src/HOL/Inductive.thy
author haftmann
Wed Dec 05 14:15:45 2007 +0100 (2007-12-05)
changeset 25534 d0b74fdd6067
parent 25510 38c15efe603b
child 25557 ea6b11021e79
permissions -rw-r--r--
simplified infrastructure for code generator operational equality
wenzelm@7700
     1
(*  Title:      HOL/Inductive.thy
wenzelm@7700
     2
    ID:         $Id$
wenzelm@10402
     3
    Author:     Markus Wenzel, TU Muenchen
wenzelm@11688
     4
*)
wenzelm@10727
     5
haftmann@24915
     6
header {* Knaster-Tarski Fixpoint Theorem and inductive definitions *}
lcp@1187
     7
nipkow@15131
     8
theory Inductive 
haftmann@24915
     9
imports Lattices Sum_Type
haftmann@16417
    10
uses
wenzelm@10402
    11
  ("Tools/inductive_package.ML")
haftmann@24625
    12
  "Tools/dseq.ML"
berghofe@12437
    13
  ("Tools/inductive_codegen.ML")
wenzelm@10402
    14
  ("Tools/datatype_aux.ML")
wenzelm@10402
    15
  ("Tools/datatype_prop.ML")
wenzelm@10402
    16
  ("Tools/datatype_rep_proofs.ML")
wenzelm@10402
    17
  ("Tools/datatype_abs_proofs.ML")
berghofe@22783
    18
  ("Tools/datatype_case.ML")
wenzelm@10402
    19
  ("Tools/datatype_package.ML")
nipkow@15131
    20
  ("Tools/primrec_package.ML")
haftmann@25534
    21
  ("Tools/datatype_codegen.ML")
nipkow@15131
    22
begin
wenzelm@10727
    23
haftmann@24915
    24
subsection {* Least and greatest fixed points *}
haftmann@24915
    25
haftmann@24915
    26
definition
haftmann@24915
    27
  lfp :: "('a\<Colon>complete_lattice \<Rightarrow> 'a) \<Rightarrow> 'a" where
haftmann@24915
    28
  "lfp f = Inf {u. f u \<le> u}"    --{*least fixed point*}
haftmann@24915
    29
haftmann@24915
    30
definition
haftmann@24915
    31
  gfp :: "('a\<Colon>complete_lattice \<Rightarrow> 'a) \<Rightarrow> 'a" where
haftmann@24915
    32
  "gfp f = Sup {u. u \<le> f u}"    --{*greatest fixed point*}
haftmann@24915
    33
haftmann@24915
    34
haftmann@24915
    35
subsection{* Proof of Knaster-Tarski Theorem using @{term lfp} *}
haftmann@24915
    36
haftmann@24915
    37
text{*@{term "lfp f"} is the least upper bound of 
haftmann@24915
    38
      the set @{term "{u. f(u) \<le> u}"} *}
haftmann@24915
    39
haftmann@24915
    40
lemma lfp_lowerbound: "f A \<le> A ==> lfp f \<le> A"
haftmann@24915
    41
  by (auto simp add: lfp_def intro: Inf_lower)
haftmann@24915
    42
haftmann@24915
    43
lemma lfp_greatest: "(!!u. f u \<le> u ==> A \<le> u) ==> A \<le> lfp f"
haftmann@24915
    44
  by (auto simp add: lfp_def intro: Inf_greatest)
haftmann@24915
    45
haftmann@24915
    46
lemma lfp_lemma2: "mono f ==> f (lfp f) \<le> lfp f"
haftmann@24915
    47
  by (iprover intro: lfp_greatest order_trans monoD lfp_lowerbound)
haftmann@24915
    48
haftmann@24915
    49
lemma lfp_lemma3: "mono f ==> lfp f \<le> f (lfp f)"
haftmann@24915
    50
  by (iprover intro: lfp_lemma2 monoD lfp_lowerbound)
haftmann@24915
    51
haftmann@24915
    52
lemma lfp_unfold: "mono f ==> lfp f = f (lfp f)"
haftmann@24915
    53
  by (iprover intro: order_antisym lfp_lemma2 lfp_lemma3)
haftmann@24915
    54
haftmann@24915
    55
lemma lfp_const: "lfp (\<lambda>x. t) = t"
haftmann@24915
    56
  by (rule lfp_unfold) (simp add:mono_def)
haftmann@24915
    57
haftmann@24915
    58
haftmann@24915
    59
subsection {* General induction rules for least fixed points *}
haftmann@24915
    60
haftmann@24915
    61
theorem lfp_induct:
haftmann@24915
    62
  assumes mono: "mono f" and ind: "f (inf (lfp f) P) <= P"
haftmann@24915
    63
  shows "lfp f <= P"
haftmann@24915
    64
proof -
haftmann@24915
    65
  have "inf (lfp f) P <= lfp f" by (rule inf_le1)
haftmann@24915
    66
  with mono have "f (inf (lfp f) P) <= f (lfp f)" ..
haftmann@24915
    67
  also from mono have "f (lfp f) = lfp f" by (rule lfp_unfold [symmetric])
haftmann@24915
    68
  finally have "f (inf (lfp f) P) <= lfp f" .
haftmann@24915
    69
  from this and ind have "f (inf (lfp f) P) <= inf (lfp f) P" by (rule le_infI)
haftmann@24915
    70
  hence "lfp f <= inf (lfp f) P" by (rule lfp_lowerbound)
haftmann@24915
    71
  also have "inf (lfp f) P <= P" by (rule inf_le2)
haftmann@24915
    72
  finally show ?thesis .
haftmann@24915
    73
qed
haftmann@24915
    74
haftmann@24915
    75
lemma lfp_induct_set:
haftmann@24915
    76
  assumes lfp: "a: lfp(f)"
haftmann@24915
    77
      and mono: "mono(f)"
haftmann@24915
    78
      and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)"
haftmann@24915
    79
  shows "P(a)"
haftmann@24915
    80
  by (rule lfp_induct [THEN subsetD, THEN CollectD, OF mono _ lfp])
haftmann@24915
    81
    (auto simp: inf_set_eq intro: indhyp)
haftmann@24915
    82
haftmann@24915
    83
lemma lfp_ordinal_induct: 
haftmann@24915
    84
  assumes mono: "mono f"
haftmann@24915
    85
  and P_f: "!!S. P S ==> P(f S)"
haftmann@24915
    86
  and P_Union: "!!M. !S:M. P S ==> P(Union M)"
haftmann@24915
    87
  shows "P(lfp f)"
haftmann@24915
    88
proof -
haftmann@24915
    89
  let ?M = "{S. S \<subseteq> lfp f & P S}"
haftmann@24915
    90
  have "P (Union ?M)" using P_Union by simp
haftmann@24915
    91
  also have "Union ?M = lfp f"
haftmann@24915
    92
  proof
haftmann@24915
    93
    show "Union ?M \<subseteq> lfp f" by blast
haftmann@24915
    94
    hence "f (Union ?M) \<subseteq> f (lfp f)" by (rule mono [THEN monoD])
haftmann@24915
    95
    hence "f (Union ?M) \<subseteq> lfp f" using mono [THEN lfp_unfold] by simp
haftmann@24915
    96
    hence "f (Union ?M) \<in> ?M" using P_f P_Union by simp
haftmann@24915
    97
    hence "f (Union ?M) \<subseteq> Union ?M" by (rule Union_upper)
haftmann@24915
    98
    thus "lfp f \<subseteq> Union ?M" by (rule lfp_lowerbound)
haftmann@24915
    99
  qed
haftmann@24915
   100
  finally show ?thesis .
haftmann@24915
   101
qed
haftmann@24915
   102
haftmann@24915
   103
haftmann@24915
   104
text{*Definition forms of @{text lfp_unfold} and @{text lfp_induct}, 
haftmann@24915
   105
    to control unfolding*}
haftmann@24915
   106
haftmann@24915
   107
lemma def_lfp_unfold: "[| h==lfp(f);  mono(f) |] ==> h = f(h)"
haftmann@24915
   108
by (auto intro!: lfp_unfold)
haftmann@24915
   109
haftmann@24915
   110
lemma def_lfp_induct: 
haftmann@24915
   111
    "[| A == lfp(f); mono(f);
haftmann@24915
   112
        f (inf A P) \<le> P
haftmann@24915
   113
     |] ==> A \<le> P"
haftmann@24915
   114
  by (blast intro: lfp_induct)
haftmann@24915
   115
haftmann@24915
   116
lemma def_lfp_induct_set: 
haftmann@24915
   117
    "[| A == lfp(f);  mono(f);   a:A;                    
haftmann@24915
   118
        !!x. [| x: f(A Int {x. P(x)}) |] ==> P(x)         
haftmann@24915
   119
     |] ==> P(a)"
haftmann@24915
   120
  by (blast intro: lfp_induct_set)
haftmann@24915
   121
haftmann@24915
   122
(*Monotonicity of lfp!*)
haftmann@24915
   123
lemma lfp_mono: "(!!Z. f Z \<le> g Z) ==> lfp f \<le> lfp g"
haftmann@24915
   124
  by (rule lfp_lowerbound [THEN lfp_greatest], blast intro: order_trans)
haftmann@24915
   125
haftmann@24915
   126
haftmann@24915
   127
subsection {* Proof of Knaster-Tarski Theorem using @{term gfp} *}
haftmann@24915
   128
haftmann@24915
   129
text{*@{term "gfp f"} is the greatest lower bound of 
haftmann@24915
   130
      the set @{term "{u. u \<le> f(u)}"} *}
haftmann@24915
   131
haftmann@24915
   132
lemma gfp_upperbound: "X \<le> f X ==> X \<le> gfp f"
haftmann@24915
   133
  by (auto simp add: gfp_def intro: Sup_upper)
haftmann@24915
   134
haftmann@24915
   135
lemma gfp_least: "(!!u. u \<le> f u ==> u \<le> X) ==> gfp f \<le> X"
haftmann@24915
   136
  by (auto simp add: gfp_def intro: Sup_least)
haftmann@24915
   137
haftmann@24915
   138
lemma gfp_lemma2: "mono f ==> gfp f \<le> f (gfp f)"
haftmann@24915
   139
  by (iprover intro: gfp_least order_trans monoD gfp_upperbound)
haftmann@24915
   140
haftmann@24915
   141
lemma gfp_lemma3: "mono f ==> f (gfp f) \<le> gfp f"
haftmann@24915
   142
  by (iprover intro: gfp_lemma2 monoD gfp_upperbound)
haftmann@24915
   143
haftmann@24915
   144
lemma gfp_unfold: "mono f ==> gfp f = f (gfp f)"
haftmann@24915
   145
  by (iprover intro: order_antisym gfp_lemma2 gfp_lemma3)
haftmann@24915
   146
haftmann@24915
   147
haftmann@24915
   148
subsection {* Coinduction rules for greatest fixed points *}
haftmann@24915
   149
haftmann@24915
   150
text{*weak version*}
haftmann@24915
   151
lemma weak_coinduct: "[| a: X;  X \<subseteq> f(X) |] ==> a : gfp(f)"
haftmann@24915
   152
by (rule gfp_upperbound [THEN subsetD], auto)
haftmann@24915
   153
haftmann@24915
   154
lemma weak_coinduct_image: "!!X. [| a : X; g`X \<subseteq> f (g`X) |] ==> g a : gfp f"
haftmann@24915
   155
apply (erule gfp_upperbound [THEN subsetD])
haftmann@24915
   156
apply (erule imageI)
haftmann@24915
   157
done
haftmann@24915
   158
haftmann@24915
   159
lemma coinduct_lemma:
haftmann@24915
   160
     "[| X \<le> f (sup X (gfp f));  mono f |] ==> sup X (gfp f) \<le> f (sup X (gfp f))"
haftmann@24915
   161
  apply (frule gfp_lemma2)
haftmann@24915
   162
  apply (drule mono_sup)
haftmann@24915
   163
  apply (rule le_supI)
haftmann@24915
   164
  apply assumption
haftmann@24915
   165
  apply (rule order_trans)
haftmann@24915
   166
  apply (rule order_trans)
haftmann@24915
   167
  apply assumption
haftmann@24915
   168
  apply (rule sup_ge2)
haftmann@24915
   169
  apply assumption
haftmann@24915
   170
  done
haftmann@24915
   171
haftmann@24915
   172
text{*strong version, thanks to Coen and Frost*}
haftmann@24915
   173
lemma coinduct_set: "[| mono(f);  a: X;  X \<subseteq> f(X Un gfp(f)) |] ==> a : gfp(f)"
haftmann@24915
   174
by (blast intro: weak_coinduct [OF _ coinduct_lemma, simplified sup_set_eq])
haftmann@24915
   175
haftmann@24915
   176
lemma coinduct: "[| mono(f); X \<le> f (sup X (gfp f)) |] ==> X \<le> gfp(f)"
haftmann@24915
   177
  apply (rule order_trans)
haftmann@24915
   178
  apply (rule sup_ge1)
haftmann@24915
   179
  apply (erule gfp_upperbound [OF coinduct_lemma])
haftmann@24915
   180
  apply assumption
haftmann@24915
   181
  done
haftmann@24915
   182
haftmann@24915
   183
lemma gfp_fun_UnI2: "[| mono(f);  a: gfp(f) |] ==> a: f(X Un gfp(f))"
haftmann@24915
   184
by (blast dest: gfp_lemma2 mono_Un)
haftmann@24915
   185
haftmann@24915
   186
haftmann@24915
   187
subsection {* Even Stronger Coinduction Rule, by Martin Coen *}
haftmann@24915
   188
haftmann@24915
   189
text{* Weakens the condition @{term "X \<subseteq> f(X)"} to one expressed using both
haftmann@24915
   190
  @{term lfp} and @{term gfp}*}
haftmann@24915
   191
haftmann@24915
   192
lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un X Un B)"
haftmann@24915
   193
by (iprover intro: subset_refl monoI Un_mono monoD)
haftmann@24915
   194
haftmann@24915
   195
lemma coinduct3_lemma:
haftmann@24915
   196
     "[| X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)));  mono(f) |]
haftmann@24915
   197
      ==> lfp(%x. f(x) Un X Un gfp(f)) \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)))"
haftmann@24915
   198
apply (rule subset_trans)
haftmann@24915
   199
apply (erule coinduct3_mono_lemma [THEN lfp_lemma3])
haftmann@24915
   200
apply (rule Un_least [THEN Un_least])
haftmann@24915
   201
apply (rule subset_refl, assumption)
haftmann@24915
   202
apply (rule gfp_unfold [THEN equalityD1, THEN subset_trans], assumption)
haftmann@24915
   203
apply (rule monoD, assumption)
haftmann@24915
   204
apply (subst coinduct3_mono_lemma [THEN lfp_unfold], auto)
haftmann@24915
   205
done
haftmann@24915
   206
haftmann@24915
   207
lemma coinduct3: 
haftmann@24915
   208
  "[| mono(f);  a:X;  X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))) |] ==> a : gfp(f)"
haftmann@24915
   209
apply (rule coinduct3_lemma [THEN [2] weak_coinduct])
haftmann@24915
   210
apply (rule coinduct3_mono_lemma [THEN lfp_unfold, THEN ssubst], auto)
haftmann@24915
   211
done
haftmann@24915
   212
haftmann@24915
   213
haftmann@24915
   214
text{*Definition forms of @{text gfp_unfold} and @{text coinduct}, 
haftmann@24915
   215
    to control unfolding*}
haftmann@24915
   216
haftmann@24915
   217
lemma def_gfp_unfold: "[| A==gfp(f);  mono(f) |] ==> A = f(A)"
haftmann@24915
   218
by (auto intro!: gfp_unfold)
haftmann@24915
   219
haftmann@24915
   220
lemma def_coinduct:
haftmann@24915
   221
     "[| A==gfp(f);  mono(f);  X \<le> f(sup X A) |] ==> X \<le> A"
haftmann@24915
   222
by (iprover intro!: coinduct)
haftmann@24915
   223
haftmann@24915
   224
lemma def_coinduct_set:
haftmann@24915
   225
     "[| A==gfp(f);  mono(f);  a:X;  X \<subseteq> f(X Un A) |] ==> a: A"
haftmann@24915
   226
by (auto intro!: coinduct_set)
haftmann@24915
   227
haftmann@24915
   228
(*The version used in the induction/coinduction package*)
haftmann@24915
   229
lemma def_Collect_coinduct:
haftmann@24915
   230
    "[| A == gfp(%w. Collect(P(w)));  mono(%w. Collect(P(w)));   
haftmann@24915
   231
        a: X;  !!z. z: X ==> P (X Un A) z |] ==>  
haftmann@24915
   232
     a : A"
haftmann@24915
   233
apply (erule def_coinduct_set, auto) 
haftmann@24915
   234
done
haftmann@24915
   235
haftmann@24915
   236
lemma def_coinduct3:
haftmann@24915
   237
    "[| A==gfp(f); mono(f);  a:X;  X \<subseteq> f(lfp(%x. f(x) Un X Un A)) |] ==> a: A"
haftmann@24915
   238
by (auto intro!: coinduct3)
haftmann@24915
   239
haftmann@24915
   240
text{*Monotonicity of @{term gfp}!*}
haftmann@24915
   241
lemma gfp_mono: "(!!Z. f Z \<le> g Z) ==> gfp f \<le> gfp g"
haftmann@24915
   242
  by (rule gfp_upperbound [THEN gfp_least], blast intro: order_trans)
haftmann@24915
   243
haftmann@24915
   244
berghofe@23734
   245
subsection {* Inductive predicates and sets *}
wenzelm@11688
   246
wenzelm@11688
   247
text {* Inversion of injective functions. *}
wenzelm@11436
   248
wenzelm@11436
   249
constdefs
wenzelm@11436
   250
  myinv :: "('a => 'b) => ('b => 'a)"
wenzelm@11436
   251
  "myinv (f :: 'a => 'b) == \<lambda>y. THE x. f x = y"
wenzelm@11436
   252
wenzelm@11436
   253
lemma myinv_f_f: "inj f ==> myinv f (f x) = x"
wenzelm@11436
   254
proof -
wenzelm@11436
   255
  assume "inj f"
wenzelm@11436
   256
  hence "(THE x'. f x' = f x) = (THE x'. x' = x)"
wenzelm@11436
   257
    by (simp only: inj_eq)
wenzelm@11436
   258
  also have "... = x" by (rule the_eq_trivial)
wenzelm@11439
   259
  finally show ?thesis by (unfold myinv_def)
wenzelm@11436
   260
qed
wenzelm@11436
   261
wenzelm@11436
   262
lemma f_myinv_f: "inj f ==> y \<in> range f ==> f (myinv f y) = y"
wenzelm@11436
   263
proof (unfold myinv_def)
wenzelm@11436
   264
  assume inj: "inj f"
wenzelm@11436
   265
  assume "y \<in> range f"
wenzelm@11436
   266
  then obtain x where "y = f x" ..
wenzelm@11436
   267
  hence x: "f x = y" ..
wenzelm@11436
   268
  thus "f (THE x. f x = y) = y"
wenzelm@11436
   269
  proof (rule theI)
wenzelm@11436
   270
    fix x' assume "f x' = y"
wenzelm@11436
   271
    with x have "f x' = f x" by simp
wenzelm@11436
   272
    with inj show "x' = x" by (rule injD)
wenzelm@11436
   273
  qed
wenzelm@11436
   274
qed
wenzelm@11436
   275
wenzelm@11436
   276
hide const myinv
wenzelm@11436
   277
wenzelm@11436
   278
wenzelm@11688
   279
text {* Package setup. *}
wenzelm@10402
   280
berghofe@23734
   281
theorems basic_monos =
haftmann@22218
   282
  subset_refl imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj
wenzelm@11688
   283
  Collect_mono in_mono vimage_mono
wenzelm@11688
   284
  imp_conv_disj not_not de_Morgan_disj de_Morgan_conj
wenzelm@11688
   285
  not_all not_ex
wenzelm@11688
   286
  Ball_def Bex_def
wenzelm@18456
   287
  induct_rulify_fallback
wenzelm@11688
   288
haftmann@24915
   289
ML {*
haftmann@24915
   290
val def_lfp_unfold = @{thm def_lfp_unfold}
haftmann@24915
   291
val def_gfp_unfold = @{thm def_gfp_unfold}
haftmann@24915
   292
val def_lfp_induct = @{thm def_lfp_induct}
haftmann@24915
   293
val def_coinduct = @{thm def_coinduct}
haftmann@25510
   294
val inf_bool_eq = @{thm inf_bool_eq} RS @{thm eq_reflection}
haftmann@25510
   295
val inf_fun_eq = @{thm inf_fun_eq} RS @{thm eq_reflection}
haftmann@25510
   296
val sup_bool_eq = @{thm sup_bool_eq} RS @{thm eq_reflection}
haftmann@25510
   297
val sup_fun_eq = @{thm sup_fun_eq} RS @{thm eq_reflection}
haftmann@24915
   298
val le_boolI = @{thm le_boolI}
haftmann@24915
   299
val le_boolI' = @{thm le_boolI'}
haftmann@24915
   300
val le_funI = @{thm le_funI}
haftmann@24915
   301
val le_boolE = @{thm le_boolE}
haftmann@24915
   302
val le_funE = @{thm le_funE}
haftmann@24915
   303
val le_boolD = @{thm le_boolD}
haftmann@24915
   304
val le_funD = @{thm le_funD}
haftmann@25510
   305
val le_bool_def = @{thm le_bool_def} RS @{thm eq_reflection}
haftmann@25510
   306
val le_fun_def = @{thm le_fun_def} RS @{thm eq_reflection}
haftmann@24915
   307
*}
haftmann@24915
   308
berghofe@21018
   309
use "Tools/inductive_package.ML"
berghofe@21018
   310
setup InductivePackage.setup
berghofe@21018
   311
berghofe@23734
   312
theorems [mono] =
haftmann@22218
   313
  imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj
berghofe@21018
   314
  imp_conv_disj not_not de_Morgan_disj de_Morgan_conj
berghofe@21018
   315
  not_all not_ex
berghofe@21018
   316
  Ball_def Bex_def
berghofe@21018
   317
  induct_rulify_fallback
berghofe@21018
   318
wenzelm@11688
   319
wenzelm@12023
   320
subsection {* Inductive datatypes and primitive recursion *}
wenzelm@11688
   321
wenzelm@11825
   322
text {* Package setup. *}
wenzelm@11825
   323
wenzelm@10402
   324
use "Tools/datatype_aux.ML"
wenzelm@10402
   325
use "Tools/datatype_prop.ML"
wenzelm@10402
   326
use "Tools/datatype_rep_proofs.ML"
wenzelm@10402
   327
use "Tools/datatype_abs_proofs.ML"
berghofe@22783
   328
use "Tools/datatype_case.ML"
wenzelm@10402
   329
use "Tools/datatype_package.ML"
wenzelm@7700
   330
setup DatatypePackage.setup
haftmann@24699
   331
use "Tools/primrec_package.ML"
berghofe@12437
   332
haftmann@25534
   333
use "Tools/datatype_codegen.ML"
haftmann@25534
   334
setup DatatypeCodegen.setup
haftmann@25534
   335
berghofe@12437
   336
use "Tools/inductive_codegen.ML"
berghofe@12437
   337
setup InductiveCodegen.setup
berghofe@12437
   338
nipkow@23526
   339
text{* Lambda-abstractions with pattern matching: *}
nipkow@23526
   340
nipkow@23526
   341
syntax
nipkow@23529
   342
  "_lam_pats_syntax" :: "cases_syn => 'a => 'b"               ("(%_)" 10)
nipkow@23526
   343
syntax (xsymbols)
nipkow@23529
   344
  "_lam_pats_syntax" :: "cases_syn => 'a => 'b"               ("(\<lambda>_)" 10)
nipkow@23526
   345
nipkow@23529
   346
parse_translation (advanced) {*
nipkow@23529
   347
let
nipkow@23529
   348
  fun fun_tr ctxt [cs] =
nipkow@23529
   349
    let
nipkow@23529
   350
      val x = Free (Name.variant (add_term_free_names (cs, [])) "x", dummyT);
nipkow@24349
   351
      val ft = DatatypeCase.case_tr true DatatypePackage.datatype_of_constr
nipkow@24349
   352
                 ctxt [x, cs]
nipkow@23529
   353
    in lambda x ft end
nipkow@23529
   354
in [("_lam_pats_syntax", fun_tr)] end
nipkow@23526
   355
*}
nipkow@23526
   356
nipkow@23526
   357
end