src/Pure/Pure.thy
author nipkow
Wed Jun 20 08:09:56 2007 +0200 (2007-06-20)
changeset 23432 cec811764a38
parent 22933 338c7890c96f
child 23824 8ad7131dbfcf
permissions -rw-r--r--
added meta_impE
wenzelm@15803
     1
(*  Title:      Pure/Pure.thy
wenzelm@15803
     2
    ID:         $Id$
wenzelm@18466
     3
*)
wenzelm@15803
     4
wenzelm@18466
     5
header {* The Pure theory *}
wenzelm@15803
     6
wenzelm@15803
     7
theory Pure
wenzelm@15803
     8
imports ProtoPure
wenzelm@15803
     9
begin
wenzelm@19800
    10
wenzelm@19048
    11
setup  -- {* Common setup of internal components *}
wenzelm@15803
    12
wenzelm@20627
    13
wenzelm@18466
    14
subsection {* Meta-level connectives in assumptions *}
wenzelm@15803
    15
wenzelm@15803
    16
lemma meta_mp:
wenzelm@18019
    17
  assumes "PROP P ==> PROP Q" and "PROP P"
wenzelm@15803
    18
  shows "PROP Q"
wenzelm@18019
    19
    by (rule `PROP P ==> PROP Q` [OF `PROP P`])
wenzelm@15803
    20
nipkow@23432
    21
lemmas meta_impE = meta_mp [elim_format]
nipkow@23432
    22
wenzelm@15803
    23
lemma meta_spec:
wenzelm@18019
    24
  assumes "!!x. PROP P(x)"
wenzelm@15803
    25
  shows "PROP P(x)"
wenzelm@18019
    26
    by (rule `!!x. PROP P(x)`)
wenzelm@15803
    27
wenzelm@15803
    28
lemmas meta_allE = meta_spec [elim_format]
wenzelm@15803
    29
wenzelm@18466
    30
wenzelm@21625
    31
subsection {* Embedded terms *}
wenzelm@21625
    32
wenzelm@21625
    33
locale (open) meta_term_syntax =
wenzelm@21625
    34
  fixes meta_term :: "'a => prop"  ("TERM _")
wenzelm@21625
    35
wenzelm@21625
    36
parse_translation {*
wenzelm@21627
    37
  [("\<^fixed>meta_term", fn [t] => Const ("ProtoPure.term", dummyT --> propT) $ t)]
wenzelm@21625
    38
*}
wenzelm@21625
    39
wenzelm@21625
    40
lemmas [intro?] = termI
wenzelm@21625
    41
wenzelm@21625
    42
wenzelm@18466
    43
subsection {* Meta-level conjunction *}
wenzelm@18466
    44
wenzelm@18466
    45
locale (open) meta_conjunction_syntax =
wenzelm@18466
    46
  fixes meta_conjunction :: "prop => prop => prop"  (infixr "&&" 2)
wenzelm@18466
    47
wenzelm@18466
    48
parse_translation {*
wenzelm@18466
    49
  [("\<^fixed>meta_conjunction", fn [t, u] => Logic.mk_conjunction (t, u))]
wenzelm@18466
    50
*}
wenzelm@18466
    51
wenzelm@18466
    52
lemma all_conjunction:
wenzelm@18466
    53
  includes meta_conjunction_syntax
wenzelm@18466
    54
  shows "(!!x. PROP A(x) && PROP B(x)) == ((!!x. PROP A(x)) && (!!x. PROP B(x)))"
wenzelm@18466
    55
proof
wenzelm@18466
    56
  assume conj: "!!x. PROP A(x) && PROP B(x)"
wenzelm@19121
    57
  show "(\<And>x. PROP A(x)) && (\<And>x. PROP B(x))"
wenzelm@19121
    58
  proof -
wenzelm@18466
    59
    fix x
wenzelm@19121
    60
    from conj show "PROP A(x)" by (rule conjunctionD1)
wenzelm@19121
    61
    from conj show "PROP B(x)" by (rule conjunctionD2)
wenzelm@18466
    62
  qed
wenzelm@18466
    63
next
wenzelm@18466
    64
  assume conj: "(!!x. PROP A(x)) && (!!x. PROP B(x))"
wenzelm@18466
    65
  fix x
wenzelm@19121
    66
  show "PROP A(x) && PROP B(x)"
wenzelm@19121
    67
  proof -
wenzelm@19121
    68
    show "PROP A(x)" by (rule conj [THEN conjunctionD1, rule_format])
wenzelm@19121
    69
    show "PROP B(x)" by (rule conj [THEN conjunctionD2, rule_format])
wenzelm@18466
    70
  qed
wenzelm@18466
    71
qed
wenzelm@18466
    72
wenzelm@19121
    73
lemma imp_conjunction:
wenzelm@18466
    74
  includes meta_conjunction_syntax
wenzelm@19121
    75
  shows "(PROP A ==> PROP B && PROP C) == (PROP A ==> PROP B) && (PROP A ==> PROP C)"
wenzelm@18836
    76
proof
wenzelm@18466
    77
  assume conj: "PROP A ==> PROP B && PROP C"
wenzelm@19121
    78
  show "(PROP A ==> PROP B) && (PROP A ==> PROP C)"
wenzelm@19121
    79
  proof -
wenzelm@18466
    80
    assume "PROP A"
wenzelm@19121
    81
    from conj [OF `PROP A`] show "PROP B" by (rule conjunctionD1)
wenzelm@19121
    82
    from conj [OF `PROP A`] show "PROP C" by (rule conjunctionD2)
wenzelm@18466
    83
  qed
wenzelm@18466
    84
next
wenzelm@18466
    85
  assume conj: "(PROP A ==> PROP B) && (PROP A ==> PROP C)"
wenzelm@18466
    86
  assume "PROP A"
wenzelm@19121
    87
  show "PROP B && PROP C"
wenzelm@19121
    88
  proof -
wenzelm@19121
    89
    from `PROP A` show "PROP B" by (rule conj [THEN conjunctionD1])
wenzelm@19121
    90
    from `PROP A` show "PROP C" by (rule conj [THEN conjunctionD2])
wenzelm@18466
    91
  qed
wenzelm@18466
    92
qed
wenzelm@18466
    93
wenzelm@18466
    94
lemma conjunction_imp:
wenzelm@18466
    95
  includes meta_conjunction_syntax
wenzelm@18466
    96
  shows "(PROP A && PROP B ==> PROP C) == (PROP A ==> PROP B ==> PROP C)"
wenzelm@18466
    97
proof
wenzelm@18466
    98
  assume r: "PROP A && PROP B ==> PROP C"
wenzelm@22933
    99
  assume ab: "PROP A" "PROP B"
wenzelm@22933
   100
  show "PROP C"
wenzelm@22933
   101
  proof (rule r)
wenzelm@22933
   102
    from ab show "PROP A && PROP B" .
wenzelm@22933
   103
  qed
wenzelm@18466
   104
next
wenzelm@18466
   105
  assume r: "PROP A ==> PROP B ==> PROP C"
wenzelm@18466
   106
  assume conj: "PROP A && PROP B"
wenzelm@18466
   107
  show "PROP C"
wenzelm@18466
   108
  proof (rule r)
wenzelm@19121
   109
    from conj show "PROP A" by (rule conjunctionD1)
wenzelm@19121
   110
    from conj show "PROP B" by (rule conjunctionD2)
wenzelm@18466
   111
  qed
wenzelm@18466
   112
qed
wenzelm@18466
   113
wenzelm@15803
   114
end