src/HOL/Product_Type.thy
author blanchet
Wed Feb 12 08:35:56 2014 +0100 (2014-02-12)
changeset 55393 ce5cebfaedda
parent 54630 9061af4d5ebc
child 55403 677569668824
permissions -rw-r--r--
se 'wrap_free_constructors' to register 'sum' , 'prod', 'unit', 'bool' with their discriminators/selectors
* * *
cleaner simp/iff sets
nipkow@10213
     1
(*  Title:      HOL/Product_Type.thy
nipkow@10213
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
nipkow@10213
     3
    Copyright   1992  University of Cambridge
wenzelm@11777
     4
*)
nipkow@10213
     5
wenzelm@11838
     6
header {* Cartesian products *}
nipkow@10213
     7
nipkow@15131
     8
theory Product_Type
haftmann@33959
     9
imports Typedef Inductive Fun
wenzelm@46950
    10
keywords "inductive_set" "coinductive_set" :: thy_decl
nipkow@15131
    11
begin
wenzelm@11838
    12
haftmann@24699
    13
subsection {* @{typ bool} is a datatype *}
haftmann@24699
    14
blanchet@55393
    15
wrap_free_constructors [True, False] bool_case [=]
blanchet@55393
    16
by auto
blanchet@55393
    17
blanchet@55393
    18
-- {* Avoid name clashes by prefixing the output of @{text rep_datatype} with @{text old}. *}
blanchet@55393
    19
setup {* Sign.mandatory_path "old" *}
blanchet@55393
    20
haftmann@27104
    21
rep_datatype True False by (auto intro: bool_induct)
haftmann@24699
    22
blanchet@55393
    23
setup {* Sign.parent_path *}
blanchet@55393
    24
blanchet@55393
    25
-- {* But erase the prefix for properties that are not generated by @{text wrap_free_constructors}. *}
blanchet@55393
    26
setup {* Sign.mandatory_path "bool" *}
blanchet@55393
    27
blanchet@55393
    28
declare old.bool.cases[simp del]
blanchet@55393
    29
blanchet@55393
    30
lemmas induct = old.bool.induct
blanchet@55393
    31
lemmas inducts = old.bool.inducts
blanchet@55393
    32
lemmas recs = old.bool.recs
blanchet@55393
    33
lemmas cases = bool.case
blanchet@55393
    34
lemmas simps = bool.distinct bool.case old.bool.recs
blanchet@55393
    35
blanchet@55393
    36
setup {* Sign.parent_path *}
blanchet@55393
    37
haftmann@24699
    38
declare case_split [cases type: bool]
haftmann@24699
    39
  -- "prefer plain propositional version"
haftmann@24699
    40
haftmann@28346
    41
lemma
haftmann@38857
    42
  shows [code]: "HOL.equal False P \<longleftrightarrow> \<not> P"
haftmann@38857
    43
    and [code]: "HOL.equal True P \<longleftrightarrow> P" 
haftmann@46630
    44
    and [code]: "HOL.equal P False \<longleftrightarrow> \<not> P"
haftmann@38857
    45
    and [code]: "HOL.equal P True \<longleftrightarrow> P"
haftmann@38857
    46
    and [code nbe]: "HOL.equal P P \<longleftrightarrow> True"
haftmann@38857
    47
  by (simp_all add: equal)
haftmann@25534
    48
haftmann@43654
    49
lemma If_case_cert:
haftmann@43654
    50
  assumes "CASE \<equiv> (\<lambda>b. If b f g)"
haftmann@43654
    51
  shows "(CASE True \<equiv> f) &&& (CASE False \<equiv> g)"
haftmann@43654
    52
  using assms by simp_all
haftmann@43654
    53
haftmann@43654
    54
setup {*
haftmann@43654
    55
  Code.add_case @{thm If_case_cert}
haftmann@43654
    56
*}
haftmann@43654
    57
haftmann@52435
    58
code_printing
haftmann@52435
    59
  constant "HOL.equal :: bool \<Rightarrow> bool \<Rightarrow> bool" \<rightharpoonup> (Haskell) infix 4 "=="
haftmann@52435
    60
| class_instance "bool" :: "equal" \<rightharpoonup> (Haskell) -
haftmann@24699
    61
haftmann@26358
    62
haftmann@37166
    63
subsection {* The @{text unit} type *}
wenzelm@11838
    64
wenzelm@49834
    65
typedef unit = "{True}"
wenzelm@45694
    66
  by auto
wenzelm@11838
    67
wenzelm@45694
    68
definition Unity :: unit  ("'(')")
wenzelm@45694
    69
  where "() = Abs_unit True"
wenzelm@11838
    70
blanchet@35828
    71
lemma unit_eq [no_atp]: "u = ()"
huffman@40590
    72
  by (induct u) (simp add: Unity_def)
wenzelm@11838
    73
wenzelm@11838
    74
text {*
wenzelm@11838
    75
  Simplification procedure for @{thm [source] unit_eq}.  Cannot use
wenzelm@11838
    76
  this rule directly --- it loops!
wenzelm@11838
    77
*}
wenzelm@11838
    78
wenzelm@43594
    79
simproc_setup unit_eq ("x::unit") = {*
wenzelm@43594
    80
  fn _ => fn _ => fn ct =>
wenzelm@43594
    81
    if HOLogic.is_unit (term_of ct) then NONE
wenzelm@43594
    82
    else SOME (mk_meta_eq @{thm unit_eq})
wenzelm@11838
    83
*}
wenzelm@11838
    84
blanchet@55393
    85
wrap_free_constructors ["()"] unit_case
blanchet@55393
    86
by auto
blanchet@55393
    87
blanchet@55393
    88
-- {* Avoid name clashes by prefixing the output of @{text rep_datatype} with @{text old}. *}
blanchet@55393
    89
setup {* Sign.mandatory_path "old" *}
blanchet@55393
    90
haftmann@27104
    91
rep_datatype "()" by simp
haftmann@24699
    92
blanchet@55393
    93
setup {* Sign.parent_path *}
blanchet@55393
    94
blanchet@55393
    95
-- {* But erase the prefix for properties that are not generated by @{text wrap_free_constructors}. *}
blanchet@55393
    96
setup {* Sign.mandatory_path "unit" *}
blanchet@55393
    97
blanchet@55393
    98
declare old.unit.cases[simp del]
blanchet@55393
    99
blanchet@55393
   100
lemmas induct = old.unit.induct
blanchet@55393
   101
lemmas inducts = old.unit.inducts
blanchet@55393
   102
lemmas recs = old.unit.recs
blanchet@55393
   103
lemmas cases = unit.case
blanchet@55393
   104
lemmas simps = unit.case old.unit.recs
blanchet@55393
   105
blanchet@55393
   106
setup {* Sign.parent_path *}
blanchet@55393
   107
wenzelm@11838
   108
lemma unit_all_eq1: "(!!x::unit. PROP P x) == PROP P ()"
wenzelm@11838
   109
  by simp
wenzelm@11838
   110
wenzelm@11838
   111
lemma unit_all_eq2: "(!!x::unit. PROP P) == PROP P"
wenzelm@11838
   112
  by (rule triv_forall_equality)
wenzelm@11838
   113
wenzelm@11838
   114
text {*
wenzelm@43594
   115
  This rewrite counters the effect of simproc @{text unit_eq} on @{term
wenzelm@11838
   116
  [source] "%u::unit. f u"}, replacing it by @{term [source]
wenzelm@11838
   117
  f} rather than by @{term [source] "%u. f ()"}.
wenzelm@11838
   118
*}
wenzelm@11838
   119
blanchet@54147
   120
lemma unit_abs_eta_conv [simp]: "(%u::unit. f ()) = f"
wenzelm@11838
   121
  by (rule ext) simp
nipkow@10213
   122
blanchet@54147
   123
lemma UNIV_unit:
haftmann@43866
   124
  "UNIV = {()}" by auto
haftmann@43866
   125
haftmann@30924
   126
instantiation unit :: default
haftmann@30924
   127
begin
haftmann@30924
   128
haftmann@30924
   129
definition "default = ()"
haftmann@30924
   130
haftmann@30924
   131
instance ..
haftmann@30924
   132
haftmann@30924
   133
end
nipkow@10213
   134
haftmann@28562
   135
lemma [code]:
haftmann@38857
   136
  "HOL.equal (u\<Colon>unit) v \<longleftrightarrow> True" unfolding equal unit_eq [of u] unit_eq [of v] by rule+
haftmann@26358
   137
haftmann@52435
   138
code_printing
haftmann@52435
   139
  type_constructor unit \<rightharpoonup>
haftmann@52435
   140
    (SML) "unit"
haftmann@52435
   141
    and (OCaml) "unit"
haftmann@52435
   142
    and (Haskell) "()"
haftmann@52435
   143
    and (Scala) "Unit"
haftmann@52435
   144
| constant Unity \<rightharpoonup>
haftmann@52435
   145
    (SML) "()"
haftmann@52435
   146
    and (OCaml) "()"
haftmann@52435
   147
    and (Haskell) "()"
haftmann@52435
   148
    and (Scala) "()"
haftmann@52435
   149
| class_instance unit :: equal \<rightharpoonup>
haftmann@52435
   150
    (Haskell) -
haftmann@52435
   151
| constant "HOL.equal :: unit \<Rightarrow> unit \<Rightarrow> bool" \<rightharpoonup>
haftmann@52435
   152
    (Haskell) infix 4 "=="
haftmann@26358
   153
haftmann@26358
   154
code_reserved SML
haftmann@26358
   155
  unit
haftmann@26358
   156
haftmann@26358
   157
code_reserved OCaml
haftmann@26358
   158
  unit
haftmann@26358
   159
haftmann@34886
   160
code_reserved Scala
haftmann@34886
   161
  Unit
haftmann@34886
   162
haftmann@26358
   163
haftmann@37166
   164
subsection {* The product type *}
nipkow@10213
   165
haftmann@37166
   166
subsubsection {* Type definition *}
haftmann@37166
   167
haftmann@37166
   168
definition Pair_Rep :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where
haftmann@26358
   169
  "Pair_Rep a b = (\<lambda>x y. x = a \<and> y = b)"
nipkow@10213
   170
wenzelm@45696
   171
definition "prod = {f. \<exists>a b. f = Pair_Rep (a\<Colon>'a) (b\<Colon>'b)}"
wenzelm@45696
   172
wenzelm@49834
   173
typedef ('a, 'b) prod (infixr "*" 20) = "prod :: ('a \<Rightarrow> 'b \<Rightarrow> bool) set"
wenzelm@45696
   174
  unfolding prod_def by auto
nipkow@10213
   175
wenzelm@35427
   176
type_notation (xsymbols)
haftmann@37678
   177
  "prod"  ("(_ \<times>/ _)" [21, 20] 20)
wenzelm@35427
   178
type_notation (HTML output)
haftmann@37678
   179
  "prod"  ("(_ \<times>/ _)" [21, 20] 20)
nipkow@10213
   180
haftmann@37389
   181
definition Pair :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<times> 'b" where
haftmann@37389
   182
  "Pair a b = Abs_prod (Pair_Rep a b)"
haftmann@37166
   183
blanchet@55393
   184
lemma prod_cases: "(\<And>a b. P (Pair a b)) \<Longrightarrow> P p"
blanchet@55393
   185
  by (cases p) (auto simp add: prod_def Pair_def Pair_Rep_def)
blanchet@55393
   186
blanchet@55393
   187
wrap_free_constructors [Pair] prod_case [] [[fst, snd]]
blanchet@55393
   188
proof -
blanchet@55393
   189
  fix P :: bool and p :: "'a \<times> 'b"
blanchet@55393
   190
  show "(\<And>x1 x2. p = Pair x1 x2 \<Longrightarrow> P) \<Longrightarrow> P"
blanchet@55393
   191
    by (cases p) (auto simp add: prod_def Pair_def Pair_Rep_def)
haftmann@37166
   192
next
haftmann@37166
   193
  fix a c :: 'a and b d :: 'b
haftmann@37166
   194
  have "Pair_Rep a b = Pair_Rep c d \<longleftrightarrow> a = c \<and> b = d"
nipkow@39302
   195
    by (auto simp add: Pair_Rep_def fun_eq_iff)
haftmann@37389
   196
  moreover have "Pair_Rep a b \<in> prod" and "Pair_Rep c d \<in> prod"
haftmann@37389
   197
    by (auto simp add: prod_def)
haftmann@37166
   198
  ultimately show "Pair a b = Pair c d \<longleftrightarrow> a = c \<and> b = d"
haftmann@37389
   199
    by (simp add: Pair_def Abs_prod_inject)
haftmann@37166
   200
qed
haftmann@37166
   201
blanchet@55393
   202
-- {* Avoid name clashes by prefixing the output of @{text rep_datatype} with @{text old}. *}
blanchet@55393
   203
setup {* Sign.mandatory_path "old" *}
blanchet@55393
   204
blanchet@55393
   205
rep_datatype Pair
blanchet@55393
   206
proof -
blanchet@55393
   207
  fix P :: "'a \<times> 'b \<Rightarrow> bool" and p
blanchet@55393
   208
  assume "\<And>a b. P (Pair a b)"
blanchet@55393
   209
  then show "P p" by (cases p) (auto simp add: prod_def Pair_def Pair_Rep_def)
blanchet@55393
   210
next
blanchet@55393
   211
  fix a c :: 'a and b d :: 'b
blanchet@55393
   212
  show "Pair a b = Pair c d \<longleftrightarrow> a = c \<and> b = d"
blanchet@55393
   213
    by (rule prod.inject)
blanchet@55393
   214
qed
blanchet@55393
   215
blanchet@55393
   216
setup {* Sign.parent_path *}
blanchet@37704
   217
blanchet@55393
   218
-- {* But erase the prefix for properties that are not generated by @{text wrap_free_constructors}. *}
blanchet@55393
   219
setup {* Sign.mandatory_path "prod" *}
blanchet@55393
   220
blanchet@55393
   221
declare
blanchet@55393
   222
  old.prod.inject[iff del]
blanchet@55393
   223
  old.prod.cases[simp del]
blanchet@55393
   224
blanchet@55393
   225
lemmas induct = old.prod.induct
blanchet@55393
   226
lemmas inducts = old.prod.inducts
blanchet@55393
   227
lemmas recs = old.prod.recs
blanchet@55393
   228
lemmas cases = prod.case
blanchet@55393
   229
lemmas simps = prod.inject prod.case old.prod.recs
blanchet@55393
   230
blanchet@55393
   231
setup {* Sign.parent_path *}
blanchet@55393
   232
blanchet@55393
   233
declare prod.case [nitpick_simp del]
huffman@40929
   234
declare prod.weak_case_cong [cong del]
haftmann@37411
   235
haftmann@37166
   236
haftmann@37166
   237
subsubsection {* Tuple syntax *}
haftmann@37166
   238
haftmann@37591
   239
abbreviation (input) split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c" where
haftmann@37591
   240
  "split \<equiv> prod_case"
wenzelm@19535
   241
wenzelm@11777
   242
text {*
wenzelm@11777
   243
  Patterns -- extends pre-defined type @{typ pttrn} used in
wenzelm@11777
   244
  abstractions.
wenzelm@11777
   245
*}
nipkow@10213
   246
wenzelm@41229
   247
nonterminal tuple_args and patterns
nipkow@10213
   248
nipkow@10213
   249
syntax
nipkow@10213
   250
  "_tuple"      :: "'a => tuple_args => 'a * 'b"        ("(1'(_,/ _'))")
nipkow@10213
   251
  "_tuple_arg"  :: "'a => tuple_args"                   ("_")
nipkow@10213
   252
  "_tuple_args" :: "'a => tuple_args => tuple_args"     ("_,/ _")
oheimb@11025
   253
  "_pattern"    :: "[pttrn, patterns] => pttrn"         ("'(_,/ _')")
oheimb@11025
   254
  ""            :: "pttrn => patterns"                  ("_")
oheimb@11025
   255
  "_patterns"   :: "[pttrn, patterns] => patterns"      ("_,/ _")
nipkow@10213
   256
nipkow@10213
   257
translations
wenzelm@35115
   258
  "(x, y)" == "CONST Pair x y"
nipkow@51392
   259
  "_pattern x y" => "CONST Pair x y"
nipkow@51392
   260
  "_patterns x y" => "CONST Pair x y"
nipkow@10213
   261
  "_tuple x (_tuple_args y z)" == "_tuple x (_tuple_arg (_tuple y z))"
haftmann@37591
   262
  "%(x, y, zs). b" == "CONST prod_case (%x (y, zs). b)"
haftmann@37591
   263
  "%(x, y). b" == "CONST prod_case (%x y. b)"
wenzelm@35115
   264
  "_abs (CONST Pair x y) t" => "%(x, y). t"
haftmann@37166
   265
  -- {* The last rule accommodates tuples in `case C ... (x,y) ... => ...'
haftmann@37166
   266
     The (x,y) is parsed as `Pair x y' because it is logic, not pttrn *}
nipkow@10213
   267
wenzelm@35115
   268
(*reconstruct pattern from (nested) splits, avoiding eta-contraction of body;
wenzelm@35115
   269
  works best with enclosing "let", if "let" does not avoid eta-contraction*)
schirmer@14359
   270
print_translation {*
wenzelm@52143
   271
  let
wenzelm@52143
   272
    fun split_tr' [Abs (x, T, t as (Abs abs))] =
wenzelm@52143
   273
          (* split (%x y. t) => %(x,y) t *)
wenzelm@52143
   274
          let
wenzelm@52143
   275
            val (y, t') = Syntax_Trans.atomic_abs_tr' abs;
wenzelm@52143
   276
            val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, T, t');
wenzelm@52143
   277
          in
wenzelm@52143
   278
            Syntax.const @{syntax_const "_abs"} $
wenzelm@52143
   279
              (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@52143
   280
          end
wenzelm@52143
   281
      | split_tr' [Abs (x, T, (s as Const (@{const_syntax prod_case}, _) $ t))] =
wenzelm@52143
   282
          (* split (%x. (split (%y z. t))) => %(x,y,z). t *)
wenzelm@52143
   283
          let
wenzelm@52143
   284
            val Const (@{syntax_const "_abs"}, _) $
wenzelm@52143
   285
              (Const (@{syntax_const "_pattern"}, _) $ y $ z) $ t' = split_tr' [t];
wenzelm@52143
   286
            val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, T, t');
wenzelm@52143
   287
          in
wenzelm@52143
   288
            Syntax.const @{syntax_const "_abs"} $
wenzelm@52143
   289
              (Syntax.const @{syntax_const "_pattern"} $ x' $
wenzelm@52143
   290
                (Syntax.const @{syntax_const "_patterns"} $ y $ z)) $ t''
wenzelm@52143
   291
          end
wenzelm@52143
   292
      | split_tr' [Const (@{const_syntax prod_case}, _) $ t] =
wenzelm@52143
   293
          (* split (split (%x y z. t)) => %((x, y), z). t *)
wenzelm@52143
   294
          split_tr' [(split_tr' [t])] (* inner split_tr' creates next pattern *)
wenzelm@52143
   295
      | split_tr' [Const (@{syntax_const "_abs"}, _) $ x_y $ Abs abs] =
wenzelm@52143
   296
          (* split (%pttrn z. t) => %(pttrn,z). t *)
wenzelm@52143
   297
          let val (z, t) = Syntax_Trans.atomic_abs_tr' abs in
wenzelm@52143
   298
            Syntax.const @{syntax_const "_abs"} $
wenzelm@52143
   299
              (Syntax.const @{syntax_const "_pattern"} $ x_y $ z) $ t
wenzelm@52143
   300
          end
wenzelm@52143
   301
      | split_tr' _ = raise Match;
wenzelm@52143
   302
  in [(@{const_syntax prod_case}, K split_tr')] end
schirmer@14359
   303
*}
schirmer@14359
   304
schirmer@15422
   305
(* print "split f" as "\<lambda>(x,y). f x y" and "split (\<lambda>x. f x)" as "\<lambda>(x,y). f x y" *) 
schirmer@15422
   306
typed_print_translation {*
wenzelm@52143
   307
  let
wenzelm@52143
   308
    fun split_guess_names_tr' T [Abs (x, _, Abs _)] = raise Match
wenzelm@52143
   309
      | split_guess_names_tr' T [Abs (x, xT, t)] =
wenzelm@52143
   310
          (case (head_of t) of
wenzelm@52143
   311
            Const (@{const_syntax prod_case}, _) => raise Match
wenzelm@52143
   312
          | _ =>
wenzelm@52143
   313
            let 
wenzelm@52143
   314
              val (_ :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
wenzelm@52143
   315
              val (y, t') = Syntax_Trans.atomic_abs_tr' ("y", yT, incr_boundvars 1 t $ Bound 0);
wenzelm@52143
   316
              val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, xT, t');
wenzelm@52143
   317
            in
wenzelm@52143
   318
              Syntax.const @{syntax_const "_abs"} $
wenzelm@52143
   319
                (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@52143
   320
            end)
wenzelm@52143
   321
      | split_guess_names_tr' T [t] =
wenzelm@52143
   322
          (case head_of t of
wenzelm@52143
   323
            Const (@{const_syntax prod_case}, _) => raise Match
wenzelm@52143
   324
          | _ =>
wenzelm@52143
   325
            let
wenzelm@52143
   326
              val (xT :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
wenzelm@52143
   327
              val (y, t') =
wenzelm@52143
   328
                Syntax_Trans.atomic_abs_tr' ("y", yT, incr_boundvars 2 t $ Bound 1 $ Bound 0);
wenzelm@52143
   329
              val (x', t'') = Syntax_Trans.atomic_abs_tr' ("x", xT, t');
wenzelm@52143
   330
            in
wenzelm@52143
   331
              Syntax.const @{syntax_const "_abs"} $
wenzelm@52143
   332
                (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@52143
   333
            end)
wenzelm@52143
   334
      | split_guess_names_tr' _ _ = raise Match;
wenzelm@52143
   335
  in [(@{const_syntax prod_case}, K split_guess_names_tr')] end
schirmer@15422
   336
*}
schirmer@15422
   337
nipkow@42059
   338
(* Force eta-contraction for terms of the form "Q A (%p. prod_case P p)"
nipkow@42059
   339
   where Q is some bounded quantifier or set operator.
nipkow@42059
   340
   Reason: the above prints as "Q p : A. case p of (x,y) \<Rightarrow> P x y"
nipkow@42059
   341
   whereas we want "Q (x,y):A. P x y".
nipkow@42059
   342
   Otherwise prevent eta-contraction.
nipkow@42059
   343
*)
nipkow@42059
   344
print_translation {*
wenzelm@52143
   345
  let
wenzelm@52143
   346
    fun contract Q tr ctxt ts =
wenzelm@52143
   347
      (case ts of
wenzelm@52143
   348
        [A, Abs (_, _, (s as Const (@{const_syntax prod_case},_) $ t) $ Bound 0)] =>
wenzelm@52143
   349
          if Term.is_dependent t then tr ctxt ts
wenzelm@52143
   350
          else Syntax.const Q $ A $ s
wenzelm@52143
   351
      | _ => tr ctxt ts);
wenzelm@52143
   352
  in
wenzelm@42284
   353
    [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Ball} @{syntax_const "_Ball"},
wenzelm@42284
   354
     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Bex} @{syntax_const "_Bex"},
wenzelm@42284
   355
     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"},
wenzelm@42284
   356
     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"}]
wenzelm@52143
   357
    |> map (fn (Q, tr) => (Q, contract Q tr))
wenzelm@52143
   358
  end
nipkow@42059
   359
*}
nipkow@10213
   360
haftmann@37166
   361
subsubsection {* Code generator setup *}
haftmann@37166
   362
haftmann@52435
   363
code_printing
haftmann@52435
   364
  type_constructor prod \<rightharpoonup>
haftmann@52435
   365
    (SML) infix 2 "*"
haftmann@52435
   366
    and (OCaml) infix 2 "*"
haftmann@52435
   367
    and (Haskell) "!((_),/ (_))"
haftmann@52435
   368
    and (Scala) "((_),/ (_))"
haftmann@52435
   369
| constant Pair \<rightharpoonup>
haftmann@52435
   370
    (SML) "!((_),/ (_))"
haftmann@52435
   371
    and (OCaml) "!((_),/ (_))"
haftmann@52435
   372
    and (Haskell) "!((_),/ (_))"
haftmann@52435
   373
    and (Scala) "!((_),/ (_))"
haftmann@52435
   374
| class_instance  prod :: equal \<rightharpoonup>
haftmann@52435
   375
    (Haskell) -
haftmann@52435
   376
| constant "HOL.equal :: 'a \<times> 'b \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool" \<rightharpoonup>
haftmann@52435
   377
    (Haskell) infix 4 "=="
haftmann@37166
   378
haftmann@37166
   379
haftmann@37166
   380
subsubsection {* Fundamental operations and properties *}
wenzelm@11838
   381
bulwahn@49897
   382
lemma Pair_inject:
bulwahn@49897
   383
  assumes "(a, b) = (a', b')"
bulwahn@49897
   384
    and "a = a' ==> b = b' ==> R"
bulwahn@49897
   385
  shows R
bulwahn@49897
   386
  using assms by simp
bulwahn@49897
   387
haftmann@26358
   388
lemma surj_pair [simp]: "EX x y. p = (x, y)"
haftmann@37166
   389
  by (cases p) simp
nipkow@10213
   390
haftmann@52435
   391
code_printing
haftmann@52435
   392
  constant fst \<rightharpoonup> (Haskell) "fst"
haftmann@52435
   393
| constant snd \<rightharpoonup> (Haskell) "snd"
haftmann@26358
   394
blanchet@41792
   395
lemma prod_case_unfold [nitpick_unfold]: "prod_case = (%c p. c (fst p) (snd p))"
nipkow@39302
   396
  by (simp add: fun_eq_iff split: prod.split)
haftmann@26358
   397
wenzelm@11838
   398
lemma fst_eqD: "fst (x, y) = a ==> x = a"
wenzelm@11838
   399
  by simp
wenzelm@11838
   400
wenzelm@11838
   401
lemma snd_eqD: "snd (x, y) = a ==> y = a"
wenzelm@11838
   402
  by simp
wenzelm@11838
   403
blanchet@55393
   404
lemmas surjective_pairing = prod.collapse [symmetric]
wenzelm@11838
   405
huffman@44066
   406
lemma prod_eq_iff: "s = t \<longleftrightarrow> fst s = fst t \<and> snd s = snd t"
haftmann@37166
   407
  by (cases s, cases t) simp
haftmann@37166
   408
haftmann@37166
   409
lemma prod_eqI [intro?]: "fst p = fst q \<Longrightarrow> snd p = snd q \<Longrightarrow> p = q"
huffman@44066
   410
  by (simp add: prod_eq_iff)
haftmann@37166
   411
haftmann@37166
   412
lemma split_conv [simp, code]: "split f (a, b) = f a b"
haftmann@37591
   413
  by (fact prod.cases)
haftmann@37166
   414
haftmann@37166
   415
lemma splitI: "f a b \<Longrightarrow> split f (a, b)"
haftmann@37166
   416
  by (rule split_conv [THEN iffD2])
haftmann@37166
   417
haftmann@37166
   418
lemma splitD: "split f (a, b) \<Longrightarrow> f a b"
haftmann@37166
   419
  by (rule split_conv [THEN iffD1])
haftmann@37166
   420
haftmann@37166
   421
lemma split_Pair [simp]: "(\<lambda>(x, y). (x, y)) = id"
nipkow@39302
   422
  by (simp add: fun_eq_iff split: prod.split)
haftmann@37166
   423
haftmann@37166
   424
lemma split_eta: "(\<lambda>(x, y). f (x, y)) = f"
haftmann@37166
   425
  -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity function. *}
nipkow@39302
   426
  by (simp add: fun_eq_iff split: prod.split)
haftmann@37166
   427
haftmann@37166
   428
lemma split_comp: "split (f \<circ> g) x = f (g (fst x)) (snd x)"
haftmann@37166
   429
  by (cases x) simp
haftmann@37166
   430
haftmann@37166
   431
lemma split_twice: "split f (split g p) = split (\<lambda>x y. split f (g x y)) p"
haftmann@37166
   432
  by (cases p) simp
haftmann@37166
   433
haftmann@37166
   434
lemma The_split: "The (split P) = (THE xy. P (fst xy) (snd xy))"
haftmann@37591
   435
  by (simp add: prod_case_unfold)
haftmann@37166
   436
haftmann@37166
   437
lemma split_weak_cong: "p = q \<Longrightarrow> split c p = split c q"
haftmann@37166
   438
  -- {* Prevents simplification of @{term c}: much faster *}
huffman@40929
   439
  by (fact prod.weak_case_cong)
haftmann@37166
   440
haftmann@37166
   441
lemma cond_split_eta: "(!!x y. f x y = g (x, y)) ==> (%(x, y). f x y) = g"
haftmann@37166
   442
  by (simp add: split_eta)
haftmann@37166
   443
blanchet@47740
   444
lemma split_paired_all [no_atp]: "(!!x. PROP P x) == (!!a b. PROP P (a, b))"
wenzelm@11820
   445
proof
wenzelm@11820
   446
  fix a b
wenzelm@11820
   447
  assume "!!x. PROP P x"
wenzelm@19535
   448
  then show "PROP P (a, b)" .
wenzelm@11820
   449
next
wenzelm@11820
   450
  fix x
wenzelm@11820
   451
  assume "!!a b. PROP P (a, b)"
wenzelm@19535
   452
  from `PROP P (fst x, snd x)` show "PROP P x" by simp
wenzelm@11820
   453
qed
wenzelm@11820
   454
hoelzl@50104
   455
lemma case_prod_distrib: "f (case x of (x, y) \<Rightarrow> g x y) = (case x of (x, y) \<Rightarrow> f (g x y))"
hoelzl@50104
   456
  by (cases x) simp
hoelzl@50104
   457
wenzelm@11838
   458
text {*
wenzelm@11838
   459
  The rule @{thm [source] split_paired_all} does not work with the
wenzelm@11838
   460
  Simplifier because it also affects premises in congrence rules,
wenzelm@11838
   461
  where this can lead to premises of the form @{text "!!a b. ... =
wenzelm@11838
   462
  ?P(a, b)"} which cannot be solved by reflexivity.
wenzelm@11838
   463
*}
wenzelm@11838
   464
haftmann@26358
   465
lemmas split_tupled_all = split_paired_all unit_all_eq2
haftmann@26358
   466
wenzelm@26480
   467
ML {*
wenzelm@11838
   468
  (* replace parameters of product type by individual component parameters *)
wenzelm@11838
   469
  local (* filtering with exists_paired_all is an essential optimization *)
wenzelm@16121
   470
    fun exists_paired_all (Const ("all", _) $ Abs (_, T, t)) =
wenzelm@11838
   471
          can HOLogic.dest_prodT T orelse exists_paired_all t
wenzelm@11838
   472
      | exists_paired_all (t $ u) = exists_paired_all t orelse exists_paired_all u
wenzelm@11838
   473
      | exists_paired_all (Abs (_, _, t)) = exists_paired_all t
wenzelm@11838
   474
      | exists_paired_all _ = false;
wenzelm@51717
   475
    val ss =
wenzelm@51717
   476
      simpset_of
wenzelm@51717
   477
       (put_simpset HOL_basic_ss @{context}
wenzelm@51717
   478
        addsimps [@{thm split_paired_all}, @{thm unit_all_eq2}, @{thm unit_abs_eta_conv}]
wenzelm@51717
   479
        addsimprocs [@{simproc unit_eq}]);
wenzelm@11838
   480
  in
wenzelm@51717
   481
    fun split_all_tac ctxt = SUBGOAL (fn (t, i) =>
wenzelm@51717
   482
      if exists_paired_all t then safe_full_simp_tac (put_simpset ss ctxt) i else no_tac);
wenzelm@51717
   483
wenzelm@51717
   484
    fun unsafe_split_all_tac ctxt = SUBGOAL (fn (t, i) =>
wenzelm@51717
   485
      if exists_paired_all t then full_simp_tac (put_simpset ss ctxt) i else no_tac);
wenzelm@51717
   486
wenzelm@51717
   487
    fun split_all ctxt th =
wenzelm@51717
   488
      if exists_paired_all (Thm.prop_of th)
wenzelm@51717
   489
      then full_simplify (put_simpset ss ctxt) th else th;
wenzelm@11838
   490
  end;
wenzelm@26340
   491
*}
wenzelm@11838
   492
wenzelm@51703
   493
setup {* map_theory_claset (fn ctxt => ctxt addSbefore ("split_all_tac", split_all_tac)) *}
wenzelm@11838
   494
blanchet@47740
   495
lemma split_paired_All [simp, no_atp]: "(ALL x. P x) = (ALL a b. P (a, b))"
wenzelm@11838
   496
  -- {* @{text "[iff]"} is not a good idea because it makes @{text blast} loop *}
wenzelm@11838
   497
  by fast
wenzelm@11838
   498
blanchet@47740
   499
lemma split_paired_Ex [simp, no_atp]: "(EX x. P x) = (EX a b. P (a, b))"
haftmann@26358
   500
  by fast
haftmann@26358
   501
blanchet@47740
   502
lemma split_paired_The [no_atp]: "(THE x. P x) = (THE (a, b). P (a, b))"
wenzelm@11838
   503
  -- {* Can't be added to simpset: loops! *}
haftmann@26358
   504
  by (simp add: split_eta)
wenzelm@11838
   505
wenzelm@11838
   506
text {*
wenzelm@11838
   507
  Simplification procedure for @{thm [source] cond_split_eta}.  Using
wenzelm@11838
   508
  @{thm [source] split_eta} as a rewrite rule is not general enough,
wenzelm@11838
   509
  and using @{thm [source] cond_split_eta} directly would render some
wenzelm@11838
   510
  existing proofs very inefficient; similarly for @{text
haftmann@26358
   511
  split_beta}.
haftmann@26358
   512
*}
wenzelm@11838
   513
wenzelm@26480
   514
ML {*
wenzelm@11838
   515
local
wenzelm@51717
   516
  val cond_split_eta_ss =
wenzelm@51717
   517
    simpset_of (put_simpset HOL_basic_ss @{context} addsimps @{thms cond_split_eta});
wenzelm@35364
   518
  fun Pair_pat k 0 (Bound m) = (m = k)
wenzelm@35364
   519
    | Pair_pat k i (Const (@{const_name Pair},  _) $ Bound m $ t) =
wenzelm@35364
   520
        i > 0 andalso m = k + i andalso Pair_pat k (i - 1) t
wenzelm@35364
   521
    | Pair_pat _ _ _ = false;
wenzelm@35364
   522
  fun no_args k i (Abs (_, _, t)) = no_args (k + 1) i t
wenzelm@35364
   523
    | no_args k i (t $ u) = no_args k i t andalso no_args k i u
wenzelm@35364
   524
    | no_args k i (Bound m) = m < k orelse m > k + i
wenzelm@35364
   525
    | no_args _ _ _ = true;
wenzelm@35364
   526
  fun split_pat tp i (Abs  (_, _, t)) = if tp 0 i t then SOME (i, t) else NONE
haftmann@37591
   527
    | split_pat tp i (Const (@{const_name prod_case}, _) $ Abs (_, _, t)) = split_pat tp (i + 1) t
wenzelm@35364
   528
    | split_pat tp i _ = NONE;
wenzelm@51717
   529
  fun metaeq ctxt lhs rhs = mk_meta_eq (Goal.prove ctxt [] []
wenzelm@35364
   530
        (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)))
wenzelm@51717
   531
        (K (simp_tac (put_simpset cond_split_eta_ss ctxt) 1)));
wenzelm@11838
   532
wenzelm@35364
   533
  fun beta_term_pat k i (Abs (_, _, t)) = beta_term_pat (k + 1) i t
wenzelm@35364
   534
    | beta_term_pat k i (t $ u) =
wenzelm@35364
   535
        Pair_pat k i (t $ u) orelse (beta_term_pat k i t andalso beta_term_pat k i u)
wenzelm@35364
   536
    | beta_term_pat k i t = no_args k i t;
wenzelm@35364
   537
  fun eta_term_pat k i (f $ arg) = no_args k i f andalso Pair_pat k i arg
wenzelm@35364
   538
    | eta_term_pat _ _ _ = false;
wenzelm@11838
   539
  fun subst arg k i (Abs (x, T, t)) = Abs (x, T, subst arg (k+1) i t)
wenzelm@35364
   540
    | subst arg k i (t $ u) =
wenzelm@35364
   541
        if Pair_pat k i (t $ u) then incr_boundvars k arg
wenzelm@35364
   542
        else (subst arg k i t $ subst arg k i u)
wenzelm@35364
   543
    | subst arg k i t = t;
wenzelm@43595
   544
in
wenzelm@51717
   545
  fun beta_proc ctxt (s as Const (@{const_name prod_case}, _) $ Abs (_, _, t) $ arg) =
wenzelm@11838
   546
        (case split_pat beta_term_pat 1 t of
wenzelm@51717
   547
          SOME (i, f) => SOME (metaeq ctxt s (subst arg 0 i f))
skalberg@15531
   548
        | NONE => NONE)
wenzelm@35364
   549
    | beta_proc _ _ = NONE;
wenzelm@51717
   550
  fun eta_proc ctxt (s as Const (@{const_name prod_case}, _) $ Abs (_, _, t)) =
wenzelm@11838
   551
        (case split_pat eta_term_pat 1 t of
wenzelm@51717
   552
          SOME (_, ft) => SOME (metaeq ctxt s (let val (f $ arg) = ft in f end))
skalberg@15531
   553
        | NONE => NONE)
wenzelm@35364
   554
    | eta_proc _ _ = NONE;
wenzelm@11838
   555
end;
wenzelm@11838
   556
*}
wenzelm@51717
   557
simproc_setup split_beta ("split f z") = {* fn _ => fn ctxt => fn ct => beta_proc ctxt (term_of ct) *}
wenzelm@51717
   558
simproc_setup split_eta ("split f") = {* fn _ => fn ctxt => fn ct => eta_proc ctxt (term_of ct) *}
wenzelm@11838
   559
berghofe@26798
   560
lemma split_beta [mono]: "(%(x, y). P x y) z = P (fst z) (snd z)"
wenzelm@11838
   561
  by (subst surjective_pairing, rule split_conv)
wenzelm@11838
   562
hoelzl@50104
   563
lemma split_beta': "(\<lambda>(x,y). f x y) = (\<lambda>x. f (fst x) (snd x))"
hoelzl@50104
   564
  by (auto simp: fun_eq_iff)
hoelzl@50104
   565
hoelzl@50104
   566
blanchet@35828
   567
lemma split_split [no_atp]: "R(split c p) = (ALL x y. p = (x, y) --> R(c x y))"
wenzelm@11838
   568
  -- {* For use with @{text split} and the Simplifier. *}
paulson@15481
   569
  by (insert surj_pair [of p], clarify, simp)
wenzelm@11838
   570
wenzelm@11838
   571
text {*
wenzelm@11838
   572
  @{thm [source] split_split} could be declared as @{text "[split]"}
wenzelm@11838
   573
  done after the Splitter has been speeded up significantly;
wenzelm@11838
   574
  precompute the constants involved and don't do anything unless the
wenzelm@11838
   575
  current goal contains one of those constants.
wenzelm@11838
   576
*}
wenzelm@11838
   577
blanchet@35828
   578
lemma split_split_asm [no_atp]: "R (split c p) = (~(EX x y. p = (x, y) & (~R (c x y))))"
paulson@14208
   579
by (subst split_split, simp)
wenzelm@11838
   580
wenzelm@11838
   581
text {*
wenzelm@11838
   582
  \medskip @{term split} used as a logical connective or set former.
wenzelm@11838
   583
wenzelm@11838
   584
  \medskip These rules are for use with @{text blast}; could instead
huffman@40929
   585
  call @{text simp} using @{thm [source] prod.split} as rewrite. *}
wenzelm@11838
   586
wenzelm@11838
   587
lemma splitI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> split c p"
wenzelm@11838
   588
  apply (simp only: split_tupled_all)
wenzelm@11838
   589
  apply (simp (no_asm_simp))
wenzelm@11838
   590
  done
wenzelm@11838
   591
wenzelm@11838
   592
lemma splitI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> split c p x"
wenzelm@11838
   593
  apply (simp only: split_tupled_all)
wenzelm@11838
   594
  apply (simp (no_asm_simp))
wenzelm@11838
   595
  done
wenzelm@11838
   596
wenzelm@11838
   597
lemma splitE: "split c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
haftmann@37591
   598
  by (induct p) auto
wenzelm@11838
   599
wenzelm@11838
   600
lemma splitE': "split c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
haftmann@37591
   601
  by (induct p) auto
wenzelm@11838
   602
wenzelm@11838
   603
lemma splitE2:
wenzelm@11838
   604
  "[| Q (split P z);  !!x y. [|z = (x, y); Q (P x y)|] ==> R |] ==> R"
wenzelm@11838
   605
proof -
wenzelm@11838
   606
  assume q: "Q (split P z)"
wenzelm@11838
   607
  assume r: "!!x y. [|z = (x, y); Q (P x y)|] ==> R"
wenzelm@11838
   608
  show R
wenzelm@11838
   609
    apply (rule r surjective_pairing)+
wenzelm@11838
   610
    apply (rule split_beta [THEN subst], rule q)
wenzelm@11838
   611
    done
wenzelm@11838
   612
qed
wenzelm@11838
   613
wenzelm@11838
   614
lemma splitD': "split R (a,b) c ==> R a b c"
wenzelm@11838
   615
  by simp
wenzelm@11838
   616
wenzelm@11838
   617
lemma mem_splitI: "z: c a b ==> z: split c (a, b)"
wenzelm@11838
   618
  by simp
wenzelm@11838
   619
wenzelm@11838
   620
lemma mem_splitI2: "!!p. [| !!a b. p = (a, b) ==> z: c a b |] ==> z: split c p"
paulson@14208
   621
by (simp only: split_tupled_all, simp)
wenzelm@11838
   622
wenzelm@18372
   623
lemma mem_splitE:
haftmann@37166
   624
  assumes major: "z \<in> split c p"
haftmann@37166
   625
    and cases: "\<And>x y. p = (x, y) \<Longrightarrow> z \<in> c x y \<Longrightarrow> Q"
wenzelm@18372
   626
  shows Q
haftmann@37591
   627
  by (rule major [unfolded prod_case_unfold] cases surjective_pairing)+
wenzelm@11838
   628
wenzelm@11838
   629
declare mem_splitI2 [intro!] mem_splitI [intro!] splitI2' [intro!] splitI2 [intro!] splitI [intro!]
wenzelm@11838
   630
declare mem_splitE [elim!] splitE' [elim!] splitE [elim!]
wenzelm@11838
   631
wenzelm@26340
   632
ML {*
wenzelm@11838
   633
local (* filtering with exists_p_split is an essential optimization *)
haftmann@37591
   634
  fun exists_p_split (Const (@{const_name prod_case},_) $ _ $ (Const (@{const_name Pair},_)$_$_)) = true
wenzelm@11838
   635
    | exists_p_split (t $ u) = exists_p_split t orelse exists_p_split u
wenzelm@11838
   636
    | exists_p_split (Abs (_, _, t)) = exists_p_split t
wenzelm@11838
   637
    | exists_p_split _ = false;
wenzelm@11838
   638
in
wenzelm@51717
   639
fun split_conv_tac ctxt = SUBGOAL (fn (t, i) =>
wenzelm@51717
   640
  if exists_p_split t
wenzelm@51717
   641
  then safe_full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps @{thms split_conv}) i
wenzelm@51717
   642
  else no_tac);
wenzelm@11838
   643
end;
wenzelm@26340
   644
*}
wenzelm@26340
   645
wenzelm@11838
   646
(* This prevents applications of splitE for already splitted arguments leading
wenzelm@11838
   647
   to quite time-consuming computations (in particular for nested tuples) *)
wenzelm@51703
   648
setup {* map_theory_claset (fn ctxt => ctxt addSbefore ("split_conv_tac", split_conv_tac)) *}
wenzelm@11838
   649
blanchet@54147
   650
lemma split_eta_SetCompr [simp, no_atp]: "(%u. EX x y. u = (x, y) & P (x, y)) = P"
wenzelm@18372
   651
  by (rule ext) fast
wenzelm@11838
   652
blanchet@54147
   653
lemma split_eta_SetCompr2 [simp, no_atp]: "(%u. EX x y. u = (x, y) & P x y) = split P"
wenzelm@18372
   654
  by (rule ext) fast
wenzelm@11838
   655
wenzelm@11838
   656
lemma split_part [simp]: "(%(a,b). P & Q a b) = (%ab. P & split Q ab)"
wenzelm@11838
   657
  -- {* Allows simplifications of nested splits in case of independent predicates. *}
wenzelm@18372
   658
  by (rule ext) blast
wenzelm@11838
   659
nipkow@14337
   660
(* Do NOT make this a simp rule as it
nipkow@14337
   661
   a) only helps in special situations
nipkow@14337
   662
   b) can lead to nontermination in the presence of split_def
nipkow@14337
   663
*)
nipkow@14337
   664
lemma split_comp_eq: 
paulson@20415
   665
  fixes f :: "'a => 'b => 'c" and g :: "'d => 'a"
paulson@20415
   666
  shows "(%u. f (g (fst u)) (snd u)) = (split (%x. f (g x)))"
wenzelm@18372
   667
  by (rule ext) auto
oheimb@14101
   668
haftmann@26358
   669
lemma pair_imageI [intro]: "(a, b) : A ==> f a b : (%(a, b). f a b) ` A"
haftmann@26358
   670
  apply (rule_tac x = "(a, b)" in image_eqI)
haftmann@26358
   671
   apply auto
haftmann@26358
   672
  done
haftmann@26358
   673
wenzelm@11838
   674
lemma The_split_eq [simp]: "(THE (x',y'). x = x' & y = y') = (x, y)"
wenzelm@11838
   675
  by blast
wenzelm@11838
   676
wenzelm@11838
   677
(*
wenzelm@11838
   678
the following  would be slightly more general,
wenzelm@11838
   679
but cannot be used as rewrite rule:
wenzelm@11838
   680
### Cannot add premise as rewrite rule because it contains (type) unknowns:
wenzelm@11838
   681
### ?y = .x
wenzelm@11838
   682
Goal "[| P y; !!x. P x ==> x = y |] ==> (@(x',y). x = x' & P y) = (x,y)"
paulson@14208
   683
by (rtac some_equality 1)
paulson@14208
   684
by ( Simp_tac 1)
paulson@14208
   685
by (split_all_tac 1)
paulson@14208
   686
by (Asm_full_simp_tac 1)
wenzelm@11838
   687
qed "The_split_eq";
wenzelm@11838
   688
*)
wenzelm@11838
   689
wenzelm@11838
   690
text {*
wenzelm@11838
   691
  Setup of internal @{text split_rule}.
wenzelm@11838
   692
*}
wenzelm@11838
   693
wenzelm@45607
   694
lemmas prod_caseI = prod.cases [THEN iffD2]
haftmann@24699
   695
haftmann@24699
   696
lemma prod_caseI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> prod_case c p"
haftmann@37678
   697
  by (fact splitI2)
haftmann@24699
   698
haftmann@24699
   699
lemma prod_caseI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> prod_case c p x"
haftmann@37678
   700
  by (fact splitI2')
haftmann@24699
   701
haftmann@24699
   702
lemma prod_caseE: "prod_case c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
haftmann@37678
   703
  by (fact splitE)
haftmann@24699
   704
haftmann@24699
   705
lemma prod_caseE': "prod_case c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
haftmann@37678
   706
  by (fact splitE')
haftmann@24699
   707
haftmann@37678
   708
declare prod_caseI [intro!]
haftmann@24699
   709
bulwahn@26143
   710
lemma prod_case_beta:
bulwahn@26143
   711
  "prod_case f p = f (fst p) (snd p)"
haftmann@37591
   712
  by (fact split_beta)
bulwahn@26143
   713
haftmann@24699
   714
lemma prod_cases3 [cases type]:
haftmann@24699
   715
  obtains (fields) a b c where "y = (a, b, c)"
haftmann@24699
   716
  by (cases y, case_tac b) blast
haftmann@24699
   717
haftmann@24699
   718
lemma prod_induct3 [case_names fields, induct type]:
haftmann@24699
   719
    "(!!a b c. P (a, b, c)) ==> P x"
haftmann@24699
   720
  by (cases x) blast
haftmann@24699
   721
haftmann@24699
   722
lemma prod_cases4 [cases type]:
haftmann@24699
   723
  obtains (fields) a b c d where "y = (a, b, c, d)"
haftmann@24699
   724
  by (cases y, case_tac c) blast
haftmann@24699
   725
haftmann@24699
   726
lemma prod_induct4 [case_names fields, induct type]:
haftmann@24699
   727
    "(!!a b c d. P (a, b, c, d)) ==> P x"
haftmann@24699
   728
  by (cases x) blast
haftmann@24699
   729
haftmann@24699
   730
lemma prod_cases5 [cases type]:
haftmann@24699
   731
  obtains (fields) a b c d e where "y = (a, b, c, d, e)"
haftmann@24699
   732
  by (cases y, case_tac d) blast
haftmann@24699
   733
haftmann@24699
   734
lemma prod_induct5 [case_names fields, induct type]:
haftmann@24699
   735
    "(!!a b c d e. P (a, b, c, d, e)) ==> P x"
haftmann@24699
   736
  by (cases x) blast
haftmann@24699
   737
haftmann@24699
   738
lemma prod_cases6 [cases type]:
haftmann@24699
   739
  obtains (fields) a b c d e f where "y = (a, b, c, d, e, f)"
haftmann@24699
   740
  by (cases y, case_tac e) blast
haftmann@24699
   741
haftmann@24699
   742
lemma prod_induct6 [case_names fields, induct type]:
haftmann@24699
   743
    "(!!a b c d e f. P (a, b, c, d, e, f)) ==> P x"
haftmann@24699
   744
  by (cases x) blast
haftmann@24699
   745
haftmann@24699
   746
lemma prod_cases7 [cases type]:
haftmann@24699
   747
  obtains (fields) a b c d e f g where "y = (a, b, c, d, e, f, g)"
haftmann@24699
   748
  by (cases y, case_tac f) blast
haftmann@24699
   749
haftmann@24699
   750
lemma prod_induct7 [case_names fields, induct type]:
haftmann@24699
   751
    "(!!a b c d e f g. P (a, b, c, d, e, f, g)) ==> P x"
haftmann@24699
   752
  by (cases x) blast
haftmann@24699
   753
haftmann@37166
   754
lemma split_def:
haftmann@37166
   755
  "split = (\<lambda>c p. c (fst p) (snd p))"
haftmann@37591
   756
  by (fact prod_case_unfold)
haftmann@37166
   757
haftmann@37166
   758
definition internal_split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c" where
haftmann@37166
   759
  "internal_split == split"
haftmann@37166
   760
haftmann@37166
   761
lemma internal_split_conv: "internal_split c (a, b) = c a b"
haftmann@37166
   762
  by (simp only: internal_split_def split_conv)
haftmann@37166
   763
wenzelm@48891
   764
ML_file "Tools/split_rule.ML"
haftmann@37166
   765
setup Split_Rule.setup
haftmann@37166
   766
haftmann@37166
   767
hide_const internal_split
haftmann@37166
   768
haftmann@24699
   769
haftmann@26358
   770
subsubsection {* Derived operations *}
haftmann@26358
   771
haftmann@37387
   772
definition curry    :: "('a \<times> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'c" where
haftmann@37387
   773
  "curry = (\<lambda>c x y. c (x, y))"
haftmann@37166
   774
haftmann@37166
   775
lemma curry_conv [simp, code]: "curry f a b = f (a, b)"
haftmann@37166
   776
  by (simp add: curry_def)
haftmann@37166
   777
haftmann@37166
   778
lemma curryI [intro!]: "f (a, b) \<Longrightarrow> curry f a b"
haftmann@37166
   779
  by (simp add: curry_def)
haftmann@37166
   780
haftmann@37166
   781
lemma curryD [dest!]: "curry f a b \<Longrightarrow> f (a, b)"
haftmann@37166
   782
  by (simp add: curry_def)
haftmann@37166
   783
haftmann@37166
   784
lemma curryE: "curry f a b \<Longrightarrow> (f (a, b) \<Longrightarrow> Q) \<Longrightarrow> Q"
haftmann@37166
   785
  by (simp add: curry_def)
haftmann@37166
   786
haftmann@37166
   787
lemma curry_split [simp]: "curry (split f) = f"
haftmann@37166
   788
  by (simp add: curry_def split_def)
haftmann@37166
   789
haftmann@37166
   790
lemma split_curry [simp]: "split (curry f) = f"
haftmann@37166
   791
  by (simp add: curry_def split_def)
haftmann@37166
   792
Andreas@54630
   793
lemma curry_K: "curry (\<lambda>x. c) = (\<lambda>x y. c)"
Andreas@54630
   794
by(simp add: fun_eq_iff)
Andreas@54630
   795
haftmann@26358
   796
text {*
haftmann@26358
   797
  The composition-uncurry combinator.
haftmann@26358
   798
*}
haftmann@26358
   799
haftmann@37751
   800
notation fcomp (infixl "\<circ>>" 60)
haftmann@26358
   801
haftmann@37751
   802
definition scomp :: "('a \<Rightarrow> 'b \<times> 'c) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> 'd) \<Rightarrow> 'a \<Rightarrow> 'd" (infixl "\<circ>\<rightarrow>" 60) where
haftmann@37751
   803
  "f \<circ>\<rightarrow> g = (\<lambda>x. prod_case g (f x))"
haftmann@26358
   804
haftmann@37678
   805
lemma scomp_unfold: "scomp = (\<lambda>f g x. g (fst (f x)) (snd (f x)))"
nipkow@39302
   806
  by (simp add: fun_eq_iff scomp_def prod_case_unfold)
haftmann@37678
   807
haftmann@37751
   808
lemma scomp_apply [simp]: "(f \<circ>\<rightarrow> g) x = prod_case g (f x)"
haftmann@37751
   809
  by (simp add: scomp_unfold prod_case_unfold)
haftmann@26358
   810
haftmann@37751
   811
lemma Pair_scomp: "Pair x \<circ>\<rightarrow> f = f x"
huffman@44921
   812
  by (simp add: fun_eq_iff)
haftmann@26358
   813
haftmann@37751
   814
lemma scomp_Pair: "x \<circ>\<rightarrow> Pair = x"
huffman@44921
   815
  by (simp add: fun_eq_iff)
haftmann@26358
   816
haftmann@37751
   817
lemma scomp_scomp: "(f \<circ>\<rightarrow> g) \<circ>\<rightarrow> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>\<rightarrow> h)"
nipkow@39302
   818
  by (simp add: fun_eq_iff scomp_unfold)
haftmann@26358
   819
haftmann@37751
   820
lemma scomp_fcomp: "(f \<circ>\<rightarrow> g) \<circ>> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>> h)"
nipkow@39302
   821
  by (simp add: fun_eq_iff scomp_unfold fcomp_def)
haftmann@26358
   822
haftmann@37751
   823
lemma fcomp_scomp: "(f \<circ>> g) \<circ>\<rightarrow> h = f \<circ>> (g \<circ>\<rightarrow> h)"
huffman@44921
   824
  by (simp add: fun_eq_iff scomp_unfold)
haftmann@26358
   825
haftmann@52435
   826
code_printing
haftmann@52435
   827
  constant scomp \<rightharpoonup> (Eval) infixl 3 "#->"
haftmann@31202
   828
haftmann@37751
   829
no_notation fcomp (infixl "\<circ>>" 60)
haftmann@37751
   830
no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
haftmann@26358
   831
haftmann@26358
   832
text {*
haftmann@40607
   833
  @{term map_pair} --- action of the product functor upon
krauss@36664
   834
  functions.
haftmann@26358
   835
*}
haftmann@21195
   836
haftmann@40607
   837
definition map_pair :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'd" where
haftmann@40607
   838
  "map_pair f g = (\<lambda>(x, y). (f x, g y))"
haftmann@26358
   839
haftmann@40607
   840
lemma map_pair_simp [simp, code]:
haftmann@40607
   841
  "map_pair f g (a, b) = (f a, g b)"
haftmann@40607
   842
  by (simp add: map_pair_def)
haftmann@26358
   843
haftmann@41505
   844
enriched_type map_pair: map_pair
huffman@44921
   845
  by (auto simp add: split_paired_all)
nipkow@37278
   846
haftmann@40607
   847
lemma fst_map_pair [simp]:
haftmann@40607
   848
  "fst (map_pair f g x) = f (fst x)"
haftmann@40607
   849
  by (cases x) simp_all
nipkow@37278
   850
haftmann@40607
   851
lemma snd_prod_fun [simp]:
haftmann@40607
   852
  "snd (map_pair f g x) = g (snd x)"
haftmann@40607
   853
  by (cases x) simp_all
nipkow@37278
   854
haftmann@40607
   855
lemma fst_comp_map_pair [simp]:
haftmann@40607
   856
  "fst \<circ> map_pair f g = f \<circ> fst"
haftmann@40607
   857
  by (rule ext) simp_all
nipkow@37278
   858
haftmann@40607
   859
lemma snd_comp_map_pair [simp]:
haftmann@40607
   860
  "snd \<circ> map_pair f g = g \<circ> snd"
haftmann@40607
   861
  by (rule ext) simp_all
haftmann@26358
   862
haftmann@40607
   863
lemma map_pair_compose:
haftmann@40607
   864
  "map_pair (f1 o f2) (g1 o g2) = (map_pair f1 g1 o map_pair f2 g2)"
haftmann@40607
   865
  by (rule ext) (simp add: map_pair.compositionality comp_def)
haftmann@26358
   866
haftmann@40607
   867
lemma map_pair_ident [simp]:
haftmann@40607
   868
  "map_pair (%x. x) (%y. y) = (%z. z)"
haftmann@40607
   869
  by (rule ext) (simp add: map_pair.identity)
haftmann@40607
   870
haftmann@40607
   871
lemma map_pair_imageI [intro]:
haftmann@40607
   872
  "(a, b) \<in> R \<Longrightarrow> (f a, g b) \<in> map_pair f g ` R"
haftmann@40607
   873
  by (rule image_eqI) simp_all
haftmann@21195
   874
haftmann@26358
   875
lemma prod_fun_imageE [elim!]:
haftmann@40607
   876
  assumes major: "c \<in> map_pair f g ` R"
haftmann@40607
   877
    and cases: "\<And>x y. c = (f x, g y) \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> P"
haftmann@26358
   878
  shows P
haftmann@26358
   879
  apply (rule major [THEN imageE])
haftmann@37166
   880
  apply (case_tac x)
haftmann@26358
   881
  apply (rule cases)
haftmann@40607
   882
  apply simp_all
haftmann@26358
   883
  done
haftmann@26358
   884
haftmann@37166
   885
definition apfst :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'b" where
haftmann@40607
   886
  "apfst f = map_pair f id"
haftmann@26358
   887
haftmann@37166
   888
definition apsnd :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'a \<times> 'c" where
haftmann@40607
   889
  "apsnd f = map_pair id f"
haftmann@26358
   890
haftmann@26358
   891
lemma apfst_conv [simp, code]:
haftmann@26358
   892
  "apfst f (x, y) = (f x, y)" 
haftmann@26358
   893
  by (simp add: apfst_def)
haftmann@26358
   894
hoelzl@33638
   895
lemma apsnd_conv [simp, code]:
haftmann@26358
   896
  "apsnd f (x, y) = (x, f y)" 
haftmann@26358
   897
  by (simp add: apsnd_def)
haftmann@21195
   898
haftmann@33594
   899
lemma fst_apfst [simp]:
haftmann@33594
   900
  "fst (apfst f x) = f (fst x)"
haftmann@33594
   901
  by (cases x) simp
haftmann@33594
   902
haftmann@51173
   903
lemma fst_comp_apfst [simp]:
haftmann@51173
   904
  "fst \<circ> apfst f = f \<circ> fst"
haftmann@51173
   905
  by (simp add: fun_eq_iff)
haftmann@51173
   906
haftmann@33594
   907
lemma fst_apsnd [simp]:
haftmann@33594
   908
  "fst (apsnd f x) = fst x"
haftmann@33594
   909
  by (cases x) simp
haftmann@33594
   910
haftmann@51173
   911
lemma fst_comp_apsnd [simp]:
haftmann@51173
   912
  "fst \<circ> apsnd f = fst"
haftmann@51173
   913
  by (simp add: fun_eq_iff)
haftmann@51173
   914
haftmann@33594
   915
lemma snd_apfst [simp]:
haftmann@33594
   916
  "snd (apfst f x) = snd x"
haftmann@33594
   917
  by (cases x) simp
haftmann@33594
   918
haftmann@51173
   919
lemma snd_comp_apfst [simp]:
haftmann@51173
   920
  "snd \<circ> apfst f = snd"
haftmann@51173
   921
  by (simp add: fun_eq_iff)
haftmann@51173
   922
haftmann@33594
   923
lemma snd_apsnd [simp]:
haftmann@33594
   924
  "snd (apsnd f x) = f (snd x)"
haftmann@33594
   925
  by (cases x) simp
haftmann@33594
   926
haftmann@51173
   927
lemma snd_comp_apsnd [simp]:
haftmann@51173
   928
  "snd \<circ> apsnd f = f \<circ> snd"
haftmann@51173
   929
  by (simp add: fun_eq_iff)
haftmann@51173
   930
haftmann@33594
   931
lemma apfst_compose:
haftmann@33594
   932
  "apfst f (apfst g x) = apfst (f \<circ> g) x"
haftmann@33594
   933
  by (cases x) simp
haftmann@33594
   934
haftmann@33594
   935
lemma apsnd_compose:
haftmann@33594
   936
  "apsnd f (apsnd g x) = apsnd (f \<circ> g) x"
haftmann@33594
   937
  by (cases x) simp
haftmann@33594
   938
haftmann@33594
   939
lemma apfst_apsnd [simp]:
haftmann@33594
   940
  "apfst f (apsnd g x) = (f (fst x), g (snd x))"
haftmann@33594
   941
  by (cases x) simp
haftmann@33594
   942
haftmann@33594
   943
lemma apsnd_apfst [simp]:
haftmann@33594
   944
  "apsnd f (apfst g x) = (g (fst x), f (snd x))"
haftmann@33594
   945
  by (cases x) simp
haftmann@33594
   946
haftmann@33594
   947
lemma apfst_id [simp] :
haftmann@33594
   948
  "apfst id = id"
nipkow@39302
   949
  by (simp add: fun_eq_iff)
haftmann@33594
   950
haftmann@33594
   951
lemma apsnd_id [simp] :
haftmann@33594
   952
  "apsnd id = id"
nipkow@39302
   953
  by (simp add: fun_eq_iff)
haftmann@33594
   954
haftmann@33594
   955
lemma apfst_eq_conv [simp]:
haftmann@33594
   956
  "apfst f x = apfst g x \<longleftrightarrow> f (fst x) = g (fst x)"
haftmann@33594
   957
  by (cases x) simp
haftmann@33594
   958
haftmann@33594
   959
lemma apsnd_eq_conv [simp]:
haftmann@33594
   960
  "apsnd f x = apsnd g x \<longleftrightarrow> f (snd x) = g (snd x)"
haftmann@33594
   961
  by (cases x) simp
haftmann@33594
   962
hoelzl@33638
   963
lemma apsnd_apfst_commute:
hoelzl@33638
   964
  "apsnd f (apfst g p) = apfst g (apsnd f p)"
hoelzl@33638
   965
  by simp
haftmann@21195
   966
haftmann@26358
   967
text {*
haftmann@26358
   968
  Disjoint union of a family of sets -- Sigma.
haftmann@26358
   969
*}
haftmann@26358
   970
haftmann@45986
   971
definition Sigma :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<times> 'b) set" where
haftmann@26358
   972
  Sigma_def: "Sigma A B == UN x:A. UN y:B x. {Pair x y}"
haftmann@26358
   973
haftmann@26358
   974
abbreviation
haftmann@45986
   975
  Times :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set"
haftmann@26358
   976
    (infixr "<*>" 80) where
haftmann@26358
   977
  "A <*> B == Sigma A (%_. B)"
haftmann@26358
   978
haftmann@26358
   979
notation (xsymbols)
haftmann@26358
   980
  Times  (infixr "\<times>" 80)
berghofe@15394
   981
haftmann@26358
   982
notation (HTML output)
haftmann@26358
   983
  Times  (infixr "\<times>" 80)
haftmann@26358
   984
nipkow@45662
   985
hide_const (open) Times
nipkow@45662
   986
haftmann@26358
   987
syntax
wenzelm@35115
   988
  "_Sigma" :: "[pttrn, 'a set, 'b set] => ('a * 'b) set"  ("(3SIGMA _:_./ _)" [0, 0, 10] 10)
haftmann@26358
   989
translations
wenzelm@35115
   990
  "SIGMA x:A. B" == "CONST Sigma A (%x. B)"
haftmann@26358
   991
haftmann@26358
   992
lemma SigmaI [intro!]: "[| a:A;  b:B(a) |] ==> (a,b) : Sigma A B"
haftmann@26358
   993
  by (unfold Sigma_def) blast
haftmann@26358
   994
haftmann@26358
   995
lemma SigmaE [elim!]:
haftmann@26358
   996
    "[| c: Sigma A B;
haftmann@26358
   997
        !!x y.[| x:A;  y:B(x);  c=(x,y) |] ==> P
haftmann@26358
   998
     |] ==> P"
haftmann@26358
   999
  -- {* The general elimination rule. *}
haftmann@26358
  1000
  by (unfold Sigma_def) blast
haftmann@20588
  1001
haftmann@26358
  1002
text {*
haftmann@26358
  1003
  Elimination of @{term "(a, b) : A \<times> B"} -- introduces no
haftmann@26358
  1004
  eigenvariables.
haftmann@26358
  1005
*}
haftmann@26358
  1006
haftmann@26358
  1007
lemma SigmaD1: "(a, b) : Sigma A B ==> a : A"
haftmann@26358
  1008
  by blast
haftmann@26358
  1009
haftmann@26358
  1010
lemma SigmaD2: "(a, b) : Sigma A B ==> b : B a"
haftmann@26358
  1011
  by blast
haftmann@26358
  1012
haftmann@26358
  1013
lemma SigmaE2:
haftmann@26358
  1014
    "[| (a, b) : Sigma A B;
haftmann@26358
  1015
        [| a:A;  b:B(a) |] ==> P
haftmann@26358
  1016
     |] ==> P"
haftmann@26358
  1017
  by blast
haftmann@20588
  1018
haftmann@26358
  1019
lemma Sigma_cong:
haftmann@26358
  1020
     "\<lbrakk>A = B; !!x. x \<in> B \<Longrightarrow> C x = D x\<rbrakk>
haftmann@26358
  1021
      \<Longrightarrow> (SIGMA x: A. C x) = (SIGMA x: B. D x)"
haftmann@26358
  1022
  by auto
haftmann@26358
  1023
haftmann@26358
  1024
lemma Sigma_mono: "[| A <= C; !!x. x:A ==> B x <= D x |] ==> Sigma A B <= Sigma C D"
haftmann@26358
  1025
  by blast
haftmann@26358
  1026
haftmann@26358
  1027
lemma Sigma_empty1 [simp]: "Sigma {} B = {}"
haftmann@26358
  1028
  by blast
haftmann@26358
  1029
haftmann@26358
  1030
lemma Sigma_empty2 [simp]: "A <*> {} = {}"
haftmann@26358
  1031
  by blast
haftmann@26358
  1032
haftmann@26358
  1033
lemma UNIV_Times_UNIV [simp]: "UNIV <*> UNIV = UNIV"
haftmann@26358
  1034
  by auto
haftmann@21908
  1035
haftmann@26358
  1036
lemma Compl_Times_UNIV1 [simp]: "- (UNIV <*> A) = UNIV <*> (-A)"
haftmann@26358
  1037
  by auto
haftmann@26358
  1038
haftmann@26358
  1039
lemma Compl_Times_UNIV2 [simp]: "- (A <*> UNIV) = (-A) <*> UNIV"
haftmann@26358
  1040
  by auto
haftmann@26358
  1041
haftmann@26358
  1042
lemma mem_Sigma_iff [iff]: "((a,b): Sigma A B) = (a:A & b:B(a))"
haftmann@26358
  1043
  by blast
haftmann@26358
  1044
haftmann@26358
  1045
lemma Times_subset_cancel2: "x:C ==> (A <*> C <= B <*> C) = (A <= B)"
haftmann@26358
  1046
  by blast
haftmann@26358
  1047
haftmann@26358
  1048
lemma Times_eq_cancel2: "x:C ==> (A <*> C = B <*> C) = (A = B)"
haftmann@26358
  1049
  by (blast elim: equalityE)
haftmann@20588
  1050
haftmann@26358
  1051
lemma SetCompr_Sigma_eq:
haftmann@26358
  1052
    "Collect (split (%x y. P x & Q x y)) = (SIGMA x:Collect P. Collect (Q x))"
haftmann@26358
  1053
  by blast
haftmann@26358
  1054
haftmann@26358
  1055
lemma Collect_split [simp]: "{(a,b). P a & Q b} = Collect P <*> Collect Q"
haftmann@26358
  1056
  by blast
haftmann@26358
  1057
haftmann@26358
  1058
lemma UN_Times_distrib:
haftmann@26358
  1059
  "(UN (a,b):(A <*> B). E a <*> F b) = (UNION A E) <*> (UNION B F)"
haftmann@26358
  1060
  -- {* Suggested by Pierre Chartier *}
haftmann@26358
  1061
  by blast
haftmann@26358
  1062
blanchet@47740
  1063
lemma split_paired_Ball_Sigma [simp, no_atp]:
haftmann@26358
  1064
    "(ALL z: Sigma A B. P z) = (ALL x:A. ALL y: B x. P(x,y))"
haftmann@26358
  1065
  by blast
haftmann@26358
  1066
blanchet@47740
  1067
lemma split_paired_Bex_Sigma [simp, no_atp]:
haftmann@26358
  1068
    "(EX z: Sigma A B. P z) = (EX x:A. EX y: B x. P(x,y))"
haftmann@26358
  1069
  by blast
haftmann@21908
  1070
haftmann@26358
  1071
lemma Sigma_Un_distrib1: "(SIGMA i:I Un J. C(i)) = (SIGMA i:I. C(i)) Un (SIGMA j:J. C(j))"
haftmann@26358
  1072
  by blast
haftmann@26358
  1073
haftmann@26358
  1074
lemma Sigma_Un_distrib2: "(SIGMA i:I. A(i) Un B(i)) = (SIGMA i:I. A(i)) Un (SIGMA i:I. B(i))"
haftmann@26358
  1075
  by blast
haftmann@26358
  1076
haftmann@26358
  1077
lemma Sigma_Int_distrib1: "(SIGMA i:I Int J. C(i)) = (SIGMA i:I. C(i)) Int (SIGMA j:J. C(j))"
haftmann@26358
  1078
  by blast
haftmann@26358
  1079
haftmann@26358
  1080
lemma Sigma_Int_distrib2: "(SIGMA i:I. A(i) Int B(i)) = (SIGMA i:I. A(i)) Int (SIGMA i:I. B(i))"
haftmann@26358
  1081
  by blast
haftmann@26358
  1082
haftmann@26358
  1083
lemma Sigma_Diff_distrib1: "(SIGMA i:I - J. C(i)) = (SIGMA i:I. C(i)) - (SIGMA j:J. C(j))"
haftmann@26358
  1084
  by blast
haftmann@26358
  1085
haftmann@26358
  1086
lemma Sigma_Diff_distrib2: "(SIGMA i:I. A(i) - B(i)) = (SIGMA i:I. A(i)) - (SIGMA i:I. B(i))"
haftmann@26358
  1087
  by blast
haftmann@21908
  1088
haftmann@26358
  1089
lemma Sigma_Union: "Sigma (Union X) B = (UN A:X. Sigma A B)"
haftmann@26358
  1090
  by blast
haftmann@26358
  1091
haftmann@26358
  1092
text {*
haftmann@26358
  1093
  Non-dependent versions are needed to avoid the need for higher-order
haftmann@26358
  1094
  matching, especially when the rules are re-oriented.
haftmann@26358
  1095
*}
haftmann@21908
  1096
haftmann@26358
  1097
lemma Times_Un_distrib1: "(A Un B) <*> C = (A <*> C) Un (B <*> C)"
nipkow@28719
  1098
by blast
haftmann@26358
  1099
haftmann@26358
  1100
lemma Times_Int_distrib1: "(A Int B) <*> C = (A <*> C) Int (B <*> C)"
nipkow@28719
  1101
by blast
haftmann@26358
  1102
haftmann@26358
  1103
lemma Times_Diff_distrib1: "(A - B) <*> C = (A <*> C) - (B <*> C)"
nipkow@28719
  1104
by blast
haftmann@26358
  1105
hoelzl@36622
  1106
lemma Times_empty[simp]: "A \<times> B = {} \<longleftrightarrow> A = {} \<or> B = {}"
hoelzl@36622
  1107
  by auto
hoelzl@36622
  1108
hoelzl@50104
  1109
lemma times_eq_iff: "A \<times> B = C \<times> D \<longleftrightarrow> A = C \<and> B = D \<or> ((A = {} \<or> B = {}) \<and> (C = {} \<or> D = {}))"
hoelzl@50104
  1110
  by auto
hoelzl@50104
  1111
hoelzl@36622
  1112
lemma fst_image_times[simp]: "fst ` (A \<times> B) = (if B = {} then {} else A)"
huffman@44921
  1113
  by force
hoelzl@36622
  1114
hoelzl@36622
  1115
lemma snd_image_times[simp]: "snd ` (A \<times> B) = (if A = {} then {} else B)"
huffman@44921
  1116
  by force
hoelzl@36622
  1117
nipkow@28719
  1118
lemma insert_times_insert[simp]:
nipkow@28719
  1119
  "insert a A \<times> insert b B =
nipkow@28719
  1120
   insert (a,b) (A \<times> insert b B \<union> insert a A \<times> B)"
nipkow@28719
  1121
by blast
haftmann@26358
  1122
paulson@33271
  1123
lemma vimage_Times: "f -` (A \<times> B) = ((fst \<circ> f) -` A) \<inter> ((snd \<circ> f) -` B)"
wenzelm@47988
  1124
  apply auto
wenzelm@47988
  1125
  apply (case_tac "f x")
wenzelm@47988
  1126
  apply auto
wenzelm@47988
  1127
  done
paulson@33271
  1128
hoelzl@50104
  1129
lemma times_Int_times: "A \<times> B \<inter> C \<times> D = (A \<inter> C) \<times> (B \<inter> D)"
hoelzl@50104
  1130
  by auto
hoelzl@50104
  1131
haftmann@35822
  1132
lemma swap_inj_on:
hoelzl@36622
  1133
  "inj_on (\<lambda>(i, j). (j, i)) A"
hoelzl@36622
  1134
  by (auto intro!: inj_onI)
haftmann@35822
  1135
haftmann@35822
  1136
lemma swap_product:
haftmann@35822
  1137
  "(%(i, j). (j, i)) ` (A \<times> B) = B \<times> A"
haftmann@35822
  1138
  by (simp add: split_def image_def) blast
haftmann@35822
  1139
hoelzl@36622
  1140
lemma image_split_eq_Sigma:
hoelzl@36622
  1141
  "(\<lambda>x. (f x, g x)) ` A = Sigma (f ` A) (\<lambda>x. g ` (f -` {x} \<inter> A))"
haftmann@46128
  1142
proof (safe intro!: imageI)
hoelzl@36622
  1143
  fix a b assume *: "a \<in> A" "b \<in> A" and eq: "f a = f b"
hoelzl@36622
  1144
  show "(f b, g a) \<in> (\<lambda>x. (f x, g x)) ` A"
hoelzl@36622
  1145
    using * eq[symmetric] by auto
hoelzl@36622
  1146
qed simp_all
haftmann@35822
  1147
haftmann@46128
  1148
definition product :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set" where
haftmann@46128
  1149
  [code_abbrev]: "product A B = A \<times> B"
haftmann@46128
  1150
haftmann@46128
  1151
hide_const (open) product
haftmann@46128
  1152
haftmann@46128
  1153
lemma member_product:
haftmann@46128
  1154
  "x \<in> Product_Type.product A B \<longleftrightarrow> x \<in> A \<times> B"
haftmann@46128
  1155
  by (simp add: product_def)
haftmann@46128
  1156
haftmann@40607
  1157
text {* The following @{const map_pair} lemmas are due to Joachim Breitner: *}
haftmann@40607
  1158
haftmann@40607
  1159
lemma map_pair_inj_on:
haftmann@40607
  1160
  assumes "inj_on f A" and "inj_on g B"
haftmann@40607
  1161
  shows "inj_on (map_pair f g) (A \<times> B)"
haftmann@40607
  1162
proof (rule inj_onI)
haftmann@40607
  1163
  fix x :: "'a \<times> 'c" and y :: "'a \<times> 'c"
haftmann@40607
  1164
  assume "x \<in> A \<times> B" hence "fst x \<in> A" and "snd x \<in> B" by auto
haftmann@40607
  1165
  assume "y \<in> A \<times> B" hence "fst y \<in> A" and "snd y \<in> B" by auto
haftmann@40607
  1166
  assume "map_pair f g x = map_pair f g y"
haftmann@40607
  1167
  hence "fst (map_pair f g x) = fst (map_pair f g y)" by (auto)
haftmann@40607
  1168
  hence "f (fst x) = f (fst y)" by (cases x,cases y,auto)
haftmann@40607
  1169
  with `inj_on f A` and `fst x \<in> A` and `fst y \<in> A`
haftmann@40607
  1170
  have "fst x = fst y" by (auto dest:dest:inj_onD)
haftmann@40607
  1171
  moreover from `map_pair f g x = map_pair f g y`
haftmann@40607
  1172
  have "snd (map_pair f g x) = snd (map_pair f g y)" by (auto)
haftmann@40607
  1173
  hence "g (snd x) = g (snd y)" by (cases x,cases y,auto)
haftmann@40607
  1174
  with `inj_on g B` and `snd x \<in> B` and `snd y \<in> B`
haftmann@40607
  1175
  have "snd x = snd y" by (auto dest:dest:inj_onD)
haftmann@40607
  1176
  ultimately show "x = y" by(rule prod_eqI)
haftmann@40607
  1177
qed
haftmann@40607
  1178
haftmann@40607
  1179
lemma map_pair_surj:
hoelzl@40702
  1180
  fixes f :: "'a \<Rightarrow> 'b" and g :: "'c \<Rightarrow> 'd"
haftmann@40607
  1181
  assumes "surj f" and "surj g"
haftmann@40607
  1182
  shows "surj (map_pair f g)"
haftmann@40607
  1183
unfolding surj_def
haftmann@40607
  1184
proof
haftmann@40607
  1185
  fix y :: "'b \<times> 'd"
haftmann@40607
  1186
  from `surj f` obtain a where "fst y = f a" by (auto elim:surjE)
haftmann@40607
  1187
  moreover
haftmann@40607
  1188
  from `surj g` obtain b where "snd y = g b" by (auto elim:surjE)
haftmann@40607
  1189
  ultimately have "(fst y, snd y) = map_pair f g (a,b)" by auto
haftmann@40607
  1190
  thus "\<exists>x. y = map_pair f g x" by auto
haftmann@40607
  1191
qed
haftmann@40607
  1192
haftmann@40607
  1193
lemma map_pair_surj_on:
haftmann@40607
  1194
  assumes "f ` A = A'" and "g ` B = B'"
haftmann@40607
  1195
  shows "map_pair f g ` (A \<times> B) = A' \<times> B'"
haftmann@40607
  1196
unfolding image_def
haftmann@40607
  1197
proof(rule set_eqI,rule iffI)
haftmann@40607
  1198
  fix x :: "'a \<times> 'c"
haftmann@40607
  1199
  assume "x \<in> {y\<Colon>'a \<times> 'c. \<exists>x\<Colon>'b \<times> 'd\<in>A \<times> B. y = map_pair f g x}"
haftmann@40607
  1200
  then obtain y where "y \<in> A \<times> B" and "x = map_pair f g y" by blast
haftmann@40607
  1201
  from `image f A = A'` and `y \<in> A \<times> B` have "f (fst y) \<in> A'" by auto
haftmann@40607
  1202
  moreover from `image g B = B'` and `y \<in> A \<times> B` have "g (snd y) \<in> B'" by auto
haftmann@40607
  1203
  ultimately have "(f (fst y), g (snd y)) \<in> (A' \<times> B')" by auto
haftmann@40607
  1204
  with `x = map_pair f g y` show "x \<in> A' \<times> B'" by (cases y, auto)
haftmann@40607
  1205
next
haftmann@40607
  1206
  fix x :: "'a \<times> 'c"
haftmann@40607
  1207
  assume "x \<in> A' \<times> B'" hence "fst x \<in> A'" and "snd x \<in> B'" by auto
haftmann@40607
  1208
  from `image f A = A'` and `fst x \<in> A'` have "fst x \<in> image f A" by auto
haftmann@40607
  1209
  then obtain a where "a \<in> A" and "fst x = f a" by (rule imageE)
haftmann@40607
  1210
  moreover from `image g B = B'` and `snd x \<in> B'`
haftmann@40607
  1211
  obtain b where "b \<in> B" and "snd x = g b" by auto
haftmann@40607
  1212
  ultimately have "(fst x, snd x) = map_pair f g (a,b)" by auto
haftmann@40607
  1213
  moreover from `a \<in> A` and  `b \<in> B` have "(a , b) \<in> A \<times> B" by auto
haftmann@40607
  1214
  ultimately have "\<exists>y \<in> A \<times> B. x = map_pair f g y" by auto
haftmann@40607
  1215
  thus "x \<in> {x. \<exists>y \<in> A \<times> B. x = map_pair f g y}" by auto
haftmann@40607
  1216
qed
haftmann@40607
  1217
haftmann@21908
  1218
bulwahn@49764
  1219
subsection {* Simproc for rewriting a set comprehension into a pointfree expression *}
bulwahn@49764
  1220
bulwahn@49764
  1221
ML_file "Tools/set_comprehension_pointfree.ML"
bulwahn@49764
  1222
bulwahn@49764
  1223
setup {*
wenzelm@51717
  1224
  Code_Preproc.map_pre (fn ctxt => ctxt addsimprocs
bulwahn@49764
  1225
    [Raw_Simplifier.make_simproc {name = "set comprehension", lhss = [@{cpat "Collect ?P"}],
bulwahn@49764
  1226
    proc = K Set_Comprehension_Pointfree.code_simproc, identifier = []}])
bulwahn@49764
  1227
*}
bulwahn@49764
  1228
bulwahn@49764
  1229
haftmann@37166
  1230
subsection {* Inductively defined sets *}
berghofe@15394
  1231
wenzelm@48891
  1232
ML_file "Tools/inductive_set.ML"
haftmann@31723
  1233
setup Inductive_Set.setup
haftmann@24699
  1234
haftmann@37166
  1235
haftmann@37166
  1236
subsection {* Legacy theorem bindings and duplicates *}
haftmann@37166
  1237
haftmann@37166
  1238
lemma PairE:
haftmann@37166
  1239
  obtains x y where "p = (x, y)"
haftmann@37166
  1240
  by (fact prod.exhaust)
haftmann@37166
  1241
haftmann@37166
  1242
lemmas Pair_eq = prod.inject
blanchet@55393
  1243
lemmas fst_conv = prod.sel(1)
blanchet@55393
  1244
lemmas snd_conv = prod.sel(2)
blanchet@55393
  1245
lemmas pair_collapse = prod.collapse
blanchet@55393
  1246
lemmas split = split_conv
huffman@44066
  1247
lemmas Pair_fst_snd_eq = prod_eq_iff
huffman@44066
  1248
huffman@45204
  1249
hide_const (open) prod
huffman@45204
  1250
nipkow@10213
  1251
end