author  paulson 
Fri, 16 Feb 1996 18:00:47 +0100  
changeset 1512  ce37c64244c0 
parent 1461  6bcb44e4d6e5 
child 2469  b50b8c0eec01 
permissions  rwrr 
1461  1 
(* Title: ZF/mono 
0  2 
ID: $Id$ 
1461  3 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory 
0  4 
Copyright 1993 University of Cambridge 
5 

6 
Monotonicity of various operations (for lattice properties see subset.ML) 

7 
*) 

8 

9 
(** Replacement, in its various formulations **) 

10 

11 
(*Not easy to express monotonicity in P, since any "bigger" predicate 

12 
would have to be singlevalued*) 

13 
goal ZF.thy "!!A B. A<=B ==> Replace(A,P) <= Replace(B,P)"; 

485  14 
by (fast_tac (ZF_cs addSEs [ReplaceE]) 1); 
760  15 
qed "Replace_mono"; 
0  16 

17 
goal ZF.thy "!!A B. A<=B ==> {f(x). x:A} <= {f(x). x:B}"; 

18 
by (fast_tac ZF_cs 1); 

760  19 
qed "RepFun_mono"; 
0  20 

21 
goal ZF.thy "!!A B. A<=B ==> Pow(A) <= Pow(B)"; 

22 
by (fast_tac ZF_cs 1); 

760  23 
qed "Pow_mono"; 
0  24 

25 
goal ZF.thy "!!A B. A<=B ==> Union(A) <= Union(B)"; 

26 
by (fast_tac ZF_cs 1); 

760  27 
qed "Union_mono"; 
0  28 

29 
val prems = goal ZF.thy 

30 
"[ A<=C; !!x. x:A ==> B(x)<=D(x) \ 

31 
\ ] ==> (UN x:A. B(x)) <= (UN x:C. D(x))"; 

32 
by (fast_tac (ZF_cs addIs (prems RL [subsetD])) 1); 

760  33 
qed "UN_mono"; 
0  34 

35 
(*Intersection is ANTImonotonic. There are TWO premises! *) 

36 
goal ZF.thy "!!A B. [ A<=B; a:A ] ==> Inter(B) <= Inter(A)"; 

37 
by (fast_tac ZF_cs 1); 

760  38 
qed "Inter_anti_mono"; 
0  39 

40 
goal ZF.thy "!!C D. C<=D ==> cons(a,C) <= cons(a,D)"; 

41 
by (fast_tac ZF_cs 1); 

760  42 
qed "cons_mono"; 
0  43 

44 
goal ZF.thy "!!A B C D. [ A<=C; B<=D ] ==> A Un B <= C Un D"; 

45 
by (fast_tac ZF_cs 1); 

760  46 
qed "Un_mono"; 
0  47 

48 
goal ZF.thy "!!A B C D. [ A<=C; B<=D ] ==> A Int B <= C Int D"; 

49 
by (fast_tac ZF_cs 1); 

760  50 
qed "Int_mono"; 
0  51 

52 
goal ZF.thy "!!A B C D. [ A<=C; D<=B ] ==> AB <= CD"; 

53 
by (fast_tac ZF_cs 1); 

760  54 
qed "Diff_mono"; 
0  55 

56 
(** Standard products, sums and function spaces **) 

57 

58 
goal ZF.thy "!!A B C D. [ A<=C; ALL x:A. B(x) <= D(x) ] ==> \ 

59 
\ Sigma(A,B) <= Sigma(C,D)"; 

60 
by (fast_tac ZF_cs 1); 

760  61 
qed "Sigma_mono_lemma"; 
0  62 
val Sigma_mono = ballI RSN (2,Sigma_mono_lemma); 
63 

64 
goalw Sum.thy sum_defs "!!A B C D. [ A<=C; B<=D ] ==> A+B <= C+D"; 

65 
by (REPEAT (ares_tac [subset_refl,Un_mono,Sigma_mono] 1)); 

760  66 
qed "sum_mono"; 
0  67 

68 
(*Note that B>A and C>A are typically disjoint!*) 

69 
goal ZF.thy "!!A B C. B<=C ==> A>B <= A>C"; 

70 
by (fast_tac (ZF_cs addIs [lam_type] addEs [Pi_lamE]) 1); 

760  71 
qed "Pi_mono"; 
0  72 

73 
goalw ZF.thy [lam_def] "!!A B. A<=B ==> Lambda(A,c) <= Lambda(B,c)"; 

74 
by (etac RepFun_mono 1); 

760  75 
qed "lam_mono"; 
0  76 

77 
(** Quineinspired ordered pairs, products, injections and sums **) 

78 

79 
goalw QPair.thy [QPair_def] "!!a b c d. [ a<=c; b<=d ] ==> <a;b> <= <c;d>"; 

80 
by (REPEAT (ares_tac [sum_mono] 1)); 

760  81 
qed "QPair_mono"; 
0  82 

83 
goal QPair.thy "!!A B C D. [ A<=C; ALL x:A. B(x) <= D(x) ] ==> \ 

84 
\ QSigma(A,B) <= QSigma(C,D)"; 

744  85 
by (fast_tac qpair_cs 1); 
760  86 
qed "QSigma_mono_lemma"; 
0  87 
val QSigma_mono = ballI RSN (2,QSigma_mono_lemma); 
88 

89 
goalw QPair.thy [QInl_def] "!!a b. a<=b ==> QInl(a) <= QInl(b)"; 

90 
by (REPEAT (ares_tac [subset_refl RS QPair_mono] 1)); 

760  91 
qed "QInl_mono"; 
0  92 

93 
goalw QPair.thy [QInr_def] "!!a b. a<=b ==> QInr(a) <= QInr(b)"; 

94 
by (REPEAT (ares_tac [subset_refl RS QPair_mono] 1)); 

760  95 
qed "QInr_mono"; 
0  96 

97 
goal QPair.thy "!!A B C D. [ A<=C; B<=D ] ==> A <+> B <= C <+> D"; 

98 
by (fast_tac qsum_cs 1); 

760  99 
qed "qsum_mono"; 
0  100 

101 

102 
(** Converse, domain, range, field **) 

103 

104 
goal ZF.thy "!!r s. r<=s ==> converse(r) <= converse(s)"; 

105 
by (fast_tac ZF_cs 1); 

760  106 
qed "converse_mono"; 
0  107 

108 
goal ZF.thy "!!r s. r<=s ==> domain(r)<=domain(s)"; 

109 
by (fast_tac ZF_cs 1); 

760  110 
qed "domain_mono"; 
0  111 

811
9bac814082e4
Used bind_thm to store domain_rel_subset and range_rel_subset
lcp
parents:
760
diff
changeset

112 
bind_thm ("domain_rel_subset", [domain_mono, domain_subset] MRS subset_trans); 
0  113 

114 
goal ZF.thy "!!r s. r<=s ==> range(r)<=range(s)"; 

115 
by (fast_tac ZF_cs 1); 

760  116 
qed "range_mono"; 
0  117 

811
9bac814082e4
Used bind_thm to store domain_rel_subset and range_rel_subset
lcp
parents:
760
diff
changeset

118 
bind_thm ("range_rel_subset", [range_mono, range_subset] MRS subset_trans); 
0  119 

120 
goal ZF.thy "!!r s. r<=s ==> field(r)<=field(s)"; 

121 
by (fast_tac ZF_cs 1); 

760  122 
qed "field_mono"; 
0  123 

124 
goal ZF.thy "!!r A. r <= A*A ==> field(r) <= A"; 

125 
by (etac (field_mono RS subset_trans) 1); 

126 
by (fast_tac ZF_cs 1); 

760  127 
qed "field_rel_subset"; 
0  128 

129 

130 
(** Images **) 

131 

132 
val [prem1,prem2] = goal ZF.thy 

133 
"[ !! x y. <x,y>:r ==> <x,y>:s; A<=B ] ==> r``A <= s``B"; 

134 
by (fast_tac (ZF_cs addIs [prem1, prem2 RS subsetD]) 1); 

760  135 
qed "image_pair_mono"; 
0  136 

137 
val [prem1,prem2] = goal ZF.thy 

138 
"[ !! x y. <x,y>:r ==> <x,y>:s; A<=B ] ==> r``A <= s``B"; 

139 
by (fast_tac (ZF_cs addIs [prem1, prem2 RS subsetD]) 1); 

760  140 
qed "vimage_pair_mono"; 
0  141 

142 
goal ZF.thy "!!r s. [ r<=s; A<=B ] ==> r``A <= s``B"; 

143 
by (fast_tac ZF_cs 1); 

760  144 
qed "image_mono"; 
0  145 

146 
goal ZF.thy "!!r s. [ r<=s; A<=B ] ==> r``A <= s``B"; 

147 
by (fast_tac ZF_cs 1); 

760  148 
qed "vimage_mono"; 
0  149 

150 
val [sub,PQimp] = goal ZF.thy 

151 
"[ A<=B; !!x. x:A ==> P(x) > Q(x) ] ==> Collect(A,P) <= Collect(B,Q)"; 

152 
by (fast_tac (ZF_cs addIs [sub RS subsetD, PQimp RS mp]) 1); 

760  153 
qed "Collect_mono"; 
0  154 

155 
(** Monotonicity of implications  some could go to FOL **) 

156 

157 
goal ZF.thy "!!A B x. A<=B ==> x:A > x:B"; 

744  158 
by (fast_tac ZF_cs 1); 
760  159 
qed "in_mono"; 
0  160 

161 
goal IFOL.thy "!!P1 P2 Q1 Q2. [ P1>Q1; P2>Q2 ] ==> (P1&P2) > (Q1&Q2)"; 

162 
by (Int.fast_tac 1); 

760  163 
qed "conj_mono"; 
0  164 

165 
goal IFOL.thy "!!P1 P2 Q1 Q2. [ P1>Q1; P2>Q2 ] ==> (P1P2) > (Q1Q2)"; 

166 
by (Int.fast_tac 1); 

760  167 
qed "disj_mono"; 
0  168 

169 
goal IFOL.thy "!!P1 P2 Q1 Q2.[ Q1>P1; P2>Q2 ] ==> (P1>P2)>(Q1>Q2)"; 

170 
by (Int.fast_tac 1); 

760  171 
qed "imp_mono"; 
0  172 

173 
goal IFOL.thy "P>P"; 

174 
by (rtac impI 1); 

175 
by (assume_tac 1); 

760  176 
qed "imp_refl"; 
0  177 

178 
val [PQimp] = goal IFOL.thy 

179 
"[ !!x. P(x) > Q(x) ] ==> (EX x.P(x)) > (EX x.Q(x))"; 

180 
by (fast_tac (FOL_cs addIs [PQimp RS mp]) 1); 

760  181 
qed "ex_mono"; 
0  182 

183 
val [PQimp] = goal IFOL.thy 

184 
"[ !!x. P(x) > Q(x) ] ==> (ALL x.P(x)) > (ALL x.Q(x))"; 

185 
by (fast_tac (FOL_cs addIs [PQimp RS mp]) 1); 

760  186 
qed "all_mono"; 
516  187 

188 
(*Used in intr_elim.ML and in individual datatype definitions*) 

189 
val basic_monos = [subset_refl, imp_refl, disj_mono, conj_mono, 

1461  190 
ex_mono, Collect_mono, Part_mono, in_mono]; 
516  191 