src/HOL/Hilbert_Choice.thy
author hoelzl
Mon Nov 22 10:34:33 2010 +0100 (2010-11-22)
changeset 40702 cf26dd7395e4
parent 39950 f3c4849868b8
child 40703 d1fc454d6735
permissions -rw-r--r--
Replace surj by abbreviation; remove surj_on.
paulson@11451
     1
(*  Title:      HOL/Hilbert_Choice.thy
nipkow@32988
     2
    Author:     Lawrence C Paulson, Tobias Nipkow
paulson@11451
     3
    Copyright   2001  University of Cambridge
wenzelm@12023
     4
*)
paulson@11451
     5
paulson@14760
     6
header {* Hilbert's Epsilon-Operator and the Axiom of Choice *}
paulson@11451
     7
nipkow@15131
     8
theory Hilbert_Choice
haftmann@29655
     9
imports Nat Wellfounded Plain
blanchet@39943
    10
uses ("Tools/choice_specification.ML")
nipkow@15131
    11
begin
wenzelm@12298
    12
wenzelm@12298
    13
subsection {* Hilbert's epsilon *}
wenzelm@12298
    14
haftmann@31454
    15
axiomatization Eps :: "('a => bool) => 'a" where
wenzelm@22690
    16
  someI: "P x ==> P (Eps P)"
paulson@11451
    17
wenzelm@14872
    18
syntax (epsilon)
wenzelm@14872
    19
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3\<some>_./ _)" [0, 10] 10)
paulson@11451
    20
syntax (HOL)
wenzelm@12298
    21
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3@ _./ _)" [0, 10] 10)
paulson@11451
    22
syntax
wenzelm@12298
    23
  "_Eps"        :: "[pttrn, bool] => 'a"    ("(3SOME _./ _)" [0, 10] 10)
paulson@11451
    24
translations
wenzelm@22690
    25
  "SOME x. P" == "CONST Eps (%x. P)"
nipkow@13763
    26
nipkow@13763
    27
print_translation {*
wenzelm@35115
    28
  [(@{const_syntax Eps}, fn [Abs abs] =>
wenzelm@35115
    29
      let val (x, t) = atomic_abs_tr' abs
wenzelm@35115
    30
      in Syntax.const @{syntax_const "_Eps"} $ x $ t end)]
wenzelm@35115
    31
*} -- {* to avoid eta-contraction of body *}
paulson@11451
    32
nipkow@33057
    33
definition inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where
nipkow@33057
    34
"inv_into A f == %x. SOME y. y : A & f y = x"
paulson@11454
    35
nipkow@32988
    36
abbreviation inv :: "('a => 'b) => ('b => 'a)" where
nipkow@33057
    37
"inv == inv_into UNIV"
paulson@14760
    38
paulson@14760
    39
paulson@14760
    40
subsection {*Hilbert's Epsilon-operator*}
paulson@14760
    41
paulson@14760
    42
text{*Easier to apply than @{text someI} if the witness comes from an
paulson@14760
    43
existential formula*}
paulson@14760
    44
lemma someI_ex [elim?]: "\<exists>x. P x ==> P (SOME x. P x)"
paulson@14760
    45
apply (erule exE)
paulson@14760
    46
apply (erule someI)
paulson@14760
    47
done
paulson@14760
    48
paulson@14760
    49
text{*Easier to apply than @{text someI} because the conclusion has only one
paulson@14760
    50
occurrence of @{term P}.*}
paulson@14760
    51
lemma someI2: "[| P a;  !!x. P x ==> Q x |] ==> Q (SOME x. P x)"
paulson@14760
    52
by (blast intro: someI)
paulson@14760
    53
paulson@14760
    54
text{*Easier to apply than @{text someI2} if the witness comes from an
paulson@14760
    55
existential formula*}
paulson@14760
    56
lemma someI2_ex: "[| \<exists>a. P a; !!x. P x ==> Q x |] ==> Q (SOME x. P x)"
paulson@14760
    57
by (blast intro: someI2)
paulson@14760
    58
paulson@14760
    59
lemma some_equality [intro]:
paulson@14760
    60
     "[| P a;  !!x. P x ==> x=a |] ==> (SOME x. P x) = a"
paulson@14760
    61
by (blast intro: someI2)
paulson@14760
    62
paulson@14760
    63
lemma some1_equality: "[| EX!x. P x; P a |] ==> (SOME x. P x) = a"
huffman@35216
    64
by blast
paulson@14760
    65
paulson@14760
    66
lemma some_eq_ex: "P (SOME x. P x) =  (\<exists>x. P x)"
paulson@14760
    67
by (blast intro: someI)
paulson@14760
    68
paulson@14760
    69
lemma some_eq_trivial [simp]: "(SOME y. y=x) = x"
paulson@14760
    70
apply (rule some_equality)
paulson@14760
    71
apply (rule refl, assumption)
paulson@14760
    72
done
paulson@14760
    73
paulson@14760
    74
lemma some_sym_eq_trivial [simp]: "(SOME y. x=y) = x"
paulson@14760
    75
apply (rule some_equality)
paulson@14760
    76
apply (rule refl)
paulson@14760
    77
apply (erule sym)
paulson@14760
    78
done
paulson@14760
    79
paulson@14760
    80
paulson@14760
    81
subsection{*Axiom of Choice, Proved Using the Description Operator*}
paulson@14760
    82
blanchet@39950
    83
lemma choice: "\<forall>x. \<exists>y. Q x y ==> \<exists>f. \<forall>x. Q x (f x)"
paulson@14760
    84
by (fast elim: someI)
paulson@14760
    85
paulson@14760
    86
lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y ==> \<exists>f. \<forall>x\<in>S. Q x (f x)"
paulson@14760
    87
by (fast elim: someI)
paulson@14760
    88
paulson@14760
    89
paulson@14760
    90
subsection {*Function Inverse*}
paulson@14760
    91
nipkow@33014
    92
lemma inv_def: "inv f = (%y. SOME x. f x = y)"
nipkow@33057
    93
by(simp add: inv_into_def)
nipkow@33014
    94
nipkow@33057
    95
lemma inv_into_into: "x : f ` A ==> inv_into A f x : A"
nipkow@33057
    96
apply (simp add: inv_into_def)
nipkow@32988
    97
apply (fast intro: someI2)
nipkow@32988
    98
done
paulson@14760
    99
nipkow@32988
   100
lemma inv_id [simp]: "inv id = id"
nipkow@33057
   101
by (simp add: inv_into_def id_def)
paulson@14760
   102
nipkow@33057
   103
lemma inv_into_f_f [simp]:
nipkow@33057
   104
  "[| inj_on f A;  x : A |] ==> inv_into A f (f x) = x"
nipkow@33057
   105
apply (simp add: inv_into_def inj_on_def)
nipkow@32988
   106
apply (blast intro: someI2)
paulson@14760
   107
done
paulson@14760
   108
nipkow@32988
   109
lemma inv_f_f: "inj f ==> inv f (f x) = x"
huffman@35216
   110
by simp
nipkow@32988
   111
nipkow@33057
   112
lemma f_inv_into_f: "y : f`A  ==> f (inv_into A f y) = y"
nipkow@33057
   113
apply (simp add: inv_into_def)
nipkow@32988
   114
apply (fast intro: someI2)
nipkow@32988
   115
done
nipkow@32988
   116
nipkow@33057
   117
lemma inv_into_f_eq: "[| inj_on f A; x : A; f x = y |] ==> inv_into A f y = x"
nipkow@32988
   118
apply (erule subst)
nipkow@33057
   119
apply (fast intro: inv_into_f_f)
nipkow@32988
   120
done
nipkow@32988
   121
nipkow@32988
   122
lemma inv_f_eq: "[| inj f; f x = y |] ==> inv f y = x"
nipkow@33057
   123
by (simp add:inv_into_f_eq)
nipkow@32988
   124
nipkow@32988
   125
lemma inj_imp_inv_eq: "[| inj f; ALL x. f(g x) = x |] ==> inv f = g"
nipkow@33057
   126
by (blast intro: ext inv_into_f_eq)
paulson@14760
   127
paulson@14760
   128
text{*But is it useful?*}
paulson@14760
   129
lemma inj_transfer:
paulson@14760
   130
  assumes injf: "inj f" and minor: "!!y. y \<in> range(f) ==> P(inv f y)"
paulson@14760
   131
  shows "P x"
paulson@14760
   132
proof -
paulson@14760
   133
  have "f x \<in> range f" by auto
paulson@14760
   134
  hence "P(inv f (f x))" by (rule minor)
nipkow@33057
   135
  thus "P x" by (simp add: inv_into_f_f [OF injf])
paulson@14760
   136
qed
paulson@11451
   137
paulson@14760
   138
lemma inj_iff: "(inj f) = (inv f o f = id)"
nipkow@39302
   139
apply (simp add: o_def fun_eq_iff)
nipkow@33057
   140
apply (blast intro: inj_on_inverseI inv_into_f_f)
paulson@14760
   141
done
paulson@14760
   142
nipkow@23433
   143
lemma inv_o_cancel[simp]: "inj f ==> inv f o f = id"
nipkow@23433
   144
by (simp add: inj_iff)
nipkow@23433
   145
nipkow@23433
   146
lemma o_inv_o_cancel[simp]: "inj f ==> g o inv f o f = g"
nipkow@23433
   147
by (simp add: o_assoc[symmetric])
nipkow@23433
   148
nipkow@33057
   149
lemma inv_into_image_cancel[simp]:
nipkow@33057
   150
  "inj_on f A ==> S <= A ==> inv_into A f ` f ` S = S"
nipkow@32988
   151
by(fastsimp simp: image_def)
nipkow@32988
   152
paulson@14760
   153
lemma inj_imp_surj_inv: "inj f ==> surj (inv f)"
hoelzl@40702
   154
by (blast intro!: surjI inv_into_f_f)
paulson@14760
   155
paulson@14760
   156
lemma surj_f_inv_f: "surj f ==> f(inv f y) = y"
hoelzl@40702
   157
by (simp add: f_inv_into_f)
paulson@14760
   158
nipkow@33057
   159
lemma inv_into_injective:
nipkow@33057
   160
  assumes eq: "inv_into A f x = inv_into A f y"
nipkow@32988
   161
      and x: "x: f`A"
nipkow@32988
   162
      and y: "y: f`A"
paulson@14760
   163
  shows "x=y"
paulson@14760
   164
proof -
nipkow@33057
   165
  have "f (inv_into A f x) = f (inv_into A f y)" using eq by simp
nipkow@33057
   166
  thus ?thesis by (simp add: f_inv_into_f x y)
paulson@14760
   167
qed
paulson@14760
   168
nipkow@33057
   169
lemma inj_on_inv_into: "B <= f`A ==> inj_on (inv_into A f) B"
nipkow@33057
   170
by (blast intro: inj_onI dest: inv_into_injective injD)
nipkow@32988
   171
nipkow@33057
   172
lemma bij_betw_inv_into: "bij_betw f A B ==> bij_betw (inv_into A f) B A"
nipkow@33057
   173
by (auto simp add: bij_betw_def inj_on_inv_into)
paulson@14760
   174
paulson@14760
   175
lemma surj_imp_inj_inv: "surj f ==> inj (inv f)"
hoelzl@40702
   176
by (simp add: inj_on_inv_into)
paulson@14760
   177
paulson@14760
   178
lemma surj_iff: "(surj f) = (f o inv f = id)"
hoelzl@40702
   179
by (auto intro!: surjI simp: surj_f_inv_f fun_eq_iff[where 'b='a])
hoelzl@40702
   180
hoelzl@40702
   181
lemma surj_iff_all: "surj f \<longleftrightarrow> (\<forall>x. f (inv f x) = x)"
hoelzl@40702
   182
  unfolding surj_iff by (simp add: o_def fun_eq_iff)
paulson@14760
   183
paulson@14760
   184
lemma surj_imp_inv_eq: "[| surj f; \<forall>x. g(f x) = x |] ==> inv f = g"
paulson@14760
   185
apply (rule ext)
paulson@14760
   186
apply (drule_tac x = "inv f x" in spec)
paulson@14760
   187
apply (simp add: surj_f_inv_f)
paulson@14760
   188
done
paulson@14760
   189
paulson@14760
   190
lemma bij_imp_bij_inv: "bij f ==> bij (inv f)"
paulson@14760
   191
by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv)
wenzelm@12372
   192
paulson@14760
   193
lemma inv_equality: "[| !!x. g (f x) = x;  !!y. f (g y) = y |] ==> inv f = g"
paulson@14760
   194
apply (rule ext)
nipkow@33057
   195
apply (auto simp add: inv_into_def)
paulson@14760
   196
done
paulson@14760
   197
paulson@14760
   198
lemma inv_inv_eq: "bij f ==> inv (inv f) = f"
paulson@14760
   199
apply (rule inv_equality)
paulson@14760
   200
apply (auto simp add: bij_def surj_f_inv_f)
paulson@14760
   201
done
paulson@14760
   202
paulson@14760
   203
(** bij(inv f) implies little about f.  Consider f::bool=>bool such that
paulson@14760
   204
    f(True)=f(False)=True.  Then it's consistent with axiom someI that
paulson@14760
   205
    inv f could be any function at all, including the identity function.
paulson@14760
   206
    If inv f=id then inv f is a bijection, but inj f, surj(f) and
paulson@14760
   207
    inv(inv f)=f all fail.
paulson@14760
   208
**)
paulson@14760
   209
nipkow@33057
   210
lemma inv_into_comp:
nipkow@32988
   211
  "[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==>
nipkow@33057
   212
  inv_into A (f o g) x = (inv_into A g o inv_into (g ` A) f) x"
nipkow@33057
   213
apply (rule inv_into_f_eq)
nipkow@32988
   214
  apply (fast intro: comp_inj_on)
nipkow@33057
   215
 apply (simp add: inv_into_into)
nipkow@33057
   216
apply (simp add: f_inv_into_f inv_into_into)
nipkow@32988
   217
done
nipkow@32988
   218
paulson@14760
   219
lemma o_inv_distrib: "[| bij f; bij g |] ==> inv (f o g) = inv g o inv f"
paulson@14760
   220
apply (rule inv_equality)
paulson@14760
   221
apply (auto simp add: bij_def surj_f_inv_f)
paulson@14760
   222
done
paulson@14760
   223
paulson@14760
   224
lemma image_surj_f_inv_f: "surj f ==> f ` (inv f ` A) = A"
paulson@14760
   225
by (simp add: image_eq_UN surj_f_inv_f)
paulson@14760
   226
paulson@14760
   227
lemma image_inv_f_f: "inj f ==> (inv f) ` (f ` A) = A"
paulson@14760
   228
by (simp add: image_eq_UN)
paulson@14760
   229
paulson@14760
   230
lemma inv_image_comp: "inj f ==> inv f ` (f`X) = X"
paulson@14760
   231
by (auto simp add: image_def)
paulson@14760
   232
paulson@14760
   233
lemma bij_image_Collect_eq: "bij f ==> f ` Collect P = {y. P (inv f y)}"
paulson@14760
   234
apply auto
paulson@14760
   235
apply (force simp add: bij_is_inj)
paulson@14760
   236
apply (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric])
paulson@14760
   237
done
paulson@14760
   238
paulson@14760
   239
lemma bij_vimage_eq_inv_image: "bij f ==> f -` A = inv f ` A" 
paulson@14760
   240
apply (auto simp add: bij_is_surj [THEN surj_f_inv_f])
nipkow@33057
   241
apply (blast intro: bij_is_inj [THEN inv_into_f_f, symmetric])
paulson@14760
   242
done
paulson@14760
   243
haftmann@31380
   244
lemma finite_fun_UNIVD1:
haftmann@31380
   245
  assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
haftmann@31380
   246
  and card: "card (UNIV :: 'b set) \<noteq> Suc 0"
haftmann@31380
   247
  shows "finite (UNIV :: 'a set)"
haftmann@31380
   248
proof -
haftmann@31380
   249
  from fin have finb: "finite (UNIV :: 'b set)" by (rule finite_fun_UNIVD2)
haftmann@31380
   250
  with card have "card (UNIV :: 'b set) \<ge> Suc (Suc 0)"
haftmann@31380
   251
    by (cases "card (UNIV :: 'b set)") (auto simp add: card_eq_0_iff)
haftmann@31380
   252
  then obtain n where "card (UNIV :: 'b set) = Suc (Suc n)" "n = card (UNIV :: 'b set) - Suc (Suc 0)" by auto
haftmann@31380
   253
  then obtain b1 b2 where b1b2: "(b1 :: 'b) \<noteq> (b2 :: 'b)" by (auto simp add: card_Suc_eq)
haftmann@31380
   254
  from fin have "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1))" by (rule finite_imageI)
haftmann@31380
   255
  moreover have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1)"
haftmann@31380
   256
  proof (rule UNIV_eq_I)
haftmann@31380
   257
    fix x :: 'a
nipkow@33057
   258
    from b1b2 have "x = inv (\<lambda>y. if y = x then b1 else b2) b1" by (simp add: inv_into_def)
haftmann@31380
   259
    thus "x \<in> range (\<lambda>f\<Colon>'a \<Rightarrow> 'b. inv f b1)" by blast
haftmann@31380
   260
  qed
haftmann@31380
   261
  ultimately show "finite (UNIV :: 'a set)" by simp
haftmann@31380
   262
qed
paulson@14760
   263
paulson@14760
   264
paulson@14760
   265
subsection {*Other Consequences of Hilbert's Epsilon*}
paulson@14760
   266
paulson@14760
   267
text {*Hilbert's Epsilon and the @{term split} Operator*}
paulson@14760
   268
paulson@14760
   269
text{*Looping simprule*}
paulson@14760
   270
lemma split_paired_Eps: "(SOME x. P x) = (SOME (a,b). P(a,b))"
haftmann@26347
   271
  by simp
paulson@14760
   272
paulson@14760
   273
lemma Eps_split: "Eps (split P) = (SOME xy. P (fst xy) (snd xy))"
haftmann@26347
   274
  by (simp add: split_def)
paulson@14760
   275
paulson@14760
   276
lemma Eps_split_eq [simp]: "(@(x',y'). x = x' & y = y') = (x,y)"
haftmann@26347
   277
  by blast
paulson@14760
   278
paulson@14760
   279
paulson@14760
   280
text{*A relation is wellfounded iff it has no infinite descending chain*}
paulson@14760
   281
lemma wf_iff_no_infinite_down_chain:
paulson@14760
   282
  "wf r = (~(\<exists>f. \<forall>i. (f(Suc i),f i) \<in> r))"
paulson@14760
   283
apply (simp only: wf_eq_minimal)
paulson@14760
   284
apply (rule iffI)
paulson@14760
   285
 apply (rule notI)
paulson@14760
   286
 apply (erule exE)
paulson@14760
   287
 apply (erule_tac x = "{w. \<exists>i. w=f i}" in allE, blast)
paulson@14760
   288
apply (erule contrapos_np, simp, clarify)
paulson@14760
   289
apply (subgoal_tac "\<forall>n. nat_rec x (%i y. @z. z:Q & (z,y) :r) n \<in> Q")
paulson@14760
   290
 apply (rule_tac x = "nat_rec x (%i y. @z. z:Q & (z,y) :r)" in exI)
paulson@14760
   291
 apply (rule allI, simp)
paulson@14760
   292
 apply (rule someI2_ex, blast, blast)
paulson@14760
   293
apply (rule allI)
paulson@14760
   294
apply (induct_tac "n", simp_all)
paulson@14760
   295
apply (rule someI2_ex, blast+)
paulson@14760
   296
done
paulson@14760
   297
nipkow@27760
   298
lemma wf_no_infinite_down_chainE:
nipkow@27760
   299
  assumes "wf r" obtains k where "(f (Suc k), f k) \<notin> r"
nipkow@27760
   300
using `wf r` wf_iff_no_infinite_down_chain[of r] by blast
nipkow@27760
   301
nipkow@27760
   302
paulson@14760
   303
text{*A dynamically-scoped fact for TFL *}
wenzelm@12298
   304
lemma tfl_some: "\<forall>P x. P x --> P (Eps P)"
wenzelm@12298
   305
  by (blast intro: someI)
paulson@11451
   306
wenzelm@12298
   307
wenzelm@12298
   308
subsection {* Least value operator *}
paulson@11451
   309
haftmann@35416
   310
definition
haftmann@35416
   311
  LeastM :: "['a => 'b::ord, 'a => bool] => 'a" where
paulson@14760
   312
  "LeastM m P == SOME x. P x & (\<forall>y. P y --> m x <= m y)"
paulson@11451
   313
paulson@11451
   314
syntax
wenzelm@12298
   315
  "_LeastM" :: "[pttrn, 'a => 'b::ord, bool] => 'a"    ("LEAST _ WRT _. _" [0, 4, 10] 10)
paulson@11451
   316
translations
wenzelm@35115
   317
  "LEAST x WRT m. P" == "CONST LeastM m (%x. P)"
paulson@11451
   318
paulson@11451
   319
lemma LeastMI2:
wenzelm@12298
   320
  "P x ==> (!!y. P y ==> m x <= m y)
wenzelm@12298
   321
    ==> (!!x. P x ==> \<forall>y. P y --> m x \<le> m y ==> Q x)
wenzelm@12298
   322
    ==> Q (LeastM m P)"
paulson@14760
   323
  apply (simp add: LeastM_def)
paulson@14208
   324
  apply (rule someI2_ex, blast, blast)
wenzelm@12298
   325
  done
paulson@11451
   326
paulson@11451
   327
lemma LeastM_equality:
wenzelm@12298
   328
  "P k ==> (!!x. P x ==> m k <= m x)
wenzelm@12298
   329
    ==> m (LEAST x WRT m. P x) = (m k::'a::order)"
paulson@14208
   330
  apply (rule LeastMI2, assumption, blast)
wenzelm@12298
   331
  apply (blast intro!: order_antisym)
wenzelm@12298
   332
  done
paulson@11451
   333
paulson@11454
   334
lemma wf_linord_ex_has_least:
paulson@14760
   335
  "wf r ==> \<forall>x y. ((x,y):r^+) = ((y,x)~:r^*) ==> P k
paulson@14760
   336
    ==> \<exists>x. P x & (!y. P y --> (m x,m y):r^*)"
wenzelm@12298
   337
  apply (drule wf_trancl [THEN wf_eq_minimal [THEN iffD1]])
paulson@14208
   338
  apply (drule_tac x = "m`Collect P" in spec, force)
wenzelm@12298
   339
  done
paulson@11454
   340
paulson@11454
   341
lemma ex_has_least_nat:
paulson@14760
   342
    "P k ==> \<exists>x. P x & (\<forall>y. P y --> m x <= (m y::nat))"
wenzelm@12298
   343
  apply (simp only: pred_nat_trancl_eq_le [symmetric])
wenzelm@12298
   344
  apply (rule wf_pred_nat [THEN wf_linord_ex_has_least])
paulson@16796
   345
   apply (simp add: less_eq linorder_not_le pred_nat_trancl_eq_le, assumption)
wenzelm@12298
   346
  done
paulson@11454
   347
wenzelm@12298
   348
lemma LeastM_nat_lemma:
paulson@14760
   349
    "P k ==> P (LeastM m P) & (\<forall>y. P y --> m (LeastM m P) <= (m y::nat))"
paulson@14760
   350
  apply (simp add: LeastM_def)
wenzelm@12298
   351
  apply (rule someI_ex)
wenzelm@12298
   352
  apply (erule ex_has_least_nat)
wenzelm@12298
   353
  done
paulson@11454
   354
paulson@11454
   355
lemmas LeastM_natI = LeastM_nat_lemma [THEN conjunct1, standard]
paulson@11454
   356
paulson@11454
   357
lemma LeastM_nat_le: "P x ==> m (LeastM m P) <= (m x::nat)"
paulson@14208
   358
by (rule LeastM_nat_lemma [THEN conjunct2, THEN spec, THEN mp], assumption, assumption)
paulson@11454
   359
paulson@11451
   360
wenzelm@12298
   361
subsection {* Greatest value operator *}
paulson@11451
   362
haftmann@35416
   363
definition
haftmann@35416
   364
  GreatestM :: "['a => 'b::ord, 'a => bool] => 'a" where
paulson@14760
   365
  "GreatestM m P == SOME x. P x & (\<forall>y. P y --> m y <= m x)"
wenzelm@12298
   366
haftmann@35416
   367
definition
haftmann@35416
   368
  Greatest :: "('a::ord => bool) => 'a" (binder "GREATEST " 10) where
wenzelm@12298
   369
  "Greatest == GreatestM (%x. x)"
paulson@11451
   370
paulson@11451
   371
syntax
wenzelm@35115
   372
  "_GreatestM" :: "[pttrn, 'a => 'b::ord, bool] => 'a"
wenzelm@12298
   373
      ("GREATEST _ WRT _. _" [0, 4, 10] 10)
paulson@11451
   374
translations
wenzelm@35115
   375
  "GREATEST x WRT m. P" == "CONST GreatestM m (%x. P)"
paulson@11451
   376
paulson@11451
   377
lemma GreatestMI2:
wenzelm@12298
   378
  "P x ==> (!!y. P y ==> m y <= m x)
wenzelm@12298
   379
    ==> (!!x. P x ==> \<forall>y. P y --> m y \<le> m x ==> Q x)
wenzelm@12298
   380
    ==> Q (GreatestM m P)"
paulson@14760
   381
  apply (simp add: GreatestM_def)
paulson@14208
   382
  apply (rule someI2_ex, blast, blast)
wenzelm@12298
   383
  done
paulson@11451
   384
paulson@11451
   385
lemma GreatestM_equality:
wenzelm@12298
   386
 "P k ==> (!!x. P x ==> m x <= m k)
wenzelm@12298
   387
    ==> m (GREATEST x WRT m. P x) = (m k::'a::order)"
paulson@14208
   388
  apply (rule_tac m = m in GreatestMI2, assumption, blast)
wenzelm@12298
   389
  apply (blast intro!: order_antisym)
wenzelm@12298
   390
  done
paulson@11451
   391
paulson@11451
   392
lemma Greatest_equality:
wenzelm@12298
   393
  "P (k::'a::order) ==> (!!x. P x ==> x <= k) ==> (GREATEST x. P x) = k"
paulson@14760
   394
  apply (simp add: Greatest_def)
paulson@14208
   395
  apply (erule GreatestM_equality, blast)
wenzelm@12298
   396
  done
paulson@11451
   397
paulson@11451
   398
lemma ex_has_greatest_nat_lemma:
paulson@14760
   399
  "P k ==> \<forall>x. P x --> (\<exists>y. P y & ~ ((m y::nat) <= m x))
paulson@14760
   400
    ==> \<exists>y. P y & ~ (m y < m k + n)"
paulson@15251
   401
  apply (induct n, force)
wenzelm@12298
   402
  apply (force simp add: le_Suc_eq)
wenzelm@12298
   403
  done
paulson@11451
   404
wenzelm@12298
   405
lemma ex_has_greatest_nat:
paulson@14760
   406
  "P k ==> \<forall>y. P y --> m y < b
paulson@14760
   407
    ==> \<exists>x. P x & (\<forall>y. P y --> (m y::nat) <= m x)"
wenzelm@12298
   408
  apply (rule ccontr)
wenzelm@12298
   409
  apply (cut_tac P = P and n = "b - m k" in ex_has_greatest_nat_lemma)
paulson@14208
   410
    apply (subgoal_tac [3] "m k <= b", auto)
wenzelm@12298
   411
  done
paulson@11451
   412
wenzelm@12298
   413
lemma GreatestM_nat_lemma:
paulson@14760
   414
  "P k ==> \<forall>y. P y --> m y < b
paulson@14760
   415
    ==> P (GreatestM m P) & (\<forall>y. P y --> (m y::nat) <= m (GreatestM m P))"
paulson@14760
   416
  apply (simp add: GreatestM_def)
wenzelm@12298
   417
  apply (rule someI_ex)
paulson@14208
   418
  apply (erule ex_has_greatest_nat, assumption)
wenzelm@12298
   419
  done
paulson@11451
   420
paulson@11451
   421
lemmas GreatestM_natI = GreatestM_nat_lemma [THEN conjunct1, standard]
paulson@11451
   422
wenzelm@12298
   423
lemma GreatestM_nat_le:
paulson@14760
   424
  "P x ==> \<forall>y. P y --> m y < b
wenzelm@12298
   425
    ==> (m x::nat) <= m (GreatestM m P)"
berghofe@21020
   426
  apply (blast dest: GreatestM_nat_lemma [THEN conjunct2, THEN spec, of P])
wenzelm@12298
   427
  done
wenzelm@12298
   428
wenzelm@12298
   429
wenzelm@12298
   430
text {* \medskip Specialization to @{text GREATEST}. *}
wenzelm@12298
   431
paulson@14760
   432
lemma GreatestI: "P (k::nat) ==> \<forall>y. P y --> y < b ==> P (GREATEST x. P x)"
paulson@14760
   433
  apply (simp add: Greatest_def)
paulson@14208
   434
  apply (rule GreatestM_natI, auto)
wenzelm@12298
   435
  done
paulson@11451
   436
wenzelm@12298
   437
lemma Greatest_le:
paulson@14760
   438
    "P x ==> \<forall>y. P y --> y < b ==> (x::nat) <= (GREATEST x. P x)"
paulson@14760
   439
  apply (simp add: Greatest_def)
paulson@14208
   440
  apply (rule GreatestM_nat_le, auto)
wenzelm@12298
   441
  done
wenzelm@12298
   442
wenzelm@12298
   443
wenzelm@17893
   444
subsection {* Specification package -- Hilbertized version *}
wenzelm@17893
   445
wenzelm@17893
   446
lemma exE_some: "[| Ex P ; c == Eps P |] ==> P c"
wenzelm@17893
   447
  by (simp only: someI_ex)
wenzelm@17893
   448
haftmann@31723
   449
use "Tools/choice_specification.ML"
skalberg@14115
   450
paulson@11451
   451
end