src/HOL/Quickcheck_Narrowing.thy
author wenzelm
Thu Mar 15 22:08:53 2012 +0100 (2012-03-15)
changeset 46950 d0181abdbdac
parent 46758 4106258260b3
child 47108 2a1953f0d20d
permissions -rw-r--r--
declare command keywords via theory header, including strict checking outside Pure;
bulwahn@41905
     1
(* Author: Lukas Bulwahn, TU Muenchen *)
bulwahn@41905
     2
bulwahn@43356
     3
header {* Counterexample generator performing narrowing-based testing *}
bulwahn@41905
     4
bulwahn@41930
     5
theory Quickcheck_Narrowing
bulwahn@43312
     6
imports Quickcheck_Exhaustive
wenzelm@46950
     7
keywords "find_unused_assms" :: diag
bulwahn@41962
     8
uses
wenzelm@43702
     9
  ("Tools/Quickcheck/PNF_Narrowing_Engine.hs")
wenzelm@43702
    10
  ("Tools/Quickcheck/Narrowing_Engine.hs")
wenzelm@43702
    11
  ("Tools/Quickcheck/narrowing_generators.ML")
bulwahn@46589
    12
  ("Tools/Quickcheck/find_unused_assms.ML")
bulwahn@41905
    13
begin
bulwahn@41905
    14
bulwahn@41905
    15
subsection {* Counterexample generator *}
bulwahn@41905
    16
bulwahn@43308
    17
text {* We create a new target for the necessary code generation setup. *}
bulwahn@43308
    18
bulwahn@43308
    19
setup {* Code_Target.extend_target ("Haskell_Quickcheck", (Code_Haskell.target, K I)) *}
bulwahn@43308
    20
bulwahn@41909
    21
subsubsection {* Code generation setup *}
bulwahn@41909
    22
bulwahn@41909
    23
code_type typerep
bulwahn@43308
    24
  (Haskell_Quickcheck "Typerep")
bulwahn@41909
    25
bulwahn@41909
    26
code_const Typerep.Typerep
bulwahn@43308
    27
  (Haskell_Quickcheck "Typerep")
bulwahn@41909
    28
bulwahn@43308
    29
code_reserved Haskell_Quickcheck Typerep
bulwahn@41909
    30
hoelzl@43341
    31
subsubsection {* Type @{text "code_int"} for Haskell Quickcheck's Int type *}
bulwahn@41908
    32
bulwahn@41908
    33
typedef (open) code_int = "UNIV \<Colon> int set"
bulwahn@41908
    34
  morphisms int_of of_int by rule
bulwahn@41908
    35
bulwahn@42021
    36
lemma of_int_int_of [simp]:
bulwahn@42021
    37
  "of_int (int_of k) = k"
bulwahn@42021
    38
  by (rule int_of_inverse)
bulwahn@42021
    39
bulwahn@42021
    40
lemma int_of_of_int [simp]:
bulwahn@42021
    41
  "int_of (of_int n) = n"
bulwahn@42021
    42
  by (rule of_int_inverse) (rule UNIV_I)
bulwahn@42021
    43
bulwahn@42021
    44
lemma code_int:
bulwahn@42021
    45
  "(\<And>n\<Colon>code_int. PROP P n) \<equiv> (\<And>n\<Colon>int. PROP P (of_int n))"
bulwahn@42021
    46
proof
bulwahn@42021
    47
  fix n :: int
bulwahn@42021
    48
  assume "\<And>n\<Colon>code_int. PROP P n"
bulwahn@42021
    49
  then show "PROP P (of_int n)" .
bulwahn@42021
    50
next
bulwahn@42021
    51
  fix n :: code_int
bulwahn@42021
    52
  assume "\<And>n\<Colon>int. PROP P (of_int n)"
bulwahn@42021
    53
  then have "PROP P (of_int (int_of n))" .
bulwahn@42021
    54
  then show "PROP P n" by simp
bulwahn@42021
    55
qed
bulwahn@42021
    56
bulwahn@42021
    57
bulwahn@41908
    58
lemma int_of_inject [simp]:
bulwahn@41908
    59
  "int_of k = int_of l \<longleftrightarrow> k = l"
bulwahn@41908
    60
  by (rule int_of_inject)
bulwahn@41908
    61
bulwahn@42021
    62
lemma of_int_inject [simp]:
bulwahn@42021
    63
  "of_int n = of_int m \<longleftrightarrow> n = m"
bulwahn@42021
    64
  by (rule of_int_inject) (rule UNIV_I)+
bulwahn@42021
    65
bulwahn@42021
    66
instantiation code_int :: equal
bulwahn@42021
    67
begin
bulwahn@42021
    68
bulwahn@42021
    69
definition
bulwahn@42021
    70
  "HOL.equal k l \<longleftrightarrow> HOL.equal (int_of k) (int_of l)"
bulwahn@42021
    71
bulwahn@42021
    72
instance proof
bulwahn@42021
    73
qed (auto simp add: equal_code_int_def equal_int_def eq_int_refl)
bulwahn@42021
    74
bulwahn@42021
    75
end
bulwahn@42021
    76
bulwahn@42021
    77
instantiation code_int :: number
bulwahn@42021
    78
begin
bulwahn@42021
    79
bulwahn@42021
    80
definition
bulwahn@42021
    81
  "number_of = of_int"
bulwahn@42021
    82
bulwahn@42021
    83
instance ..
bulwahn@42021
    84
bulwahn@42021
    85
end
bulwahn@42021
    86
bulwahn@42021
    87
lemma int_of_number [simp]:
bulwahn@42021
    88
  "int_of (number_of k) = number_of k"
bulwahn@42021
    89
  by (simp add: number_of_code_int_def number_of_is_id)
bulwahn@42021
    90
bulwahn@42021
    91
bulwahn@41912
    92
definition nat_of :: "code_int => nat"
bulwahn@41912
    93
where
bulwahn@41912
    94
  "nat_of i = nat (int_of i)"
bulwahn@41908
    95
bulwahn@42980
    96
bulwahn@43047
    97
code_datatype "number_of \<Colon> int \<Rightarrow> code_int"
bulwahn@42980
    98
  
bulwahn@42980
    99
  
bulwahn@42021
   100
instantiation code_int :: "{minus, linordered_semidom, semiring_div, linorder}"
bulwahn@41908
   101
begin
bulwahn@41908
   102
bulwahn@41908
   103
definition [simp, code del]:
bulwahn@41908
   104
  "0 = of_int 0"
bulwahn@41908
   105
bulwahn@41908
   106
definition [simp, code del]:
bulwahn@41908
   107
  "1 = of_int 1"
bulwahn@41908
   108
bulwahn@41908
   109
definition [simp, code del]:
bulwahn@42021
   110
  "n + m = of_int (int_of n + int_of m)"
bulwahn@42021
   111
bulwahn@42021
   112
definition [simp, code del]:
bulwahn@41908
   113
  "n - m = of_int (int_of n - int_of m)"
bulwahn@41908
   114
bulwahn@41908
   115
definition [simp, code del]:
bulwahn@42021
   116
  "n * m = of_int (int_of n * int_of m)"
bulwahn@42021
   117
bulwahn@42021
   118
definition [simp, code del]:
bulwahn@42021
   119
  "n div m = of_int (int_of n div int_of m)"
bulwahn@42021
   120
bulwahn@42021
   121
definition [simp, code del]:
bulwahn@42021
   122
  "n mod m = of_int (int_of n mod int_of m)"
bulwahn@42021
   123
bulwahn@42021
   124
definition [simp, code del]:
bulwahn@41908
   125
  "n \<le> m \<longleftrightarrow> int_of n \<le> int_of m"
bulwahn@41908
   126
bulwahn@41908
   127
definition [simp, code del]:
bulwahn@41908
   128
  "n < m \<longleftrightarrow> int_of n < int_of m"
bulwahn@41908
   129
bulwahn@41908
   130
bulwahn@42021
   131
instance proof
bulwahn@42021
   132
qed (auto simp add: code_int left_distrib zmult_zless_mono2)
bulwahn@41908
   133
bulwahn@41908
   134
end
bulwahn@42980
   135
bulwahn@41908
   136
lemma zero_code_int_code [code, code_unfold]:
bulwahn@41908
   137
  "(0\<Colon>code_int) = Numeral0"
bulwahn@42980
   138
  by (simp add: number_of_code_int_def Pls_def)
bulwahn@41908
   139
bulwahn@42980
   140
lemma one_code_int_code [code, code_unfold]:
bulwahn@41908
   141
  "(1\<Colon>code_int) = Numeral1"
bulwahn@42980
   142
  by (simp add: number_of_code_int_def Pls_def Bit1_def)
bulwahn@41908
   143
bulwahn@42021
   144
definition div_mod_code_int :: "code_int \<Rightarrow> code_int \<Rightarrow> code_int \<times> code_int" where
bulwahn@42021
   145
  [code del]: "div_mod_code_int n m = (n div m, n mod m)"
bulwahn@42021
   146
bulwahn@42021
   147
lemma [code]:
bulwahn@42021
   148
  "div_mod_code_int n m = (if m = 0 then (0, n) else (n div m, n mod m))"
bulwahn@42021
   149
  unfolding div_mod_code_int_def by auto
bulwahn@42021
   150
bulwahn@42021
   151
lemma [code]:
bulwahn@42021
   152
  "n div m = fst (div_mod_code_int n m)"
bulwahn@42021
   153
  unfolding div_mod_code_int_def by simp
bulwahn@42021
   154
bulwahn@42021
   155
lemma [code]:
bulwahn@42021
   156
  "n mod m = snd (div_mod_code_int n m)"
bulwahn@42021
   157
  unfolding div_mod_code_int_def by simp
bulwahn@42021
   158
bulwahn@42021
   159
lemma int_of_code [code]:
bulwahn@42021
   160
  "int_of k = (if k = 0 then 0
bulwahn@42021
   161
    else (if k mod 2 = 0 then 2 * int_of (k div 2) else 2 * int_of (k div 2) + 1))"
bulwahn@42021
   162
proof -
bulwahn@42021
   163
  have 1: "(int_of k div 2) * 2 + int_of k mod 2 = int_of k" 
bulwahn@42021
   164
    by (rule mod_div_equality)
bulwahn@42021
   165
  have "int_of k mod 2 = 0 \<or> int_of k mod 2 = 1" by auto
bulwahn@42021
   166
  from this show ?thesis
bulwahn@42021
   167
    apply auto
bulwahn@42021
   168
    apply (insert 1) by (auto simp add: mult_ac)
bulwahn@42021
   169
qed
bulwahn@42021
   170
bulwahn@42021
   171
bulwahn@42021
   172
code_instance code_numeral :: equal
bulwahn@43308
   173
  (Haskell_Quickcheck -)
bulwahn@42021
   174
bulwahn@42021
   175
setup {* fold (Numeral.add_code @{const_name number_code_int_inst.number_of_code_int}
bulwahn@43308
   176
  false Code_Printer.literal_numeral) ["Haskell_Quickcheck"]  *}
bulwahn@42021
   177
bulwahn@41908
   178
code_const "0 \<Colon> code_int"
bulwahn@43308
   179
  (Haskell_Quickcheck "0")
bulwahn@41908
   180
bulwahn@41908
   181
code_const "1 \<Colon> code_int"
bulwahn@43308
   182
  (Haskell_Quickcheck "1")
bulwahn@41908
   183
bulwahn@41908
   184
code_const "minus \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> code_int"
bulwahn@43308
   185
  (Haskell_Quickcheck "(_/ -/ _)")
bulwahn@41908
   186
bulwahn@42021
   187
code_const div_mod_code_int
bulwahn@43308
   188
  (Haskell_Quickcheck "divMod")
bulwahn@42021
   189
bulwahn@42021
   190
code_const "HOL.equal \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool"
bulwahn@43308
   191
  (Haskell_Quickcheck infix 4 "==")
bulwahn@42021
   192
bulwahn@41908
   193
code_const "op \<le> \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool"
bulwahn@43308
   194
  (Haskell_Quickcheck infix 4 "<=")
bulwahn@41908
   195
bulwahn@41908
   196
code_const "op < \<Colon> code_int \<Rightarrow> code_int \<Rightarrow> bool"
bulwahn@43308
   197
  (Haskell_Quickcheck infix 4 "<")
bulwahn@41908
   198
bulwahn@41908
   199
code_type code_int
bulwahn@43308
   200
  (Haskell_Quickcheck "Int")
bulwahn@41908
   201
bulwahn@42021
   202
code_abort of_int
bulwahn@42021
   203
bulwahn@41961
   204
subsubsection {* Narrowing's deep representation of types and terms *}
bulwahn@41905
   205
bulwahn@46758
   206
datatype narrowing_type = Narrowing_sum_of_products "narrowing_type list list"
bulwahn@46758
   207
datatype narrowing_term = Narrowing_variable "code_int list" narrowing_type | Narrowing_constructor code_int "narrowing_term list"
bulwahn@46758
   208
datatype 'a narrowing_cons = Narrowing_cons narrowing_type "(narrowing_term list => 'a) list"
bulwahn@41905
   209
bulwahn@46758
   210
primrec map_cons :: "('a => 'b) => 'a narrowing_cons => 'b narrowing_cons"
bulwahn@43356
   211
where
bulwahn@46758
   212
  "map_cons f (Narrowing_cons ty cs) = Narrowing_cons ty (map (%c. f o c) cs)"
bulwahn@43356
   213
hoelzl@43341
   214
subsubsection {* From narrowing's deep representation of terms to @{theory Code_Evaluation}'s terms *}
bulwahn@42980
   215
bulwahn@42980
   216
class partial_term_of = typerep +
bulwahn@43047
   217
  fixes partial_term_of :: "'a itself => narrowing_term => Code_Evaluation.term"
bulwahn@43047
   218
bulwahn@43047
   219
lemma partial_term_of_anything: "partial_term_of x nt \<equiv> t"
bulwahn@43047
   220
  by (rule eq_reflection) (cases "partial_term_of x nt", cases t, simp)
bulwahn@43356
   221
 
bulwahn@41964
   222
subsubsection {* Auxilary functions for Narrowing *}
bulwahn@41905
   223
bulwahn@41908
   224
consts nth :: "'a list => code_int => 'a"
bulwahn@41905
   225
bulwahn@43308
   226
code_const nth (Haskell_Quickcheck infixl 9  "!!")
bulwahn@41905
   227
bulwahn@41908
   228
consts error :: "char list => 'a"
bulwahn@41905
   229
bulwahn@43308
   230
code_const error (Haskell_Quickcheck "error")
bulwahn@41905
   231
bulwahn@41908
   232
consts toEnum :: "code_int => char"
bulwahn@41908
   233
bulwahn@43308
   234
code_const toEnum (Haskell_Quickcheck "toEnum")
bulwahn@41905
   235
bulwahn@43316
   236
consts marker :: "char"
bulwahn@41905
   237
bulwahn@43316
   238
code_const marker (Haskell_Quickcheck "''\\0'")
bulwahn@43316
   239
bulwahn@41961
   240
subsubsection {* Narrowing's basic operations *}
bulwahn@41905
   241
bulwahn@46758
   242
type_synonym 'a narrowing = "code_int => 'a narrowing_cons"
bulwahn@41905
   243
bulwahn@41961
   244
definition empty :: "'a narrowing"
bulwahn@41905
   245
where
bulwahn@46758
   246
  "empty d = Narrowing_cons (Narrowing_sum_of_products []) []"
bulwahn@41905
   247
  
bulwahn@41961
   248
definition cons :: "'a => 'a narrowing"
bulwahn@41905
   249
where
bulwahn@46758
   250
  "cons a d = (Narrowing_cons (Narrowing_sum_of_products [[]]) [(%_. a)])"
bulwahn@41905
   251
bulwahn@43047
   252
fun conv :: "(narrowing_term list => 'a) list => narrowing_term => 'a"
bulwahn@41905
   253
where
bulwahn@46758
   254
  "conv cs (Narrowing_variable p _) = error (marker # map toEnum p)"
bulwahn@46758
   255
| "conv cs (Narrowing_constructor i xs) = (nth cs i) xs"
bulwahn@41905
   256
bulwahn@46758
   257
fun non_empty :: "narrowing_type => bool"
bulwahn@41905
   258
where
bulwahn@46758
   259
  "non_empty (Narrowing_sum_of_products ps) = (\<not> (List.null ps))"
bulwahn@41905
   260
bulwahn@41961
   261
definition "apply" :: "('a => 'b) narrowing => 'a narrowing => 'b narrowing"
bulwahn@41905
   262
where
bulwahn@41905
   263
  "apply f a d =
bulwahn@46758
   264
     (case f d of Narrowing_cons (Narrowing_sum_of_products ps) cfs =>
bulwahn@46758
   265
       case a (d - 1) of Narrowing_cons ta cas =>
bulwahn@41905
   266
       let
bulwahn@46758
   267
         shallow = (d > 0 \<and> non_empty ta);
bulwahn@41905
   268
         cs = [(%xs'. (case xs' of [] => undefined | x # xs => cf xs (conv cas x))). shallow, cf <- cfs]
bulwahn@46758
   269
       in Narrowing_cons (Narrowing_sum_of_products [ta # p. shallow, p <- ps]) cs)"
bulwahn@41905
   270
bulwahn@41961
   271
definition sum :: "'a narrowing => 'a narrowing => 'a narrowing"
bulwahn@41905
   272
where
bulwahn@41905
   273
  "sum a b d =
bulwahn@46758
   274
    (case a d of Narrowing_cons (Narrowing_sum_of_products ssa) ca => 
bulwahn@46758
   275
      case b d of Narrowing_cons (Narrowing_sum_of_products ssb) cb =>
bulwahn@46758
   276
      Narrowing_cons (Narrowing_sum_of_products (ssa @ ssb)) (ca @ cb))"
bulwahn@41905
   277
bulwahn@41912
   278
lemma [fundef_cong]:
bulwahn@41912
   279
  assumes "a d = a' d" "b d = b' d" "d = d'"
bulwahn@41912
   280
  shows "sum a b d = sum a' b' d'"
bulwahn@46758
   281
using assms unfolding sum_def by (auto split: narrowing_cons.split narrowing_type.split)
bulwahn@41912
   282
bulwahn@41912
   283
lemma [fundef_cong]:
bulwahn@41912
   284
  assumes "f d = f' d" "(\<And>d'. 0 <= d' & d' < d ==> a d' = a' d')"
bulwahn@41912
   285
  assumes "d = d'"
bulwahn@41912
   286
  shows "apply f a d = apply f' a' d'"
bulwahn@41912
   287
proof -
bulwahn@41912
   288
  note assms moreover
bulwahn@41930
   289
  have "int_of (of_int 0) < int_of d' ==> int_of (of_int 0) <= int_of (of_int (int_of d' - int_of (of_int 1)))"
bulwahn@41912
   290
    by (simp add: of_int_inverse)
bulwahn@41912
   291
  moreover
bulwahn@41930
   292
  have "int_of (of_int (int_of d' - int_of (of_int 1))) < int_of d'"
bulwahn@41912
   293
    by (simp add: of_int_inverse)
bulwahn@41912
   294
  ultimately show ?thesis
bulwahn@46758
   295
    unfolding apply_def by (auto split: narrowing_cons.split narrowing_type.split simp add: Let_def)
bulwahn@41912
   296
qed
bulwahn@41912
   297
bulwahn@41961
   298
subsubsection {* Narrowing generator type class *}
bulwahn@41905
   299
bulwahn@41961
   300
class narrowing =
bulwahn@46758
   301
  fixes narrowing :: "code_int => 'a narrowing_cons"
bulwahn@41905
   302
bulwahn@43237
   303
datatype property = Universal narrowing_type "(narrowing_term => property)" "narrowing_term => Code_Evaluation.term" | Existential narrowing_type "(narrowing_term => property)" "narrowing_term => Code_Evaluation.term" | Property bool
bulwahn@43237
   304
bulwahn@43237
   305
(* FIXME: hard-wired maximal depth of 100 here *)
bulwahn@43315
   306
definition exists :: "('a :: {narrowing, partial_term_of} => property) => property"
bulwahn@43237
   307
where
bulwahn@46758
   308
  "exists f = (case narrowing (100 :: code_int) of Narrowing_cons ty cs => Existential ty (\<lambda> t. f (conv cs t)) (partial_term_of (TYPE('a))))"
bulwahn@43237
   309
bulwahn@43315
   310
definition "all" :: "('a :: {narrowing, partial_term_of} => property) => property"
bulwahn@43237
   311
where
bulwahn@46758
   312
  "all f = (case narrowing (100 :: code_int) of Narrowing_cons ty cs => Universal ty (\<lambda>t. f (conv cs t)) (partial_term_of (TYPE('a))))"
bulwahn@43237
   313
wenzelm@41943
   314
subsubsection {* class @{text is_testable} *}
bulwahn@41905
   315
wenzelm@41943
   316
text {* The class @{text is_testable} ensures that all necessary type instances are generated. *}
bulwahn@41905
   317
bulwahn@41905
   318
class is_testable
bulwahn@41905
   319
bulwahn@41905
   320
instance bool :: is_testable ..
bulwahn@41905
   321
bulwahn@43047
   322
instance "fun" :: ("{term_of, narrowing, partial_term_of}", is_testable) is_testable ..
bulwahn@41905
   323
bulwahn@41905
   324
definition ensure_testable :: "'a :: is_testable => 'a :: is_testable"
bulwahn@41905
   325
where
bulwahn@41905
   326
  "ensure_testable f = f"
bulwahn@41905
   327
bulwahn@41910
   328
bulwahn@42022
   329
subsubsection {* Defining a simple datatype to represent functions in an incomplete and redundant way *}
bulwahn@42022
   330
bulwahn@42022
   331
datatype ('a, 'b) ffun = Constant 'b | Update 'a 'b "('a, 'b) ffun"
bulwahn@42022
   332
bulwahn@42022
   333
primrec eval_ffun :: "('a, 'b) ffun => 'a => 'b"
bulwahn@42022
   334
where
bulwahn@42022
   335
  "eval_ffun (Constant c) x = c"
bulwahn@42022
   336
| "eval_ffun (Update x' y f) x = (if x = x' then y else eval_ffun f x)"
bulwahn@42022
   337
bulwahn@42022
   338
hide_type (open) ffun
bulwahn@42022
   339
hide_const (open) Constant Update eval_ffun
bulwahn@42022
   340
bulwahn@42024
   341
datatype 'b cfun = Constant 'b
bulwahn@42024
   342
bulwahn@42024
   343
primrec eval_cfun :: "'b cfun => 'a => 'b"
bulwahn@42024
   344
where
bulwahn@42024
   345
  "eval_cfun (Constant c) y = c"
bulwahn@42024
   346
bulwahn@42024
   347
hide_type (open) cfun
huffman@45734
   348
hide_const (open) Constant eval_cfun Abs_cfun Rep_cfun
bulwahn@42024
   349
bulwahn@42024
   350
subsubsection {* Setting up the counterexample generator *}
bulwahn@43237
   351
wenzelm@43702
   352
use "Tools/Quickcheck/narrowing_generators.ML"
bulwahn@42024
   353
bulwahn@42024
   354
setup {* Narrowing_Generators.setup *}
bulwahn@42024
   355
bulwahn@45001
   356
definition narrowing_dummy_partial_term_of :: "('a :: partial_term_of) itself => narrowing_term => term"
bulwahn@45001
   357
where
bulwahn@45001
   358
  "narrowing_dummy_partial_term_of = partial_term_of"
bulwahn@45001
   359
bulwahn@46758
   360
definition narrowing_dummy_narrowing :: "code_int => ('a :: narrowing) narrowing_cons"
bulwahn@45001
   361
where
bulwahn@45001
   362
  "narrowing_dummy_narrowing = narrowing"
bulwahn@45001
   363
bulwahn@45001
   364
lemma [code]:
bulwahn@45001
   365
  "ensure_testable f =
bulwahn@45001
   366
    (let
bulwahn@46758
   367
      x = narrowing_dummy_narrowing :: code_int => bool narrowing_cons;
bulwahn@45001
   368
      y = narrowing_dummy_partial_term_of :: bool itself => narrowing_term => term;
bulwahn@45001
   369
      z = (conv :: _ => _ => unit)  in f)"
bulwahn@45001
   370
unfolding Let_def ensure_testable_def ..
bulwahn@45001
   371
bulwahn@46308
   372
subsection {* Narrowing for sets *}
bulwahn@46308
   373
bulwahn@46308
   374
instantiation set :: (narrowing) narrowing
bulwahn@46308
   375
begin
bulwahn@46308
   376
bulwahn@46308
   377
definition "narrowing_set = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.cons set) narrowing"
bulwahn@46308
   378
bulwahn@46308
   379
instance ..
bulwahn@46308
   380
bulwahn@46308
   381
end
bulwahn@45001
   382
  
bulwahn@43356
   383
subsection {* Narrowing for integers *}
bulwahn@43356
   384
bulwahn@43356
   385
bulwahn@46758
   386
definition drawn_from :: "'a list => 'a narrowing_cons"
bulwahn@46758
   387
where "drawn_from xs = Narrowing_cons (Narrowing_sum_of_products (map (%_. []) xs)) (map (%x y. x) xs)"
bulwahn@43356
   388
bulwahn@43356
   389
function around_zero :: "int => int list"
bulwahn@43356
   390
where
bulwahn@43356
   391
  "around_zero i = (if i < 0 then [] else (if i = 0 then [0] else around_zero (i - 1) @ [i, -i]))"
bulwahn@43356
   392
by pat_completeness auto
bulwahn@43356
   393
termination by (relation "measure nat") auto
bulwahn@43356
   394
bulwahn@43356
   395
declare around_zero.simps[simp del]
bulwahn@43356
   396
bulwahn@43356
   397
lemma length_around_zero:
bulwahn@43356
   398
  assumes "i >= 0" 
bulwahn@43356
   399
  shows "length (around_zero i) = 2 * nat i + 1"
bulwahn@43356
   400
proof (induct rule: int_ge_induct[OF assms])
bulwahn@43356
   401
  case 1
bulwahn@43356
   402
  from 1 show ?case by (simp add: around_zero.simps)
bulwahn@43356
   403
next
bulwahn@43356
   404
  case (2 i)
bulwahn@43356
   405
  from 2 show ?case
bulwahn@43356
   406
    by (simp add: around_zero.simps[of "i + 1"])
bulwahn@43356
   407
qed
bulwahn@43356
   408
bulwahn@43356
   409
instantiation int :: narrowing
bulwahn@43356
   410
begin
bulwahn@43356
   411
bulwahn@43356
   412
definition
bulwahn@43356
   413
  "narrowing_int d = (let (u :: _ => _ => unit) = conv; i = Quickcheck_Narrowing.int_of d in drawn_from (around_zero i))"
bulwahn@43356
   414
bulwahn@43356
   415
instance ..
bulwahn@43356
   416
bulwahn@43356
   417
end
bulwahn@43356
   418
bulwahn@43356
   419
lemma [code, code del]: "partial_term_of (ty :: int itself) t == undefined"
bulwahn@43356
   420
by (rule partial_term_of_anything)+
bulwahn@43356
   421
bulwahn@43356
   422
lemma [code]:
bulwahn@46758
   423
  "partial_term_of (ty :: int itself) (Narrowing_variable p t) == Code_Evaluation.Free (STR ''_'') (Typerep.Typerep (STR ''Int.int'') [])"
bulwahn@46758
   424
  "partial_term_of (ty :: int itself) (Narrowing_constructor i []) == (if i mod 2 = 0 then
bulwahn@43356
   425
     Code_Evaluation.term_of (- (int_of i) div 2) else Code_Evaluation.term_of ((int_of i + 1) div 2))"
bulwahn@43356
   426
by (rule partial_term_of_anything)+
bulwahn@43356
   427
bulwahn@43356
   428
text {* Defining integers by positive and negative copy of naturals *}
bulwahn@43356
   429
(*
bulwahn@43356
   430
datatype simple_int = Positive nat | Negative nat
bulwahn@43356
   431
bulwahn@43356
   432
primrec int_of_simple_int :: "simple_int => int"
bulwahn@43356
   433
where
bulwahn@43356
   434
  "int_of_simple_int (Positive n) = int n"
bulwahn@43356
   435
| "int_of_simple_int (Negative n) = (-1 - int n)"
bulwahn@43356
   436
bulwahn@43356
   437
instantiation int :: narrowing
bulwahn@43356
   438
begin
bulwahn@43356
   439
bulwahn@43356
   440
definition narrowing_int :: "code_int => int cons"
bulwahn@43356
   441
where
bulwahn@43356
   442
  "narrowing_int d = map_cons int_of_simple_int ((narrowing :: simple_int narrowing) d)"
bulwahn@43356
   443
bulwahn@43356
   444
instance ..
bulwahn@43356
   445
bulwahn@43356
   446
end
bulwahn@43356
   447
bulwahn@43356
   448
text {* printing the partial terms *}
bulwahn@43356
   449
bulwahn@43356
   450
lemma [code]:
bulwahn@43356
   451
  "partial_term_of (ty :: int itself) t == Code_Evaluation.App (Code_Evaluation.Const (STR ''Quickcheck_Narrowing.int_of_simple_int'')
bulwahn@43356
   452
     (Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Quickcheck_Narrowing.simple_int'') [], Typerep.Typerep (STR ''Int.int'') []])) (partial_term_of (TYPE(simple_int)) t)"
bulwahn@43356
   453
by (rule partial_term_of_anything)
bulwahn@43356
   454
bulwahn@43356
   455
*)
bulwahn@43356
   456
bulwahn@46589
   457
subsection {* The @{text find_unused_assms} command *}
bulwahn@46589
   458
bulwahn@46589
   459
use "Tools/Quickcheck/find_unused_assms.ML"
bulwahn@46589
   460
bulwahn@46589
   461
subsection {* Closing up *}
bulwahn@46589
   462
bulwahn@46758
   463
hide_type code_int narrowing_type narrowing_term narrowing_cons property
bulwahn@46758
   464
hide_const int_of of_int nat_of map_cons nth error toEnum marker empty Narrowing_cons conv non_empty ensure_testable all exists drawn_from around_zero
bulwahn@46758
   465
hide_const (open) Narrowing_variable Narrowing_constructor "apply" sum cons
bulwahn@46758
   466
hide_fact empty_def cons_def conv.simps non_empty.simps apply_def sum_def ensure_testable_def all_def exists_def
bulwahn@42022
   467
bulwahn@45001
   468
end