src/HOL/Integ/Equiv.ML
author wenzelm
Thu Jan 23 14:19:16 1997 +0100 (1997-01-23)
changeset 2545 d10abc8c11fb
parent 2215 ebf910e7ec87
child 3358 13f1df323daf
permissions -rw-r--r--
added AxClasses test;
clasohm@1465
     1
(*  Title:      Equiv.ML
clasohm@925
     2
    ID:         $Id$
paulson@2215
     3
    Authors:    Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@2215
     4
    Copyright   1996  University of Cambridge
clasohm@925
     5
clasohm@925
     6
Equivalence relations in HOL Set Theory 
clasohm@925
     7
*)
clasohm@925
     8
paulson@1978
     9
val RSLIST = curry (op MRS);
paulson@1978
    10
clasohm@925
    11
open Equiv;
clasohm@925
    12
berghofe@1894
    13
Delrules [equalityI];
berghofe@1894
    14
clasohm@925
    15
(*** Suppes, Theorem 70: r is an equiv relation iff converse(r) O r = r ***)
clasohm@925
    16
clasohm@925
    17
(** first half: equiv A r ==> converse(r) O r = r **)
clasohm@925
    18
clasohm@925
    19
goalw Equiv.thy [trans_def,sym_def,converse_def]
clasohm@925
    20
    "!!r. [| sym(r); trans(r) |] ==> converse(r) O r <= r";
berghofe@1894
    21
by (fast_tac (!claset addSEs [converseD]) 1);
clasohm@925
    22
qed "sym_trans_comp_subset";
clasohm@925
    23
lcp@1045
    24
goalw Equiv.thy [refl_def]
clasohm@925
    25
    "!!A r. refl A r ==> r <= converse(r) O r";
berghofe@1894
    26
by (fast_tac (!claset addIs [compI]) 1);
clasohm@925
    27
qed "refl_comp_subset";
clasohm@925
    28
clasohm@925
    29
goalw Equiv.thy [equiv_def]
clasohm@925
    30
    "!!A r. equiv A r ==> converse(r) O r = r";
clasohm@925
    31
by (rtac equalityI 1);
clasohm@925
    32
by (REPEAT (ares_tac [sym_trans_comp_subset, refl_comp_subset] 1
clasohm@925
    33
     ORELSE etac conjE 1));
clasohm@925
    34
qed "equiv_comp_eq";
clasohm@925
    35
clasohm@925
    36
(*second half*)
clasohm@925
    37
goalw Equiv.thy [equiv_def,refl_def,sym_def,trans_def]
clasohm@925
    38
    "!!A r. [| converse(r) O r = r;  Domain(r) = A |] ==> equiv A r";
clasohm@925
    39
by (etac equalityE 1);
clasohm@972
    40
by (subgoal_tac "ALL x y. (x,y) : r --> (y,x) : r" 1);
paulson@2215
    41
by (Step_tac 1);
berghofe@1894
    42
by (fast_tac (!claset addSIs [converseI] addIs [compI]) 3);
berghofe@1894
    43
by (ALLGOALS (fast_tac (!claset addIs [compI] addSEs [compE])));
clasohm@925
    44
qed "comp_equivI";
clasohm@925
    45
clasohm@925
    46
(** Equivalence classes **)
clasohm@925
    47
clasohm@925
    48
(*Lemma for the next result*)
clasohm@925
    49
goalw Equiv.thy [equiv_def,trans_def,sym_def]
clasohm@972
    50
    "!!A r. [| equiv A r;  (a,b): r |] ==> r^^{a} <= r^^{b}";
paulson@2215
    51
by (Step_tac 1);
clasohm@925
    52
by (rtac ImageI 1);
berghofe@1894
    53
by (Fast_tac 2);
berghofe@1894
    54
by (Fast_tac 1);
clasohm@925
    55
qed "equiv_class_subset";
clasohm@925
    56
clasohm@972
    57
goal Equiv.thy "!!A r. [| equiv A r;  (a,b): r |] ==> r^^{a} = r^^{b}";
clasohm@925
    58
by (REPEAT (ares_tac [equalityI, equiv_class_subset] 1));
clasohm@925
    59
by (rewrite_goals_tac [equiv_def,sym_def]);
berghofe@1894
    60
by (Fast_tac 1);
clasohm@925
    61
qed "equiv_class_eq";
clasohm@925
    62
paulson@2215
    63
goalw Equiv.thy [equiv_def,refl_def]
paulson@2215
    64
    "!!A r. [| equiv A r;  a: A |] ==> a: r^^{a}";
berghofe@1894
    65
by (Fast_tac 1);
clasohm@925
    66
qed "equiv_class_self";
clasohm@925
    67
clasohm@925
    68
(*Lemma for the next result*)
clasohm@925
    69
goalw Equiv.thy [equiv_def,refl_def]
clasohm@972
    70
    "!!A r. [| equiv A r;  r^^{b} <= r^^{a};  b: A |] ==> (a,b): r";
berghofe@1894
    71
by (Fast_tac 1);
clasohm@925
    72
qed "subset_equiv_class";
clasohm@925
    73
paulson@2215
    74
goal Equiv.thy
paulson@2215
    75
    "!!A r. [| r^^{a} = r^^{b};  equiv A r;  b: A |] ==> (a,b): r";
paulson@2215
    76
by (REPEAT (ares_tac [equalityD2, subset_equiv_class] 1));
clasohm@925
    77
qed "eq_equiv_class";
clasohm@925
    78
clasohm@925
    79
(*thus r^^{a} = r^^{b} as well*)
clasohm@925
    80
goalw Equiv.thy [equiv_def,trans_def,sym_def]
clasohm@972
    81
    "!!A r. [| equiv A r;  x: (r^^{a} Int r^^{b}) |] ==> (a,b): r";
berghofe@1894
    82
by (Fast_tac 1);
clasohm@925
    83
qed "equiv_class_nondisjoint";
clasohm@925
    84
clasohm@925
    85
val [major] = goalw Equiv.thy [equiv_def,refl_def]
paulson@1642
    86
    "equiv A r ==> r <= A Times A";
clasohm@925
    87
by (rtac (major RS conjunct1 RS conjunct1) 1);
clasohm@925
    88
qed "equiv_type";
clasohm@925
    89
clasohm@925
    90
goal Equiv.thy
clasohm@972
    91
    "!!A r. equiv A r ==> ((x,y): r) = (r^^{x} = r^^{y} & x:A & y:A)";
paulson@2215
    92
by (Step_tac 1);
clasohm@925
    93
by ((rtac equiv_class_eq 1) THEN (assume_tac 1) THEN (assume_tac 1));
clasohm@925
    94
by ((rtac eq_equiv_class 3) THEN 
clasohm@925
    95
    (assume_tac 4) THEN (assume_tac 4) THEN (assume_tac 3));
clasohm@925
    96
by ((dtac equiv_type 1) THEN (dtac rev_subsetD 1) THEN
clasohm@925
    97
    (assume_tac 1) THEN (dtac SigmaD1 1) THEN (assume_tac 1));
clasohm@925
    98
by ((dtac equiv_type 1) THEN (dtac rev_subsetD 1) THEN
clasohm@925
    99
    (assume_tac 1) THEN (dtac SigmaD2 1) THEN (assume_tac 1));
clasohm@925
   100
qed "equiv_class_eq_iff";
clasohm@925
   101
clasohm@925
   102
goal Equiv.thy
clasohm@972
   103
    "!!A r. [| equiv A r;  x: A;  y: A |] ==> (r^^{x} = r^^{y}) = ((x,y): r)";
paulson@2215
   104
by (Step_tac 1);
clasohm@925
   105
by ((rtac eq_equiv_class 1) THEN 
clasohm@925
   106
    (assume_tac 1) THEN (assume_tac 1) THEN (assume_tac 1));
clasohm@925
   107
by ((rtac equiv_class_eq 1) THEN 
clasohm@925
   108
    (assume_tac 1) THEN (assume_tac 1));
clasohm@925
   109
qed "eq_equiv_class_iff";
clasohm@925
   110
clasohm@925
   111
(*** Quotients ***)
clasohm@925
   112
clasohm@925
   113
(** Introduction/elimination rules -- needed? **)
clasohm@925
   114
paulson@2215
   115
goalw Equiv.thy [quotient_def] "!!A. x:A ==> r^^{x}: A/r";
paulson@2215
   116
by (Fast_tac 1);
clasohm@925
   117
qed "quotientI";
clasohm@925
   118
clasohm@925
   119
val [major,minor] = goalw Equiv.thy [quotient_def]
clasohm@1465
   120
    "[| X:(A/r);  !!x. [| X = r^^{x};  x:A |] ==> P |]  \
clasohm@925
   121
\    ==> P";
clasohm@925
   122
by (resolve_tac [major RS UN_E] 1);
clasohm@925
   123
by (rtac minor 1);
clasohm@925
   124
by (assume_tac 2);
berghofe@1894
   125
by (Fast_tac 1);
clasohm@925
   126
qed "quotientE";
clasohm@925
   127
clasohm@925
   128
(** Not needed by Theory Integ --> bypassed **)
clasohm@925
   129
(**goalw Equiv.thy [equiv_def,refl_def,quotient_def]
clasohm@925
   130
    "!!A r. equiv A r ==> Union(A/r) = A";
paulson@1844
   131
by (Fast_tac 1);
clasohm@925
   132
qed "Union_quotient";
clasohm@925
   133
**)
clasohm@925
   134
clasohm@925
   135
(** Not needed by Theory Integ --> bypassed **)
clasohm@925
   136
(*goalw Equiv.thy [quotient_def]
clasohm@925
   137
    "!!A r. [| equiv A r;  X: A/r;  Y: A/r |] ==> X=Y | (X Int Y <= 0)";
berghofe@1894
   138
by (safe_tac (!claset addSIs [equiv_class_eq]));
clasohm@925
   139
by (assume_tac 1);
clasohm@925
   140
by (rewrite_goals_tac [equiv_def,trans_def,sym_def]);
berghofe@1894
   141
by (Fast_tac 1);
clasohm@925
   142
qed "quotient_disj";
clasohm@925
   143
**)
clasohm@925
   144
clasohm@925
   145
(**** Defining unary operations upon equivalence classes ****)
clasohm@925
   146
clasohm@925
   147
(* theorem needed to prove UN_equiv_class *)
clasohm@925
   148
goal Set.thy "!!A. [| a:A; ! y:A. b(y)=b(a) |] ==> (UN y:A. b(y))=b(a)";
berghofe@1894
   149
by (fast_tac (!claset addSEs [equalityE] addSIs [equalityI]) 1);
clasohm@925
   150
qed "UN_singleton_lemma";
clasohm@925
   151
val UN_singleton = ballI RSN (2,UN_singleton_lemma);
clasohm@925
   152
clasohm@925
   153
paulson@2215
   154
(** These proofs really require the local premises
clasohm@925
   155
     equiv A r;  congruent r b
clasohm@925
   156
**)
clasohm@925
   157
clasohm@925
   158
(*Conversion rule*)
paulson@2215
   159
goal Equiv.thy "!!A r. [| equiv A r;  congruent r b;  a: A |] \
paulson@2215
   160
\                      ==> (UN x:r^^{a}. b(x)) = b(a)";
paulson@2215
   161
by (rtac (equiv_class_self RS UN_singleton) 1 THEN REPEAT (assume_tac 1));
clasohm@925
   162
by (rewrite_goals_tac [equiv_def,congruent_def,sym_def]);
berghofe@1894
   163
by (Fast_tac 1);
clasohm@925
   164
qed "UN_equiv_class";
clasohm@925
   165
clasohm@925
   166
(*type checking of  UN x:r``{a}. b(x) *)
paulson@2215
   167
val prems = goalw Equiv.thy [quotient_def]
clasohm@1465
   168
    "[| equiv A r;  congruent r b;  X: A/r;     \
paulson@2215
   169
\       !!x.  x : A ==> b(x) : B |]             \
clasohm@925
   170
\    ==> (UN x:X. b(x)) : B";
clasohm@925
   171
by (cut_facts_tac prems 1);
paulson@2215
   172
by (Step_tac 1);
paulson@2215
   173
by (stac UN_equiv_class 1);
clasohm@925
   174
by (REPEAT (ares_tac prems 1));
clasohm@925
   175
qed "UN_equiv_class_type";
clasohm@925
   176
clasohm@925
   177
(*Sufficient conditions for injectiveness.  Could weaken premises!
clasohm@925
   178
  major premise could be an inclusion; bcong could be !!y. y:A ==> b(y):B
clasohm@925
   179
*)
paulson@2215
   180
val prems = goalw Equiv.thy [quotient_def]
clasohm@925
   181
    "[| equiv A r;   congruent r b;  \
paulson@2215
   182
\       (UN x:X. b(x))=(UN y:Y. b(y));  X: A/r;  Y: A/r;        \
clasohm@1465
   183
\       !!x y. [| x:A; y:A; b(x)=b(y) |] ==> (x,y):r |]         \
clasohm@925
   184
\    ==> X=Y";
clasohm@925
   185
by (cut_facts_tac prems 1);
paulson@2215
   186
by (Step_tac 1);
paulson@2215
   187
by (rtac equiv_class_eq 1);
clasohm@925
   188
by (REPEAT (ares_tac prems 1));
clasohm@925
   189
by (etac box_equals 1);
paulson@2215
   190
by (REPEAT (ares_tac [UN_equiv_class] 1));
clasohm@925
   191
qed "UN_equiv_class_inject";
clasohm@925
   192
clasohm@925
   193
clasohm@925
   194
(**** Defining binary operations upon equivalence classes ****)
clasohm@925
   195
clasohm@925
   196
clasohm@925
   197
goalw Equiv.thy [congruent_def,congruent2_def,equiv_def,refl_def]
clasohm@925
   198
    "!!A r. [| equiv A r;  congruent2 r b;  a: A |] ==> congruent r (b a)";
berghofe@1894
   199
by (Fast_tac 1);
clasohm@925
   200
qed "congruent2_implies_congruent";
clasohm@925
   201
paulson@2215
   202
goalw Equiv.thy [congruent_def]
paulson@2215
   203
    "!!A r. [| equiv A r;  congruent2 r b;  a: A |] ==> \
clasohm@925
   204
\    congruent r (%x1. UN x2:r^^{a}. b x1 x2)";
paulson@2215
   205
by (Step_tac 1);
paulson@2215
   206
by (rtac (equiv_type RS subsetD RS SigmaE2) 1 THEN REPEAT (assume_tac 1));
paulson@2215
   207
by (asm_simp_tac (!simpset addsimps [UN_equiv_class,
clasohm@1465
   208
                                     congruent2_implies_congruent]) 1);
clasohm@925
   209
by (rewrite_goals_tac [congruent2_def,equiv_def,refl_def]);
berghofe@1894
   210
by (Fast_tac 1);
clasohm@925
   211
qed "congruent2_implies_congruent_UN";
clasohm@925
   212
paulson@2215
   213
goal Equiv.thy
paulson@2215
   214
    "!!A r. [| equiv A r;  congruent2 r b;  a1: A;  a2: A |]  \
clasohm@925
   215
\    ==> (UN x1:r^^{a1}. UN x2:r^^{a2}. b x1 x2) = b a1 a2";
paulson@2215
   216
by (asm_simp_tac (!simpset addsimps [UN_equiv_class,
clasohm@1465
   217
                                     congruent2_implies_congruent,
clasohm@1465
   218
                                     congruent2_implies_congruent_UN]) 1);
clasohm@925
   219
qed "UN_equiv_class2";
clasohm@925
   220
clasohm@925
   221
(*type checking*)
clasohm@925
   222
val prems = goalw Equiv.thy [quotient_def]
clasohm@925
   223
    "[| equiv A r;  congruent2 r b;  \
clasohm@1465
   224
\       X1: A/r;  X2: A/r;      \
clasohm@1465
   225
\       !!x1 x2.  [| x1: A; x2: A |] ==> b x1 x2 : B |]    \
clasohm@925
   226
\    ==> (UN x1:X1. UN x2:X2. b x1 x2) : B";
clasohm@925
   227
by (cut_facts_tac prems 1);
paulson@2215
   228
by (Step_tac 1);
clasohm@925
   229
by (REPEAT (ares_tac (prems@[UN_equiv_class_type,
clasohm@1465
   230
                             congruent2_implies_congruent_UN,
clasohm@1465
   231
                             congruent2_implies_congruent, quotientI]) 1));
clasohm@925
   232
qed "UN_equiv_class_type2";
clasohm@925
   233
clasohm@925
   234
clasohm@925
   235
(*Suggested by John Harrison -- the two subproofs may be MUCH simpler
clasohm@925
   236
  than the direct proof*)
clasohm@925
   237
val prems = goalw Equiv.thy [congruent2_def,equiv_def,refl_def]
clasohm@1465
   238
    "[| equiv A r;      \
clasohm@972
   239
\       !! y z w. [| w: A;  (y,z) : r |] ==> b y w = b z w;      \
clasohm@972
   240
\       !! y z w. [| w: A;  (y,z) : r |] ==> b w y = b w z       \
clasohm@925
   241
\    |] ==> congruent2 r b";
clasohm@925
   242
by (cut_facts_tac prems 1);
paulson@2215
   243
by (Step_tac 1);
clasohm@925
   244
by (rtac trans 1);
clasohm@925
   245
by (REPEAT (ares_tac prems 1
clasohm@925
   246
     ORELSE etac (subsetD RS SigmaE2) 1 THEN assume_tac 2 THEN assume_tac 1));
clasohm@925
   247
qed "congruent2I";
clasohm@925
   248
clasohm@925
   249
val [equivA,commute,congt] = goal Equiv.thy
clasohm@1465
   250
    "[| equiv A r;      \
clasohm@925
   251
\       !! y z. [| y: A;  z: A |] ==> b y z = b z y;        \
clasohm@1465
   252
\       !! y z w. [| w: A;  (y,z): r |] ==> b w y = b w z       \
clasohm@925
   253
\    |] ==> congruent2 r b";
clasohm@925
   254
by (resolve_tac [equivA RS congruent2I] 1);
clasohm@925
   255
by (rtac (commute RS trans) 1);
clasohm@925
   256
by (rtac (commute RS trans RS sym) 3);
clasohm@925
   257
by (rtac sym 5);
clasohm@925
   258
by (REPEAT (ares_tac [congt] 1
clasohm@925
   259
     ORELSE etac (equivA RS equiv_type RS subsetD RS SigmaE2) 1));
clasohm@925
   260
qed "congruent2_commuteI";
clasohm@925
   261