src/HOL/Quotient.thy
author wenzelm
Thu Mar 15 22:08:53 2012 +0100 (2012-03-15)
changeset 46950 d0181abdbdac
parent 46947 b8c7eb0c2f89
child 47091 d5cd13aca90b
permissions -rw-r--r--
declare command keywords via theory header, including strict checking outside Pure;
wenzelm@41959
     1
(*  Title:      HOL/Quotient.thy
kaliszyk@35222
     2
    Author:     Cezary Kaliszyk and Christian Urban
kaliszyk@35222
     3
*)
kaliszyk@35222
     4
huffman@35294
     5
header {* Definition of Quotient Types *}
huffman@35294
     6
kaliszyk@35222
     7
theory Quotient
haftmann@40466
     8
imports Plain Hilbert_Choice Equiv_Relations
wenzelm@46950
     9
keywords
wenzelm@46950
    10
  "print_quotmaps" "print_quotients" "print_quotconsts" :: diag and
wenzelm@46950
    11
  "quotient_type" :: thy_goal and "/" and
wenzelm@46950
    12
  "quotient_definition" :: thy_decl
kaliszyk@35222
    13
uses
wenzelm@37986
    14
  ("Tools/Quotient/quotient_info.ML")
wenzelm@45680
    15
  ("Tools/Quotient/quotient_type.ML")
wenzelm@37986
    16
  ("Tools/Quotient/quotient_def.ML")
wenzelm@37986
    17
  ("Tools/Quotient/quotient_term.ML")
wenzelm@37986
    18
  ("Tools/Quotient/quotient_tacs.ML")
kaliszyk@35222
    19
begin
kaliszyk@35222
    20
kaliszyk@35222
    21
text {*
haftmann@45961
    22
  An aside: contravariant functorial structure of sets.
haftmann@45961
    23
*}
haftmann@45961
    24
haftmann@45961
    25
enriched_type vimage
haftmann@45961
    26
  by (simp_all add: fun_eq_iff vimage_compose)
haftmann@45961
    27
haftmann@45961
    28
text {*
kaliszyk@35222
    29
  Basic definition for equivalence relations
kaliszyk@35222
    30
  that are represented by predicates.
kaliszyk@35222
    31
*}
kaliszyk@35222
    32
kaliszyk@35222
    33
text {* Composition of Relations *}
kaliszyk@35222
    34
kaliszyk@35222
    35
abbreviation
haftmann@40818
    36
  rel_conj :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" (infixr "OOO" 75)
kaliszyk@35222
    37
where
kaliszyk@35222
    38
  "r1 OOO r2 \<equiv> r1 OO r2 OO r1"
kaliszyk@35222
    39
kaliszyk@35222
    40
lemma eq_comp_r:
kaliszyk@35222
    41
  shows "((op =) OOO R) = R"
nipkow@39302
    42
  by (auto simp add: fun_eq_iff)
kaliszyk@35222
    43
huffman@35294
    44
subsection {* Respects predicate *}
kaliszyk@35222
    45
kaliszyk@35222
    46
definition
haftmann@40466
    47
  Respects :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a set"
kaliszyk@35222
    48
where
haftmann@44553
    49
  "Respects R = {x. R x x}"
kaliszyk@35222
    50
kaliszyk@35222
    51
lemma in_respects:
haftmann@40466
    52
  shows "x \<in> Respects R \<longleftrightarrow> R x x"
haftmann@44553
    53
  unfolding Respects_def by simp
kaliszyk@35222
    54
huffman@35294
    55
subsection {* Function map and function relation *}
kaliszyk@35222
    56
haftmann@40602
    57
notation map_fun (infixr "--->" 55)
haftmann@40466
    58
haftmann@40602
    59
lemma map_fun_id:
haftmann@40466
    60
  "(id ---> id) = id"
haftmann@40602
    61
  by (simp add: fun_eq_iff)
kaliszyk@35222
    62
kaliszyk@35222
    63
definition
haftmann@40615
    64
  fun_rel :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool" (infixr "===>" 55)
kaliszyk@35222
    65
where
haftmann@40814
    66
  "fun_rel R1 R2 = (\<lambda>f g. \<forall>x y. R1 x y \<longrightarrow> R2 (f x) (g y))"
kaliszyk@35222
    67
kaliszyk@36276
    68
lemma fun_relI [intro]:
haftmann@40814
    69
  assumes "\<And>x y. R1 x y \<Longrightarrow> R2 (f x) (g y)"
haftmann@40814
    70
  shows "(R1 ===> R2) f g"
kaliszyk@36276
    71
  using assms by (simp add: fun_rel_def)
kaliszyk@35222
    72
haftmann@40466
    73
lemma fun_relE:
haftmann@40814
    74
  assumes "(R1 ===> R2) f g" and "R1 x y"
haftmann@40814
    75
  obtains "R2 (f x) (g y)"
haftmann@40466
    76
  using assms by (simp add: fun_rel_def)
kaliszyk@35222
    77
kaliszyk@35222
    78
lemma fun_rel_eq:
kaliszyk@35222
    79
  shows "((op =) ===> (op =)) = (op =)"
haftmann@40466
    80
  by (auto simp add: fun_eq_iff elim: fun_relE)
kaliszyk@35222
    81
kaliszyk@44413
    82
subsection {* set map (vimage) and set relation *}
kaliszyk@44413
    83
kaliszyk@44413
    84
definition "set_rel R xs ys \<equiv> \<forall>x y. R x y \<longrightarrow> x \<in> xs \<longleftrightarrow> y \<in> ys"
kaliszyk@44413
    85
kaliszyk@44413
    86
lemma vimage_id:
kaliszyk@44413
    87
  "vimage id = id"
kaliszyk@44413
    88
  unfolding vimage_def fun_eq_iff by auto
kaliszyk@44413
    89
kaliszyk@44413
    90
lemma set_rel_eq:
kaliszyk@44413
    91
  "set_rel op = = op ="
kaliszyk@44413
    92
  by (subst fun_eq_iff, subst fun_eq_iff) (simp add: set_eq_iff set_rel_def)
kaliszyk@44413
    93
kaliszyk@44413
    94
lemma set_rel_equivp:
kaliszyk@44413
    95
  assumes e: "equivp R"
kaliszyk@44413
    96
  shows "set_rel R xs ys \<longleftrightarrow> xs = ys \<and> (\<forall>x y. x \<in> xs \<longrightarrow> R x y \<longrightarrow> y \<in> xs)"
kaliszyk@44413
    97
  unfolding set_rel_def
kaliszyk@44413
    98
  using equivp_reflp[OF e]
huffman@44921
    99
  by auto (metis, metis equivp_symp[OF e])
kaliszyk@35222
   100
huffman@35294
   101
subsection {* Quotient Predicate *}
kaliszyk@35222
   102
kaliszyk@35222
   103
definition
haftmann@40814
   104
  "Quotient R Abs Rep \<longleftrightarrow>
haftmann@40814
   105
     (\<forall>a. Abs (Rep a) = a) \<and> (\<forall>a. R (Rep a) (Rep a)) \<and>
haftmann@40818
   106
     (\<forall>r s. R r s \<longleftrightarrow> R r r \<and> R s s \<and> Abs r = Abs s)"
haftmann@40818
   107
haftmann@40818
   108
lemma QuotientI:
haftmann@40818
   109
  assumes "\<And>a. Abs (Rep a) = a"
haftmann@40818
   110
    and "\<And>a. R (Rep a) (Rep a)"
haftmann@40818
   111
    and "\<And>r s. R r s \<longleftrightarrow> R r r \<and> R s s \<and> Abs r = Abs s"
haftmann@40818
   112
  shows "Quotient R Abs Rep"
haftmann@40818
   113
  using assms unfolding Quotient_def by blast
kaliszyk@35222
   114
kaliszyk@35222
   115
lemma Quotient_abs_rep:
haftmann@40814
   116
  assumes a: "Quotient R Abs Rep"
kaliszyk@35222
   117
  shows "Abs (Rep a) = a"
kaliszyk@35222
   118
  using a
kaliszyk@35222
   119
  unfolding Quotient_def
kaliszyk@35222
   120
  by simp
kaliszyk@35222
   121
kaliszyk@35222
   122
lemma Quotient_rep_reflp:
haftmann@40814
   123
  assumes a: "Quotient R Abs Rep"
haftmann@40814
   124
  shows "R (Rep a) (Rep a)"
kaliszyk@35222
   125
  using a
kaliszyk@35222
   126
  unfolding Quotient_def
kaliszyk@35222
   127
  by blast
kaliszyk@35222
   128
kaliszyk@35222
   129
lemma Quotient_rel:
haftmann@40814
   130
  assumes a: "Quotient R Abs Rep"
haftmann@40818
   131
  shows "R r r \<and> R s s \<and> Abs r = Abs s \<longleftrightarrow> R r s" -- {* orientation does not loop on rewriting *}
kaliszyk@35222
   132
  using a
kaliszyk@35222
   133
  unfolding Quotient_def
kaliszyk@35222
   134
  by blast
kaliszyk@35222
   135
kaliszyk@35222
   136
lemma Quotient_rel_rep:
kaliszyk@35222
   137
  assumes a: "Quotient R Abs Rep"
haftmann@40818
   138
  shows "R (Rep a) (Rep b) \<longleftrightarrow> a = b"
kaliszyk@35222
   139
  using a
kaliszyk@35222
   140
  unfolding Quotient_def
kaliszyk@35222
   141
  by metis
kaliszyk@35222
   142
kaliszyk@35222
   143
lemma Quotient_rep_abs:
kaliszyk@35222
   144
  assumes a: "Quotient R Abs Rep"
kaliszyk@35222
   145
  shows "R r r \<Longrightarrow> R (Rep (Abs r)) r"
kaliszyk@35222
   146
  using a unfolding Quotient_def
kaliszyk@35222
   147
  by blast
kaliszyk@35222
   148
kaliszyk@35222
   149
lemma Quotient_rel_abs:
haftmann@40814
   150
  assumes a: "Quotient R Abs Rep"
haftmann@40814
   151
  shows "R r s \<Longrightarrow> Abs r = Abs s"
kaliszyk@35222
   152
  using a unfolding Quotient_def
kaliszyk@35222
   153
  by blast
kaliszyk@35222
   154
kaliszyk@35222
   155
lemma Quotient_symp:
haftmann@40814
   156
  assumes a: "Quotient R Abs Rep"
haftmann@40814
   157
  shows "symp R"
haftmann@40814
   158
  using a unfolding Quotient_def using sympI by metis
kaliszyk@35222
   159
kaliszyk@35222
   160
lemma Quotient_transp:
haftmann@40814
   161
  assumes a: "Quotient R Abs Rep"
haftmann@40814
   162
  shows "transp R"
haftmann@40814
   163
  using a unfolding Quotient_def using transpI by metis
kaliszyk@35222
   164
kaliszyk@35222
   165
lemma identity_quotient:
kaliszyk@35222
   166
  shows "Quotient (op =) id id"
kaliszyk@35222
   167
  unfolding Quotient_def id_def
kaliszyk@35222
   168
  by blast
kaliszyk@35222
   169
kaliszyk@35222
   170
lemma fun_quotient:
kaliszyk@35222
   171
  assumes q1: "Quotient R1 abs1 rep1"
kaliszyk@35222
   172
  and     q2: "Quotient R2 abs2 rep2"
kaliszyk@35222
   173
  shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
kaliszyk@35222
   174
proof -
haftmann@40466
   175
  have "\<And>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
haftmann@40466
   176
    using q1 q2 by (simp add: Quotient_def fun_eq_iff)
kaliszyk@35222
   177
  moreover
haftmann@40466
   178
  have "\<And>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
haftmann@40466
   179
    by (rule fun_relI)
haftmann@40466
   180
      (insert q1 q2 Quotient_rel_abs [of R1 abs1 rep1] Quotient_rel_rep [of R2 abs2 rep2],
haftmann@40466
   181
        simp (no_asm) add: Quotient_def, simp)
kaliszyk@35222
   182
  moreover
haftmann@40466
   183
  have "\<And>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and>
kaliszyk@35222
   184
        (rep1 ---> abs2) r  = (rep1 ---> abs2) s)"
haftmann@40466
   185
    apply(auto simp add: fun_rel_def fun_eq_iff)
kaliszyk@35222
   186
    using q1 q2 unfolding Quotient_def
kaliszyk@35222
   187
    apply(metis)
kaliszyk@35222
   188
    using q1 q2 unfolding Quotient_def
kaliszyk@35222
   189
    apply(metis)
kaliszyk@35222
   190
    using q1 q2 unfolding Quotient_def
kaliszyk@35222
   191
    apply(metis)
kaliszyk@35222
   192
    using q1 q2 unfolding Quotient_def
kaliszyk@35222
   193
    apply(metis)
kaliszyk@35222
   194
    done
kaliszyk@35222
   195
  ultimately
kaliszyk@35222
   196
  show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
kaliszyk@35222
   197
    unfolding Quotient_def by blast
kaliszyk@35222
   198
qed
kaliszyk@35222
   199
kaliszyk@35222
   200
lemma abs_o_rep:
kaliszyk@35222
   201
  assumes a: "Quotient R Abs Rep"
kaliszyk@35222
   202
  shows "Abs o Rep = id"
nipkow@39302
   203
  unfolding fun_eq_iff
kaliszyk@35222
   204
  by (simp add: Quotient_abs_rep[OF a])
kaliszyk@35222
   205
kaliszyk@35222
   206
lemma equals_rsp:
kaliszyk@35222
   207
  assumes q: "Quotient R Abs Rep"
kaliszyk@35222
   208
  and     a: "R xa xb" "R ya yb"
kaliszyk@35222
   209
  shows "R xa ya = R xb yb"
kaliszyk@35222
   210
  using a Quotient_symp[OF q] Quotient_transp[OF q]
haftmann@40814
   211
  by (blast elim: sympE transpE)
kaliszyk@35222
   212
kaliszyk@35222
   213
lemma lambda_prs:
kaliszyk@35222
   214
  assumes q1: "Quotient R1 Abs1 Rep1"
kaliszyk@35222
   215
  and     q2: "Quotient R2 Abs2 Rep2"
kaliszyk@35222
   216
  shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)"
nipkow@39302
   217
  unfolding fun_eq_iff
kaliszyk@35222
   218
  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
haftmann@40814
   219
  by simp
kaliszyk@35222
   220
kaliszyk@35222
   221
lemma lambda_prs1:
kaliszyk@35222
   222
  assumes q1: "Quotient R1 Abs1 Rep1"
kaliszyk@35222
   223
  and     q2: "Quotient R2 Abs2 Rep2"
kaliszyk@35222
   224
  shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)"
nipkow@39302
   225
  unfolding fun_eq_iff
kaliszyk@35222
   226
  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
haftmann@40814
   227
  by simp
kaliszyk@35222
   228
kaliszyk@35222
   229
lemma rep_abs_rsp:
kaliszyk@35222
   230
  assumes q: "Quotient R Abs Rep"
kaliszyk@35222
   231
  and     a: "R x1 x2"
kaliszyk@35222
   232
  shows "R x1 (Rep (Abs x2))"
kaliszyk@35222
   233
  using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]
kaliszyk@35222
   234
  by metis
kaliszyk@35222
   235
kaliszyk@35222
   236
lemma rep_abs_rsp_left:
kaliszyk@35222
   237
  assumes q: "Quotient R Abs Rep"
kaliszyk@35222
   238
  and     a: "R x1 x2"
kaliszyk@35222
   239
  shows "R (Rep (Abs x1)) x2"
kaliszyk@35222
   240
  using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]
kaliszyk@35222
   241
  by metis
kaliszyk@35222
   242
kaliszyk@35222
   243
text{*
kaliszyk@35222
   244
  In the following theorem R1 can be instantiated with anything,
kaliszyk@35222
   245
  but we know some of the types of the Rep and Abs functions;
kaliszyk@35222
   246
  so by solving Quotient assumptions we can get a unique R1 that
kaliszyk@35236
   247
  will be provable; which is why we need to use @{text apply_rsp} and
kaliszyk@35222
   248
  not the primed version *}
kaliszyk@35222
   249
kaliszyk@35222
   250
lemma apply_rsp:
kaliszyk@35222
   251
  fixes f g::"'a \<Rightarrow> 'c"
kaliszyk@35222
   252
  assumes q: "Quotient R1 Abs1 Rep1"
kaliszyk@35222
   253
  and     a: "(R1 ===> R2) f g" "R1 x y"
kaliszyk@35222
   254
  shows "R2 (f x) (g y)"
haftmann@40466
   255
  using a by (auto elim: fun_relE)
kaliszyk@35222
   256
kaliszyk@35222
   257
lemma apply_rsp':
kaliszyk@35222
   258
  assumes a: "(R1 ===> R2) f g" "R1 x y"
kaliszyk@35222
   259
  shows "R2 (f x) (g y)"
haftmann@40466
   260
  using a by (auto elim: fun_relE)
kaliszyk@35222
   261
huffman@35294
   262
subsection {* lemmas for regularisation of ball and bex *}
kaliszyk@35222
   263
kaliszyk@35222
   264
lemma ball_reg_eqv:
kaliszyk@35222
   265
  fixes P :: "'a \<Rightarrow> bool"
kaliszyk@35222
   266
  assumes a: "equivp R"
kaliszyk@35222
   267
  shows "Ball (Respects R) P = (All P)"
kaliszyk@35222
   268
  using a
kaliszyk@35222
   269
  unfolding equivp_def
kaliszyk@35222
   270
  by (auto simp add: in_respects)
kaliszyk@35222
   271
kaliszyk@35222
   272
lemma bex_reg_eqv:
kaliszyk@35222
   273
  fixes P :: "'a \<Rightarrow> bool"
kaliszyk@35222
   274
  assumes a: "equivp R"
kaliszyk@35222
   275
  shows "Bex (Respects R) P = (Ex P)"
kaliszyk@35222
   276
  using a
kaliszyk@35222
   277
  unfolding equivp_def
kaliszyk@35222
   278
  by (auto simp add: in_respects)
kaliszyk@35222
   279
kaliszyk@35222
   280
lemma ball_reg_right:
haftmann@44553
   281
  assumes a: "\<And>x. x \<in> R \<Longrightarrow> P x \<longrightarrow> Q x"
kaliszyk@35222
   282
  shows "All P \<longrightarrow> Ball R Q"
huffman@44921
   283
  using a by fast
kaliszyk@35222
   284
kaliszyk@35222
   285
lemma bex_reg_left:
haftmann@44553
   286
  assumes a: "\<And>x. x \<in> R \<Longrightarrow> Q x \<longrightarrow> P x"
kaliszyk@35222
   287
  shows "Bex R Q \<longrightarrow> Ex P"
huffman@44921
   288
  using a by fast
kaliszyk@35222
   289
kaliszyk@35222
   290
lemma ball_reg_left:
kaliszyk@35222
   291
  assumes a: "equivp R"
kaliszyk@35222
   292
  shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P"
kaliszyk@35222
   293
  using a by (metis equivp_reflp in_respects)
kaliszyk@35222
   294
kaliszyk@35222
   295
lemma bex_reg_right:
kaliszyk@35222
   296
  assumes a: "equivp R"
kaliszyk@35222
   297
  shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P"
kaliszyk@35222
   298
  using a by (metis equivp_reflp in_respects)
kaliszyk@35222
   299
kaliszyk@35222
   300
lemma ball_reg_eqv_range:
kaliszyk@35222
   301
  fixes P::"'a \<Rightarrow> bool"
kaliszyk@35222
   302
  and x::"'a"
kaliszyk@35222
   303
  assumes a: "equivp R2"
kaliszyk@35222
   304
  shows   "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))"
kaliszyk@35222
   305
  apply(rule iffI)
kaliszyk@35222
   306
  apply(rule allI)
kaliszyk@35222
   307
  apply(drule_tac x="\<lambda>y. f x" in bspec)
haftmann@40466
   308
  apply(simp add: in_respects fun_rel_def)
kaliszyk@35222
   309
  apply(rule impI)
kaliszyk@35222
   310
  using a equivp_reflp_symp_transp[of "R2"]
haftmann@40814
   311
  apply (auto elim: equivpE reflpE)
kaliszyk@35222
   312
  done
kaliszyk@35222
   313
kaliszyk@35222
   314
lemma bex_reg_eqv_range:
kaliszyk@35222
   315
  assumes a: "equivp R2"
kaliszyk@35222
   316
  shows   "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))"
kaliszyk@35222
   317
  apply(auto)
kaliszyk@35222
   318
  apply(rule_tac x="\<lambda>y. f x" in bexI)
kaliszyk@35222
   319
  apply(simp)
haftmann@40466
   320
  apply(simp add: Respects_def in_respects fun_rel_def)
kaliszyk@35222
   321
  apply(rule impI)
kaliszyk@35222
   322
  using a equivp_reflp_symp_transp[of "R2"]
haftmann@40814
   323
  apply (auto elim: equivpE reflpE)
kaliszyk@35222
   324
  done
kaliszyk@35222
   325
kaliszyk@35222
   326
(* Next four lemmas are unused *)
kaliszyk@35222
   327
lemma all_reg:
kaliszyk@35222
   328
  assumes a: "!x :: 'a. (P x --> Q x)"
kaliszyk@35222
   329
  and     b: "All P"
kaliszyk@35222
   330
  shows "All Q"
huffman@44921
   331
  using a b by fast
kaliszyk@35222
   332
kaliszyk@35222
   333
lemma ex_reg:
kaliszyk@35222
   334
  assumes a: "!x :: 'a. (P x --> Q x)"
kaliszyk@35222
   335
  and     b: "Ex P"
kaliszyk@35222
   336
  shows "Ex Q"
huffman@44921
   337
  using a b by fast
kaliszyk@35222
   338
kaliszyk@35222
   339
lemma ball_reg:
haftmann@44553
   340
  assumes a: "!x :: 'a. (x \<in> R --> P x --> Q x)"
kaliszyk@35222
   341
  and     b: "Ball R P"
kaliszyk@35222
   342
  shows "Ball R Q"
huffman@44921
   343
  using a b by fast
kaliszyk@35222
   344
kaliszyk@35222
   345
lemma bex_reg:
haftmann@44553
   346
  assumes a: "!x :: 'a. (x \<in> R --> P x --> Q x)"
kaliszyk@35222
   347
  and     b: "Bex R P"
kaliszyk@35222
   348
  shows "Bex R Q"
huffman@44921
   349
  using a b by fast
kaliszyk@35222
   350
kaliszyk@35222
   351
kaliszyk@35222
   352
lemma ball_all_comm:
kaliszyk@35222
   353
  assumes "\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)"
kaliszyk@35222
   354
  shows "(\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y)"
kaliszyk@35222
   355
  using assms by auto
kaliszyk@35222
   356
kaliszyk@35222
   357
lemma bex_ex_comm:
kaliszyk@35222
   358
  assumes "(\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)"
kaliszyk@35222
   359
  shows "(\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y)"
kaliszyk@35222
   360
  using assms by auto
kaliszyk@35222
   361
huffman@35294
   362
subsection {* Bounded abstraction *}
kaliszyk@35222
   363
kaliszyk@35222
   364
definition
haftmann@40466
   365
  Babs :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
kaliszyk@35222
   366
where
kaliszyk@35222
   367
  "x \<in> p \<Longrightarrow> Babs p m x = m x"
kaliszyk@35222
   368
kaliszyk@35222
   369
lemma babs_rsp:
kaliszyk@35222
   370
  assumes q: "Quotient R1 Abs1 Rep1"
kaliszyk@35222
   371
  and     a: "(R1 ===> R2) f g"
kaliszyk@35222
   372
  shows      "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)"
haftmann@40466
   373
  apply (auto simp add: Babs_def in_respects fun_rel_def)
kaliszyk@35222
   374
  apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
haftmann@40466
   375
  using a apply (simp add: Babs_def fun_rel_def)
haftmann@40466
   376
  apply (simp add: in_respects fun_rel_def)
kaliszyk@35222
   377
  using Quotient_rel[OF q]
kaliszyk@35222
   378
  by metis
kaliszyk@35222
   379
kaliszyk@35222
   380
lemma babs_prs:
kaliszyk@35222
   381
  assumes q1: "Quotient R1 Abs1 Rep1"
kaliszyk@35222
   382
  and     q2: "Quotient R2 Abs2 Rep2"
kaliszyk@35222
   383
  shows "((Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f))) = f"
kaliszyk@35222
   384
  apply (rule ext)
haftmann@40466
   385
  apply (simp add:)
kaliszyk@35222
   386
  apply (subgoal_tac "Rep1 x \<in> Respects R1")
kaliszyk@35222
   387
  apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
kaliszyk@35222
   388
  apply (simp add: in_respects Quotient_rel_rep[OF q1])
kaliszyk@35222
   389
  done
kaliszyk@35222
   390
kaliszyk@35222
   391
lemma babs_simp:
kaliszyk@35222
   392
  assumes q: "Quotient R1 Abs Rep"
kaliszyk@35222
   393
  shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)"
kaliszyk@35222
   394
  apply(rule iffI)
kaliszyk@35222
   395
  apply(simp_all only: babs_rsp[OF q])
haftmann@40466
   396
  apply(auto simp add: Babs_def fun_rel_def)
kaliszyk@35222
   397
  apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
kaliszyk@35222
   398
  apply(metis Babs_def)
kaliszyk@35222
   399
  apply (simp add: in_respects)
kaliszyk@35222
   400
  using Quotient_rel[OF q]
kaliszyk@35222
   401
  by metis
kaliszyk@35222
   402
kaliszyk@35222
   403
(* If a user proves that a particular functional relation
kaliszyk@35222
   404
   is an equivalence this may be useful in regularising *)
kaliszyk@35222
   405
lemma babs_reg_eqv:
kaliszyk@35222
   406
  shows "equivp R \<Longrightarrow> Babs (Respects R) P = P"
nipkow@39302
   407
  by (simp add: fun_eq_iff Babs_def in_respects equivp_reflp)
kaliszyk@35222
   408
kaliszyk@35222
   409
kaliszyk@35222
   410
(* 3 lemmas needed for proving repabs_inj *)
kaliszyk@35222
   411
lemma ball_rsp:
kaliszyk@35222
   412
  assumes a: "(R ===> (op =)) f g"
kaliszyk@35222
   413
  shows "Ball (Respects R) f = Ball (Respects R) g"
haftmann@40466
   414
  using a by (auto simp add: Ball_def in_respects elim: fun_relE)
kaliszyk@35222
   415
kaliszyk@35222
   416
lemma bex_rsp:
kaliszyk@35222
   417
  assumes a: "(R ===> (op =)) f g"
kaliszyk@35222
   418
  shows "(Bex (Respects R) f = Bex (Respects R) g)"
haftmann@40466
   419
  using a by (auto simp add: Bex_def in_respects elim: fun_relE)
kaliszyk@35222
   420
kaliszyk@35222
   421
lemma bex1_rsp:
kaliszyk@35222
   422
  assumes a: "(R ===> (op =)) f g"
kaliszyk@35222
   423
  shows "Ex1 (\<lambda>x. x \<in> Respects R \<and> f x) = Ex1 (\<lambda>x. x \<in> Respects R \<and> g x)"
haftmann@40466
   424
  using a by (auto elim: fun_relE simp add: Ex1_def in_respects) 
kaliszyk@35222
   425
kaliszyk@35222
   426
(* 2 lemmas needed for cleaning of quantifiers *)
kaliszyk@35222
   427
lemma all_prs:
kaliszyk@35222
   428
  assumes a: "Quotient R absf repf"
kaliszyk@35222
   429
  shows "Ball (Respects R) ((absf ---> id) f) = All f"
haftmann@40602
   430
  using a unfolding Quotient_def Ball_def in_respects id_apply comp_def map_fun_def
kaliszyk@35222
   431
  by metis
kaliszyk@35222
   432
kaliszyk@35222
   433
lemma ex_prs:
kaliszyk@35222
   434
  assumes a: "Quotient R absf repf"
kaliszyk@35222
   435
  shows "Bex (Respects R) ((absf ---> id) f) = Ex f"
haftmann@40602
   436
  using a unfolding Quotient_def Bex_def in_respects id_apply comp_def map_fun_def
kaliszyk@35222
   437
  by metis
kaliszyk@35222
   438
huffman@35294
   439
subsection {* @{text Bex1_rel} quantifier *}
kaliszyk@35222
   440
kaliszyk@35222
   441
definition
kaliszyk@35222
   442
  Bex1_rel :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
kaliszyk@35222
   443
where
kaliszyk@35222
   444
  "Bex1_rel R P \<longleftrightarrow> (\<exists>x \<in> Respects R. P x) \<and> (\<forall>x \<in> Respects R. \<forall>y \<in> Respects R. ((P x \<and> P y) \<longrightarrow> (R x y)))"
kaliszyk@35222
   445
kaliszyk@35222
   446
lemma bex1_rel_aux:
kaliszyk@35222
   447
  "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R x\<rbrakk> \<Longrightarrow> Bex1_rel R y"
kaliszyk@35222
   448
  unfolding Bex1_rel_def
kaliszyk@35222
   449
  apply (erule conjE)+
kaliszyk@35222
   450
  apply (erule bexE)
kaliszyk@35222
   451
  apply rule
kaliszyk@35222
   452
  apply (rule_tac x="xa" in bexI)
kaliszyk@35222
   453
  apply metis
kaliszyk@35222
   454
  apply metis
kaliszyk@35222
   455
  apply rule+
kaliszyk@35222
   456
  apply (erule_tac x="xaa" in ballE)
kaliszyk@35222
   457
  prefer 2
kaliszyk@35222
   458
  apply (metis)
kaliszyk@35222
   459
  apply (erule_tac x="ya" in ballE)
kaliszyk@35222
   460
  prefer 2
kaliszyk@35222
   461
  apply (metis)
kaliszyk@35222
   462
  apply (metis in_respects)
kaliszyk@35222
   463
  done
kaliszyk@35222
   464
kaliszyk@35222
   465
lemma bex1_rel_aux2:
kaliszyk@35222
   466
  "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R y\<rbrakk> \<Longrightarrow> Bex1_rel R x"
kaliszyk@35222
   467
  unfolding Bex1_rel_def
kaliszyk@35222
   468
  apply (erule conjE)+
kaliszyk@35222
   469
  apply (erule bexE)
kaliszyk@35222
   470
  apply rule
kaliszyk@35222
   471
  apply (rule_tac x="xa" in bexI)
kaliszyk@35222
   472
  apply metis
kaliszyk@35222
   473
  apply metis
kaliszyk@35222
   474
  apply rule+
kaliszyk@35222
   475
  apply (erule_tac x="xaa" in ballE)
kaliszyk@35222
   476
  prefer 2
kaliszyk@35222
   477
  apply (metis)
kaliszyk@35222
   478
  apply (erule_tac x="ya" in ballE)
kaliszyk@35222
   479
  prefer 2
kaliszyk@35222
   480
  apply (metis)
kaliszyk@35222
   481
  apply (metis in_respects)
kaliszyk@35222
   482
  done
kaliszyk@35222
   483
kaliszyk@35222
   484
lemma bex1_rel_rsp:
kaliszyk@35222
   485
  assumes a: "Quotient R absf repf"
kaliszyk@35222
   486
  shows "((R ===> op =) ===> op =) (Bex1_rel R) (Bex1_rel R)"
haftmann@40466
   487
  apply (simp add: fun_rel_def)
kaliszyk@35222
   488
  apply clarify
kaliszyk@35222
   489
  apply rule
kaliszyk@35222
   490
  apply (simp_all add: bex1_rel_aux bex1_rel_aux2)
kaliszyk@35222
   491
  apply (erule bex1_rel_aux2)
kaliszyk@35222
   492
  apply assumption
kaliszyk@35222
   493
  done
kaliszyk@35222
   494
kaliszyk@35222
   495
kaliszyk@35222
   496
lemma ex1_prs:
kaliszyk@35222
   497
  assumes a: "Quotient R absf repf"
kaliszyk@35222
   498
  shows "((absf ---> id) ---> id) (Bex1_rel R) f = Ex1 f"
haftmann@40466
   499
apply (simp add:)
kaliszyk@35222
   500
apply (subst Bex1_rel_def)
kaliszyk@35222
   501
apply (subst Bex_def)
kaliszyk@35222
   502
apply (subst Ex1_def)
kaliszyk@35222
   503
apply simp
kaliszyk@35222
   504
apply rule
kaliszyk@35222
   505
 apply (erule conjE)+
kaliszyk@35222
   506
 apply (erule_tac exE)
kaliszyk@35222
   507
 apply (erule conjE)
kaliszyk@35222
   508
 apply (subgoal_tac "\<forall>y. R y y \<longrightarrow> f (absf y) \<longrightarrow> R x y")
kaliszyk@35222
   509
  apply (rule_tac x="absf x" in exI)
kaliszyk@35222
   510
  apply (simp)
kaliszyk@35222
   511
  apply rule+
kaliszyk@35222
   512
  using a unfolding Quotient_def
kaliszyk@35222
   513
  apply metis
kaliszyk@35222
   514
 apply rule+
kaliszyk@35222
   515
 apply (erule_tac x="x" in ballE)
kaliszyk@35222
   516
  apply (erule_tac x="y" in ballE)
kaliszyk@35222
   517
   apply simp
kaliszyk@35222
   518
  apply (simp add: in_respects)
kaliszyk@35222
   519
 apply (simp add: in_respects)
kaliszyk@35222
   520
apply (erule_tac exE)
kaliszyk@35222
   521
 apply rule
kaliszyk@35222
   522
 apply (rule_tac x="repf x" in exI)
kaliszyk@35222
   523
 apply (simp only: in_respects)
kaliszyk@35222
   524
  apply rule
kaliszyk@35222
   525
 apply (metis Quotient_rel_rep[OF a])
kaliszyk@35222
   526
using a unfolding Quotient_def apply (simp)
kaliszyk@35222
   527
apply rule+
kaliszyk@35222
   528
using a unfolding Quotient_def in_respects
kaliszyk@35222
   529
apply metis
kaliszyk@35222
   530
done
kaliszyk@35222
   531
kaliszyk@38702
   532
lemma bex1_bexeq_reg:
kaliszyk@38702
   533
  shows "(\<exists>!x\<in>Respects R. P x) \<longrightarrow> (Bex1_rel R (\<lambda>x. P x))"
kaliszyk@35222
   534
  apply (simp add: Ex1_def Bex1_rel_def in_respects)
kaliszyk@35222
   535
  apply clarify
kaliszyk@35222
   536
  apply auto
kaliszyk@35222
   537
  apply (rule bexI)
kaliszyk@35222
   538
  apply assumption
kaliszyk@35222
   539
  apply (simp add: in_respects)
kaliszyk@35222
   540
  apply (simp add: in_respects)
kaliszyk@35222
   541
  apply auto
kaliszyk@35222
   542
  done
kaliszyk@35222
   543
kaliszyk@38702
   544
lemma bex1_bexeq_reg_eqv:
kaliszyk@38702
   545
  assumes a: "equivp R"
kaliszyk@38702
   546
  shows "(\<exists>!x. P x) \<longrightarrow> Bex1_rel R P"
kaliszyk@38702
   547
  using equivp_reflp[OF a]
kaliszyk@38702
   548
  apply (intro impI)
kaliszyk@38702
   549
  apply (elim ex1E)
kaliszyk@38702
   550
  apply (rule mp[OF bex1_bexeq_reg])
kaliszyk@38702
   551
  apply (rule_tac a="x" in ex1I)
kaliszyk@38702
   552
  apply (subst in_respects)
kaliszyk@38702
   553
  apply (rule conjI)
kaliszyk@38702
   554
  apply assumption
kaliszyk@38702
   555
  apply assumption
kaliszyk@38702
   556
  apply clarify
kaliszyk@38702
   557
  apply (erule_tac x="xa" in allE)
kaliszyk@38702
   558
  apply simp
kaliszyk@38702
   559
  done
kaliszyk@38702
   560
huffman@35294
   561
subsection {* Various respects and preserve lemmas *}
kaliszyk@35222
   562
kaliszyk@35222
   563
lemma quot_rel_rsp:
kaliszyk@35222
   564
  assumes a: "Quotient R Abs Rep"
kaliszyk@35222
   565
  shows "(R ===> R ===> op =) R R"
urbanc@38317
   566
  apply(rule fun_relI)+
kaliszyk@35222
   567
  apply(rule equals_rsp[OF a])
kaliszyk@35222
   568
  apply(assumption)+
kaliszyk@35222
   569
  done
kaliszyk@35222
   570
kaliszyk@35222
   571
lemma o_prs:
kaliszyk@35222
   572
  assumes q1: "Quotient R1 Abs1 Rep1"
kaliszyk@35222
   573
  and     q2: "Quotient R2 Abs2 Rep2"
kaliszyk@35222
   574
  and     q3: "Quotient R3 Abs3 Rep3"
kaliszyk@36215
   575
  shows "((Abs2 ---> Rep3) ---> (Abs1 ---> Rep2) ---> (Rep1 ---> Abs3)) op \<circ> = op \<circ>"
kaliszyk@36215
   576
  and   "(id ---> (Abs1 ---> id) ---> Rep1 ---> id) op \<circ> = op \<circ>"
kaliszyk@35222
   577
  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3]
haftmann@40466
   578
  by (simp_all add: fun_eq_iff)
kaliszyk@35222
   579
kaliszyk@35222
   580
lemma o_rsp:
kaliszyk@36215
   581
  "((R2 ===> R3) ===> (R1 ===> R2) ===> (R1 ===> R3)) op \<circ> op \<circ>"
kaliszyk@36215
   582
  "(op = ===> (R1 ===> op =) ===> R1 ===> op =) op \<circ> op \<circ>"
huffman@44921
   583
  by (force elim: fun_relE)+
kaliszyk@35222
   584
kaliszyk@35222
   585
lemma cond_prs:
kaliszyk@35222
   586
  assumes a: "Quotient R absf repf"
kaliszyk@35222
   587
  shows "absf (if a then repf b else repf c) = (if a then b else c)"
kaliszyk@35222
   588
  using a unfolding Quotient_def by auto
kaliszyk@35222
   589
kaliszyk@35222
   590
lemma if_prs:
kaliszyk@35222
   591
  assumes q: "Quotient R Abs Rep"
kaliszyk@36123
   592
  shows "(id ---> Rep ---> Rep ---> Abs) If = If"
kaliszyk@36123
   593
  using Quotient_abs_rep[OF q]
nipkow@39302
   594
  by (auto simp add: fun_eq_iff)
kaliszyk@35222
   595
kaliszyk@35222
   596
lemma if_rsp:
kaliszyk@35222
   597
  assumes q: "Quotient R Abs Rep"
kaliszyk@36123
   598
  shows "(op = ===> R ===> R ===> R) If If"
huffman@44921
   599
  by force
kaliszyk@35222
   600
kaliszyk@35222
   601
lemma let_prs:
kaliszyk@35222
   602
  assumes q1: "Quotient R1 Abs1 Rep1"
kaliszyk@35222
   603
  and     q2: "Quotient R2 Abs2 Rep2"
kaliszyk@37049
   604
  shows "(Rep2 ---> (Abs2 ---> Rep1) ---> Abs1) Let = Let"
kaliszyk@37049
   605
  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
nipkow@39302
   606
  by (auto simp add: fun_eq_iff)
kaliszyk@35222
   607
kaliszyk@35222
   608
lemma let_rsp:
kaliszyk@37049
   609
  shows "(R1 ===> (R1 ===> R2) ===> R2) Let Let"
huffman@44921
   610
  by (force elim: fun_relE)
kaliszyk@35222
   611
kaliszyk@39669
   612
lemma id_rsp:
kaliszyk@39669
   613
  shows "(R ===> R) id id"
huffman@44921
   614
  by auto
kaliszyk@39669
   615
kaliszyk@39669
   616
lemma id_prs:
kaliszyk@39669
   617
  assumes a: "Quotient R Abs Rep"
kaliszyk@39669
   618
  shows "(Rep ---> Abs) id = id"
haftmann@40466
   619
  by (simp add: fun_eq_iff Quotient_abs_rep [OF a])
kaliszyk@39669
   620
kaliszyk@39669
   621
kaliszyk@35222
   622
locale quot_type =
kaliszyk@35222
   623
  fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
kaliszyk@44204
   624
  and   Abs :: "'a set \<Rightarrow> 'b"
kaliszyk@44204
   625
  and   Rep :: "'b \<Rightarrow> 'a set"
kaliszyk@37493
   626
  assumes equivp: "part_equivp R"
kaliszyk@44204
   627
  and     rep_prop: "\<And>y. \<exists>x. R x x \<and> Rep y = Collect (R x)"
kaliszyk@35222
   628
  and     rep_inverse: "\<And>x. Abs (Rep x) = x"
kaliszyk@44204
   629
  and     abs_inverse: "\<And>c. (\<exists>x. ((R x x) \<and> (c = Collect (R x)))) \<Longrightarrow> (Rep (Abs c)) = c"
kaliszyk@35222
   630
  and     rep_inject: "\<And>x y. (Rep x = Rep y) = (x = y)"
kaliszyk@35222
   631
begin
kaliszyk@35222
   632
kaliszyk@35222
   633
definition
haftmann@40466
   634
  abs :: "'a \<Rightarrow> 'b"
kaliszyk@35222
   635
where
kaliszyk@44204
   636
  "abs x = Abs (Collect (R x))"
kaliszyk@35222
   637
kaliszyk@35222
   638
definition
haftmann@40466
   639
  rep :: "'b \<Rightarrow> 'a"
kaliszyk@35222
   640
where
kaliszyk@44204
   641
  "rep a = (SOME x. x \<in> Rep a)"
kaliszyk@35222
   642
kaliszyk@44204
   643
lemma some_collect:
kaliszyk@37493
   644
  assumes "R r r"
kaliszyk@44204
   645
  shows "R (SOME x. x \<in> Collect (R r)) = R r"
kaliszyk@44204
   646
  apply simp
kaliszyk@44204
   647
  by (metis assms exE_some equivp[simplified part_equivp_def])
kaliszyk@35222
   648
kaliszyk@35222
   649
lemma Quotient:
kaliszyk@35222
   650
  shows "Quotient R abs rep"
kaliszyk@37493
   651
  unfolding Quotient_def abs_def rep_def
kaliszyk@37493
   652
  proof (intro conjI allI)
kaliszyk@37493
   653
    fix a r s
kaliszyk@44204
   654
    show x: "R (SOME x. x \<in> Rep a) (SOME x. x \<in> Rep a)" proof -
kaliszyk@44204
   655
      obtain x where r: "R x x" and rep: "Rep a = Collect (R x)" using rep_prop[of a] by auto
kaliszyk@44204
   656
      have "R (SOME x. x \<in> Rep a) x"  using r rep some_collect by metis
kaliszyk@44204
   657
      then have "R x (SOME x. x \<in> Rep a)" using part_equivp_symp[OF equivp] by fast
kaliszyk@44204
   658
      then show "R (SOME x. x \<in> Rep a) (SOME x. x \<in> Rep a)"
kaliszyk@44204
   659
        using part_equivp_transp[OF equivp] by (metis `R (SOME x. x \<in> Rep a) x`)
kaliszyk@37493
   660
    qed
kaliszyk@44204
   661
    have "Collect (R (SOME x. x \<in> Rep a)) = (Rep a)" by (metis some_collect rep_prop)
kaliszyk@44204
   662
    then show "Abs (Collect (R (SOME x. x \<in> Rep a))) = a" using rep_inverse by auto
kaliszyk@44204
   663
    have "R r r \<Longrightarrow> R s s \<Longrightarrow> Abs (Collect (R r)) = Abs (Collect (R s)) \<longleftrightarrow> R r = R s"
haftmann@44242
   664
    proof -
haftmann@44242
   665
      assume "R r r" and "R s s"
haftmann@44242
   666
      then have "Abs (Collect (R r)) = Abs (Collect (R s)) \<longleftrightarrow> Collect (R r) = Collect (R s)"
haftmann@44242
   667
        by (metis abs_inverse)
haftmann@44242
   668
      also have "Collect (R r) = Collect (R s) \<longleftrightarrow> (\<lambda>A x. x \<in> A) (Collect (R r)) = (\<lambda>A x. x \<in> A) (Collect (R s))"
haftmann@44242
   669
        by rule simp_all
haftmann@44242
   670
      finally show "Abs (Collect (R r)) = Abs (Collect (R s)) \<longleftrightarrow> R r = R s" by simp
haftmann@44242
   671
    qed
kaliszyk@44204
   672
    then show "R r s \<longleftrightarrow> R r r \<and> R s s \<and> (Abs (Collect (R r)) = Abs (Collect (R s)))"
kaliszyk@44204
   673
      using equivp[simplified part_equivp_def] by metis
kaliszyk@44204
   674
    qed
haftmann@44242
   675
kaliszyk@35222
   676
end
kaliszyk@35222
   677
huffman@35294
   678
subsection {* ML setup *}
kaliszyk@35222
   679
kaliszyk@35222
   680
text {* Auxiliary data for the quotient package *}
kaliszyk@35222
   681
wenzelm@37986
   682
use "Tools/Quotient/quotient_info.ML"
wenzelm@41452
   683
setup Quotient_Info.setup
kaliszyk@35222
   684
kuncar@45802
   685
declare [[map "fun" = fun_rel]]
kuncar@45802
   686
declare [[map set = set_rel]]
kaliszyk@35222
   687
kaliszyk@35222
   688
lemmas [quot_thm] = fun_quotient
haftmann@44553
   689
lemmas [quot_respect] = quot_rel_rsp if_rsp o_rsp let_rsp id_rsp
haftmann@44553
   690
lemmas [quot_preserve] = if_prs o_prs let_prs id_prs
kaliszyk@35222
   691
lemmas [quot_equiv] = identity_equivp
kaliszyk@35222
   692
kaliszyk@35222
   693
kaliszyk@35222
   694
text {* Lemmas about simplifying id's. *}
kaliszyk@35222
   695
lemmas [id_simps] =
kaliszyk@35222
   696
  id_def[symmetric]
haftmann@40602
   697
  map_fun_id
kaliszyk@35222
   698
  id_apply
kaliszyk@35222
   699
  id_o
kaliszyk@35222
   700
  o_id
kaliszyk@35222
   701
  eq_comp_r
kaliszyk@44413
   702
  set_rel_eq
kaliszyk@44413
   703
  vimage_id
kaliszyk@35222
   704
kaliszyk@35222
   705
text {* Translation functions for the lifting process. *}
wenzelm@37986
   706
use "Tools/Quotient/quotient_term.ML"
kaliszyk@35222
   707
kaliszyk@35222
   708
kaliszyk@35222
   709
text {* Definitions of the quotient types. *}
wenzelm@45680
   710
use "Tools/Quotient/quotient_type.ML"
kaliszyk@35222
   711
kaliszyk@35222
   712
kaliszyk@35222
   713
text {* Definitions for quotient constants. *}
wenzelm@37986
   714
use "Tools/Quotient/quotient_def.ML"
kaliszyk@35222
   715
kaliszyk@35222
   716
kaliszyk@35222
   717
text {*
kaliszyk@35222
   718
  An auxiliary constant for recording some information
kaliszyk@35222
   719
  about the lifted theorem in a tactic.
kaliszyk@35222
   720
*}
kaliszyk@35222
   721
definition
haftmann@40466
   722
  Quot_True :: "'a \<Rightarrow> bool"
haftmann@40466
   723
where
haftmann@40466
   724
  "Quot_True x \<longleftrightarrow> True"
kaliszyk@35222
   725
kaliszyk@35222
   726
lemma
kaliszyk@35222
   727
  shows QT_all: "Quot_True (All P) \<Longrightarrow> Quot_True P"
kaliszyk@35222
   728
  and   QT_ex:  "Quot_True (Ex P) \<Longrightarrow> Quot_True P"
kaliszyk@35222
   729
  and   QT_ex1: "Quot_True (Ex1 P) \<Longrightarrow> Quot_True P"
kaliszyk@35222
   730
  and   QT_lam: "Quot_True (\<lambda>x. P x) \<Longrightarrow> (\<And>x. Quot_True (P x))"
kaliszyk@35222
   731
  and   QT_ext: "(\<And>x. Quot_True (a x) \<Longrightarrow> f x = g x) \<Longrightarrow> (Quot_True a \<Longrightarrow> f = g)"
kaliszyk@35222
   732
  by (simp_all add: Quot_True_def ext)
kaliszyk@35222
   733
kaliszyk@35222
   734
lemma QT_imp: "Quot_True a \<equiv> Quot_True b"
kaliszyk@35222
   735
  by (simp add: Quot_True_def)
kaliszyk@35222
   736
kaliszyk@35222
   737
kaliszyk@35222
   738
text {* Tactics for proving the lifted theorems *}
wenzelm@37986
   739
use "Tools/Quotient/quotient_tacs.ML"
kaliszyk@35222
   740
huffman@35294
   741
subsection {* Methods / Interface *}
kaliszyk@35222
   742
kaliszyk@35222
   743
method_setup lifting =
urbanc@37593
   744
  {* Attrib.thms >> (fn thms => fn ctxt => 
wenzelm@46468
   745
       SIMPLE_METHOD' (Quotient_Tacs.lift_tac ctxt [] thms)) *}
wenzelm@42814
   746
  {* lift theorems to quotient types *}
kaliszyk@35222
   747
kaliszyk@35222
   748
method_setup lifting_setup =
urbanc@37593
   749
  {* Attrib.thm >> (fn thm => fn ctxt => 
wenzelm@46468
   750
       SIMPLE_METHOD' (Quotient_Tacs.lift_procedure_tac ctxt [] thm)) *}
wenzelm@42814
   751
  {* set up the three goals for the quotient lifting procedure *}
kaliszyk@35222
   752
urbanc@37593
   753
method_setup descending =
wenzelm@46468
   754
  {* Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.descend_tac ctxt [])) *}
wenzelm@42814
   755
  {* decend theorems to the raw level *}
urbanc@37593
   756
urbanc@37593
   757
method_setup descending_setup =
wenzelm@46468
   758
  {* Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.descend_procedure_tac ctxt [])) *}
wenzelm@42814
   759
  {* set up the three goals for the decending theorems *}
urbanc@37593
   760
urbanc@45782
   761
method_setup partiality_descending =
wenzelm@46468
   762
  {* Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.partiality_descend_tac ctxt [])) *}
urbanc@45782
   763
  {* decend theorems to the raw level *}
urbanc@45782
   764
urbanc@45782
   765
method_setup partiality_descending_setup =
urbanc@45782
   766
  {* Scan.succeed (fn ctxt => 
wenzelm@46468
   767
       SIMPLE_METHOD' (Quotient_Tacs.partiality_descend_procedure_tac ctxt [])) *}
urbanc@45782
   768
  {* set up the three goals for the decending theorems *}
urbanc@45782
   769
kaliszyk@35222
   770
method_setup regularize =
wenzelm@46468
   771
  {* Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.regularize_tac ctxt)) *}
wenzelm@42814
   772
  {* prove the regularization goals from the quotient lifting procedure *}
kaliszyk@35222
   773
kaliszyk@35222
   774
method_setup injection =
wenzelm@46468
   775
  {* Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.all_injection_tac ctxt)) *}
wenzelm@42814
   776
  {* prove the rep/abs injection goals from the quotient lifting procedure *}
kaliszyk@35222
   777
kaliszyk@35222
   778
method_setup cleaning =
wenzelm@46468
   779
  {* Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.clean_tac ctxt)) *}
wenzelm@42814
   780
  {* prove the cleaning goals from the quotient lifting procedure *}
kaliszyk@35222
   781
kaliszyk@35222
   782
attribute_setup quot_lifted =
kaliszyk@35222
   783
  {* Scan.succeed Quotient_Tacs.lifted_attrib *}
wenzelm@42814
   784
  {* lift theorems to quotient types *}
kaliszyk@35222
   785
kaliszyk@35222
   786
no_notation
kaliszyk@35222
   787
  rel_conj (infixr "OOO" 75) and
haftmann@40602
   788
  map_fun (infixr "--->" 55) and
kaliszyk@35222
   789
  fun_rel (infixr "===>" 55)
kaliszyk@35222
   790
kaliszyk@35222
   791
end