creates All(%v.v:A > P(v)) rather than Ball(A,P) *) 

81 
fun mk_all_imp (A,P) = 

82 
all_const $ Abs("v", iT, imp $ (mem_const $ Bound 0 $ A) $ (P $ Bound 0)); 

83 

84 

85 
val Part_const = Const("Part", [iT,iT>iT]>iT); 

86 

87 
val Collect_const = Const("Collect", [iT,iT>oT]>iT); 

88 
fun mk_Collect (a,D,t) = Collect_const $ D $ absfree(a, iT, t); 

89 

90 
val Trueprop = Const("Trueprop",oT>propT); 

91 
fun mk_tprop P = Trueprop $ P; 

92 
fun dest_tprop (Const("Trueprop",_) $ P) = P; 

93 

94 
(*Prove a goal stated as a term, with exception handling*) 

95 
fun prove_term sign defs (P,tacsf) = 

96 
let val ct = Sign.cterm_of sign P 

97 
in prove_goalw_cterm defs ct tacsf 

98 
handle e => (writeln ("Exception in proof of\n" ^ 

99 
Sign.string_of_cterm ct); 

100 
raise e) 

101 
end; 

102 

103 
(*Read an assumption in the given theory*) 

104 
fun assume_read thy a = assume (Sign.read_cterm (sign_of thy) (a,propT)); 

105 

106 
(*Make distinct individual variables a1, a2, a3, ..., an. *) 

107 
fun mk_frees a [] = [] 

108 
 mk_frees a (T::Ts) = Free(a,T) :: mk_frees (bump_string a) Ts; 

109 

110 
(*Used by intrelim.ML and in individual datatype definitions*) 

111 
val basic_monos = [subset_refl, imp_refl, disj_mono, conj_mono, 

112 
ex_mono, Collect_mono, Part_mono, in_mono]; 

113 

14
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

114 
(*Return the conclusion of a rule, of the form t:X*) 
0  115 
fun rule_concl rl = 
14
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

116 
case dest_tprop (Logic.strip_imp_concl rl) of 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

117 
Const("op :",_) $ t $ X => (t,X) 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
lcp
parents:
6
diff
changeset

118 
 _ => error "Conclusion of rule should be a set membership"; 
0  119 

120 
(*For deriving cases rules. CollectD2 discards the domain, which is redundant; 

121 
read_instantiate replaces a propositional variable by a formula variable*) 

122 
val equals_CollectD = 

123 
read_instantiate [("W","?Q")] 

124 
(make_elim (equalityD1 RS subsetD RS CollectD2)); 

125 

126 

127 
(*From HOL/ex/meson.ML: raises exception if no rules apply  unlike RL*) 

128 
fun tryres (th, rl::rls) = (th RS rl handle THM _ => tryres(th,rls)) 

129 
 tryres (th, []) = raise THM("tryres", 0, [th]); 

130 

131 
fun gen_make_elim elim_rls rl = 

132 
standard (tryres (rl, elim_rls @ [revcut_rl])); 

133 

134 
(** For constructor.ML **) 

135 

136 
(*Avoids duplicate definitions by removing constants already declared mixfix*) 

137 
fun remove_mixfixes None decs = decs 

138 
 remove_mixfixes (Some sext) decs = 

139 
let val mixtab = Symtab.st_of_declist(Syntax.constants sext, Symtab.null) 

140 
fun is_mix c = case Symtab.lookup(mixtab,c) of 

141 
None=>false  Some _ => true 

142 
in map (fn (cs,styp)=> (filter_out is_mix cs, styp)) decs 

143 
end; 

144 

145 
fun ext_constants None = [] 

146 
 ext_constants (Some sext) = Syntax.constants sext; 

147 

148 

149 
(*Could go to FOL, but it's hardly general*) 

150 
val [def] = goal IFOL.thy "a==b ==> a=c <> c=b"; 

151 
by (rewtac def); 

152 
by (rtac iffI 1); 

153 
by (REPEAT (etac sym 1)); 

154 
val def_swap_iff = result(); 

155 

156 
val def_trans = prove_goal IFOL.thy "[ f==g; g(a)=b ] ==> f(a)=b" 

157 
(fn [rew,prem] => [ rewtac rew, rtac prem 1 ]); 

158 

55  159 
(*Delete needless equality assumptions*) 
160 
val refl_thin = prove_goal IFOL.thy "!!P. [ a=a; P ] ==> P" 

161 
(fn _ => [assume_tac 1]); 

0  162 