0

1 
(* Title: ZF/zf.thy


2 
ID: $Id$


3 
Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory


4 
Copyright 1993 University of Cambridge


5 


6 
ZermeloFraenkel Set Theory


7 
*)


8 


9 
ZF = FOL +


10 


11 
types

49

12 
i, is 0

0

13 


14 
arities


15 
i :: term


16 


17 


18 
consts


19 

80

20 
"0" :: "i" ("0") (*the empty set*)


21 
Pow :: "i => i" (*power sets*)


22 
Inf :: "i" (*infinite set*)

0

23 


24 
(* Bounded Quantifiers *)


25 

80

26 
"@Ball" :: "[idt, i, o] => o" ("(3ALL _:_./ _)" 10)


27 
"@Bex" :: "[idt, i, o] => o" ("(3EX _:_./ _)" 10)


28 
Ball :: "[i, i => o] => o"


29 
Bex :: "[i, i => o] => o"

0

30 


31 
(* General Union and Intersection *)


32 

80

33 
"@INTER" :: "[idt, i, i] => i" ("(3INT _:_./ _)" 10)


34 
"@UNION" :: "[idt, i, i] => i" ("(3UN _:_./ _)" 10)


35 
Union, Inter :: "i => i"

0

36 


37 
(* Variations on Replacement *)


38 

80

39 
"@Replace" :: "[idt, idt, i, o] => i" ("(1{_ ./ _: _, _})")


40 
"@RepFun" :: "[i, idt, i] => i" ("(1{_ ./ _: _})")


41 
"@Collect" :: "[idt, i, o] => i" ("(1{_: _ ./ _})")


42 
PrimReplace :: "[i, [i, i] => o] => i"


43 
Replace :: "[i, [i, i] => o] => i"


44 
RepFun :: "[i, i => i] => i"


45 
Collect :: "[i, i => o] => i"

0

46 


47 
(* Descriptions *)


48 

80

49 
The :: "(i => o) => i" (binder "THE " 10)


50 
if :: "[o, i, i] => i"

0

51 


52 
(* Enumerations of type i *)


53 

80

54 
"" :: "i => is" ("_")


55 
"@Enum" :: "[i, is] => is" ("_,/ _")

0

56 


57 
(* Finite Sets *)


58 

80

59 
"@Finset" :: "is => i" ("{(_)}")


60 
Upair, cons :: "[i, i] => i"


61 
succ :: "i => i"

0

62 


63 
(* Ordered Pairing and nTuples *)


64 

80

65 
"@Tuple" :: "[i, is] => i" ("<(_,/ _)>")


66 
Pair :: "[i, i] => i"


67 
fst, snd :: "i => i"


68 
split :: "[[i, i] => i, i] => i"


69 
fsplit :: "[[i, i] => o, i] => o"

0

70 


71 
(* Sigma and Pi Operators *)


72 

80

73 
"@PROD" :: "[idt, i, i] => i" ("(3PROD _:_./ _)" 10)


74 
"@SUM" :: "[idt, i, i] => i" ("(3SUM _:_./ _)" 10)


75 
"@lam" :: "[idt, i, i] => i" ("(3lam _:_./ _)" 10)


76 
Pi, Sigma :: "[i, i => i] => i"

0

77 


78 
(* Relations and Functions *)


79 

80

80 
domain :: "i => i"


81 
range :: "i => i"


82 
field :: "i => i"


83 
converse :: "i => i"


84 
Lambda :: "[i, i => i] => i"


85 
restrict :: "[i, i] => i"

0

86 


87 
(* Infixes in order of decreasing precedence *)


88 

80

89 
"``" :: "[i, i] => i" (infixl 90) (*image*)


90 
"``" :: "[i, i] => i" (infixl 90) (*inverse image*)


91 
"`" :: "[i, i] => i" (infixl 90) (*function application*)

0

92 

80

93 
(*Except for their translations, * and > are right and ~: left associative infixes*)


94 
" *" :: "[i, i] => i" ("(_ */ _)" [81, 80] 80) (*Cartesian product*)


95 
"Int" :: "[i, i] => i" (infixl 70) (*binary intersection*)


96 
"Un" :: "[i, i] => i" (infixl 65) (*binary union*)


97 
"" :: "[i, i] => i" (infixl 65) (*set difference*)


98 
" >" :: "[i, i] => i" ("(_ >/ _)" [61, 60] 60) (*function space*)


99 
"<=" :: "[i, i] => o" (infixl 50) (*subset relation*)


100 
":" :: "[i, i] => o" (infixl 50) (*membership relation*)


101 
"~:" :: "[i, i] => o" ("(_ ~:/ _)" [50, 51] 50) (*negated membership relation*)

0

102 


103 


104 
translations


105 
"{x, xs}" == "cons(x, {xs})"


106 
"{x}" == "cons(x, 0)"

49

107 
"<x, y, z>" == "<x, <y, z>>"


108 
"<x, y>" == "Pair(x, y)"

0

109 
"{x:A. P}" == "Collect(A, %x. P)"


110 
"{y. x:A, Q}" == "Replace(A, %x y. Q)"


111 
"{f. x:A}" == "RepFun(A, %x. f)"


112 
"INT x:A. B" == "Inter({B. x:A})"


113 
"UN x:A. B" == "Union({B. x:A})"


114 
"PROD x:A. B" => "Pi(A, %x. B)"


115 
"SUM x:A. B" => "Sigma(A, %x. B)"

49

116 
"A > B" => "Pi(A, _K(B))"


117 
"A * B" => "Sigma(A, _K(B))"

0

118 
"lam x:A. f" == "Lambda(A, %x. f)"


119 
"ALL x:A. P" == "Ball(A, %x. P)"


120 
"EX x:A. P" == "Bex(A, %x. P)"

80

121 
"x ~: y" == "~ (x : y)"

37

122 

0

123 


124 
rules


125 


126 
(* Bounded Quantifiers *)


127 
Ball_def "Ball(A,P) == ALL x. x:A > P(x)"


128 
Bex_def "Bex(A,P) == EX x. x:A & P(x)"


129 
subset_def "A <= B == ALL x:A. x:B"


130 


131 
(* ZF axioms  see Suppes p.238


132 
Axioms for Union, Pow and Replace state existence only,


133 
uniqueness is derivable using extensionality. *)


134 


135 
extension "A = B <> A <= B & B <= A"


136 
union_iff "A : Union(C) <> (EX B:C. A:B)"


137 
power_set "A : Pow(B) <> A <= B"


138 
succ_def "succ(i) == cons(i,i)"


139 


140 
(*We may name this set, though it is not uniquely defined. *)


141 
infinity "0:Inf & (ALL y:Inf. succ(y): Inf)"


142 


143 
(*This formulation facilitates case analysis on A. *)

37

144 
foundation "A=0  (EX x:A. ALL y:x. y~:A)"

0

145 


146 
(* Schema axiom since predicate P is a higherorder variable *)


147 
replacement "(ALL x:A. ALL y z. P(x,y) & P(x,z) > y=z) ==> \


148 
\ b : PrimReplace(A,P) <> (EX x:A. P(x,b))"


149 


150 
(* Derived form of replacement, restricting P to its functional part.


151 
The resulting set (for functional P) is the same as with


152 
PrimReplace, but the rules are simpler. *)


153 
Replace_def "Replace(A,P) == PrimReplace(A, %x y. (EX!z.P(x,z)) & P(x,y))"


154 


155 
(* Functional form of replacement  analgous to ML's map functional *)


156 
RepFun_def "RepFun(A,f) == {y . x:A, y=f(x)}"


157 


158 
(* Separation and Pairing can be derived from the Replacement


159 
and Powerset Axioms using the following definitions. *)


160 


161 
Collect_def "Collect(A,P) == {y . x:A, x=y & P(x)}"


162 


163 
(*Unordered pairs (Upair) express binary union/intersection and cons;


164 
set enumerations translate as {a,...,z} = cons(a,...,cons(z,0)...) *)


165 
Upair_def "Upair(a,b) == {y. x:Pow(Pow(0)), (x=0 & y=a)  (x=Pow(0) & y=b)}"


166 
cons_def "cons(a,A) == Upair(a,a) Un A"


167 


168 
(* Difference, general intersection, binary union and small intersection *)


169 


170 
Diff_def "A  B == { x:A . ~(x:B) }"


171 
Inter_def "Inter(A) == { x:Union(A) . ALL y:A. x:y}"


172 
Un_def "A Un B == Union(Upair(A,B))"


173 
Int_def "A Int B == Inter(Upair(A,B))"


174 


175 
(* Definite descriptions  via Replace over the set "1" *)


176 


177 
the_def "The(P) == Union({y . x:{0}, P(y)})"


178 
if_def "if(P,a,b) == THE z. P & z=a  ~P & z=b"


179 


180 
(* Ordered pairs and disjoint union of a family of sets *)


181 


182 
(* this "symmetric" definition works better than {{a}, {a,b}} *)


183 
Pair_def "<a,b> == {{a,a}, {a,b}}"


184 
fst_def "fst == split(%x y.x)"


185 
snd_def "snd == split(%x y.y)"


186 
split_def "split(c,p) == THE y. EX a b. p=<a,b> & y=c(a,b)"


187 
fsplit_def "fsplit(R,z) == EX x y. z=<x,y> & R(x,y)"


188 
Sigma_def "Sigma(A,B) == UN x:A. UN y:B(x). {<x,y>}"


189 


190 
(* Operations on relations *)


191 


192 
(*converse of relation r, inverse of function*)


193 
converse_def "converse(r) == {z. w:r, EX x y. w=<x,y> & z=<y,x>}"


194 


195 
domain_def "domain(r) == {x. w:r, EX y. w=<x,y>}"


196 
range_def "range(r) == domain(converse(r))"


197 
field_def "field(r) == domain(r) Un range(r)"


198 
image_def "r `` A == {y : range(r) . EX x:A. <x,y> : r}"


199 
vimage_def "r `` A == converse(r)``A"


200 


201 
(* Abstraction, application and Cartesian product of a family of sets *)


202 


203 
lam_def "Lambda(A,b) == {<x,b(x)> . x:A}"


204 
apply_def "f`a == THE y. <a,y> : f"


205 
Pi_def "Pi(A,B) == {f: Pow(Sigma(A,B)). ALL x:A. EX! y. <x,y>: f}"


206 


207 
(* Restrict the function f to the domain A *)


208 
restrict_def "restrict(f,A) == lam x:A.f`x"


209 


210 
end


211 


212 


213 
ML


214 


215 
(* 'Dependent' type operators *)


216 


217 
val print_translation =


218 
[("Pi", dependent_tr' ("@PROD", " >")),


219 
("Sigma", dependent_tr' ("@SUM", " *"))];

49

220 
